aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp
blob: 100410bb76444162ab2d1992fa319169cf60804e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
//===----------------------------------------------------------------------===//

#include "GCNSchedStrategy.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"

#define DEBUG_TYPE "machine-scheduler"

using namespace llvm;

GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
    const MachineSchedContext *C) :
    GenericScheduler(C), TargetOccupancy(0), HasClusteredNodes(false),
    HasExcessPressure(false), MF(nullptr) { }

void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
  GenericScheduler::initialize(DAG);

  MF = &DAG->MF;

  const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();

  // FIXME: This is also necessary, because some passes that run after
  // scheduling and before regalloc increase register pressure.
  const unsigned ErrorMargin = 3;

  SGPRExcessLimit =
      Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
  VGPRExcessLimit =
      Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);

  SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
  // Set the initial TargetOccupnacy to the maximum occupancy that we can
  // achieve for this function. This effectively sets a lower bound on the
  // 'Critical' register limits in the scheduler.
  TargetOccupancy = MFI.getOccupancy();
  SGPRCriticalLimit =
      std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);
  VGPRCriticalLimit =
      std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit);

  // Subtract error margin from register limits and avoid overflow.
  SGPRCriticalLimit =
      std::min(SGPRCriticalLimit - ErrorMargin, SGPRCriticalLimit);
  VGPRCriticalLimit =
      std::min(VGPRCriticalLimit - ErrorMargin, VGPRCriticalLimit);
  SGPRExcessLimit = std::min(SGPRExcessLimit - ErrorMargin, SGPRExcessLimit);
  VGPRExcessLimit = std::min(VGPRExcessLimit - ErrorMargin, VGPRExcessLimit);
}

void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
                                     bool AtTop, const RegPressureTracker &RPTracker,
                                     const SIRegisterInfo *SRI,
                                     unsigned SGPRPressure,
                                     unsigned VGPRPressure) {

  Cand.SU = SU;
  Cand.AtTop = AtTop;

  // getDownwardPressure() and getUpwardPressure() make temporary changes to
  // the tracker, so we need to pass those function a non-const copy.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);

  Pressure.clear();
  MaxPressure.clear();

  if (AtTop)
    TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
  else {
    // FIXME: I think for bottom up scheduling, the register pressure is cached
    // and can be retrieved by DAG->getPressureDif(SU).
    TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
  }

  unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
  unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];

  // If two instructions increase the pressure of different register sets
  // by the same amount, the generic scheduler will prefer to schedule the
  // instruction that increases the set with the least amount of registers,
  // which in our case would be SGPRs.  This is rarely what we want, so
  // when we report excess/critical register pressure, we do it either
  // only for VGPRs or only for SGPRs.

  // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
  const unsigned MaxVGPRPressureInc = 16;
  bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
  bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;


  // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
  // to increase the likelihood we don't go over the limits.  We should improve
  // the analysis to look through dependencies to find the path with the least
  // register pressure.

  // We only need to update the RPDelta for instructions that increase register
  // pressure. Instructions that decrease or keep reg pressure the same will be
  // marked as RegExcess in tryCandidate() when they are compared with
  // instructions that increase the register pressure.
  if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
    HasExcessPressure = true;
    Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
    Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
  }

  if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
    HasExcessPressure = true;
    Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
    Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
  }

  // Register pressure is considered 'CRITICAL' if it is approaching a value
  // that would reduce the wave occupancy for the execution unit.  When
  // register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both
  // has the same cost, so we don't need to prefer one over the other.

  int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
  int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;

  if (SGPRDelta >= 0 || VGPRDelta >= 0) {
    HasExcessPressure = true;
    if (SGPRDelta > VGPRDelta) {
      Cand.RPDelta.CriticalMax =
        PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
      Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
    } else {
      Cand.RPDelta.CriticalMax =
        PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
      Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
    }
  }
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
                                         const CandPolicy &ZonePolicy,
                                         const RegPressureTracker &RPTracker,
                                         SchedCandidate &Cand) {
  const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
  ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
  unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
  unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
  ReadyQueue &Q = Zone.Available;
  for (SUnit *SU : Q) {

    SchedCandidate TryCand(ZonePolicy);
    initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
                  SGPRPressure, VGPRPressure);
    // Pass SchedBoundary only when comparing nodes from the same boundary.
    SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
    GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
    if (TryCand.Reason != NoCand) {
      // Initialize resource delta if needed in case future heuristics query it.
      if (TryCand.ResDelta == SchedResourceDelta())
        TryCand.initResourceDelta(Zone.DAG, SchedModel);
      Cand.setBest(TryCand);
      LLVM_DEBUG(traceCandidate(Cand));
    }
  }
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (SUnit *SU = Bot.pickOnlyChoice()) {
    IsTopNode = false;
    return SU;
  }
  if (SUnit *SU = Top.pickOnlyChoice()) {
    IsTopNode = true;
    return SU;
  }
  // Set the bottom-up policy based on the state of the current bottom zone and
  // the instructions outside the zone, including the top zone.
  CandPolicy BotPolicy;
  setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
  // Set the top-down policy based on the state of the current top zone and
  // the instructions outside the zone, including the bottom zone.
  CandPolicy TopPolicy;
  setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);

  // See if BotCand is still valid (because we previously scheduled from Top).
  LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
  if (!BotCand.isValid() || BotCand.SU->isScheduled ||
      BotCand.Policy != BotPolicy) {
    BotCand.reset(CandPolicy());
    pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
    assert(BotCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    LLVM_DEBUG(traceCandidate(BotCand));
#ifndef NDEBUG
    if (VerifyScheduling) {
      SchedCandidate TCand;
      TCand.reset(CandPolicy());
      pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
      assert(TCand.SU == BotCand.SU &&
             "Last pick result should correspond to re-picking right now");
    }
#endif
  }

  // Check if the top Q has a better candidate.
  LLVM_DEBUG(dbgs() << "Picking from Top:\n");
  if (!TopCand.isValid() || TopCand.SU->isScheduled ||
      TopCand.Policy != TopPolicy) {
    TopCand.reset(CandPolicy());
    pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
    assert(TopCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    LLVM_DEBUG(traceCandidate(TopCand));
#ifndef NDEBUG
    if (VerifyScheduling) {
      SchedCandidate TCand;
      TCand.reset(CandPolicy());
      pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
      assert(TCand.SU == TopCand.SU &&
           "Last pick result should correspond to re-picking right now");
    }
#endif
  }

  // Pick best from BotCand and TopCand.
  LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
             dbgs() << "Bot Cand: "; traceCandidate(BotCand););
  SchedCandidate Cand = BotCand;
  TopCand.Reason = NoCand;
  GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
  if (TopCand.Reason != NoCand) {
    Cand.setBest(TopCand);
  }
  LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););

  IsTopNode = Cand.AtTop;
  return Cand.SU;
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() &&
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    return nullptr;
  }
  SUnit *SU;
  do {
    if (RegionPolicy.OnlyTopDown) {
      SU = Top.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        TopCand.reset(NoPolicy);
        pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
        assert(TopCand.Reason != NoCand && "failed to find a candidate");
        SU = TopCand.SU;
      }
      IsTopNode = true;
    } else if (RegionPolicy.OnlyBottomUp) {
      SU = Bot.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        BotCand.reset(NoPolicy);
        pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
        assert(BotCand.Reason != NoCand && "failed to find a candidate");
        SU = BotCand.SU;
      }
      IsTopNode = false;
    } else {
      SU = pickNodeBidirectional(IsTopNode);
    }
  } while (SU->isScheduled);

  if (SU->isTopReady())
    Top.removeReady(SU);
  if (SU->isBottomReady())
    Bot.removeReady(SU);

  if (!HasClusteredNodes && SU->getInstr()->mayLoadOrStore()) {
    for (SDep &Dep : SU->Preds) {
      if (Dep.isCluster()) {
        HasClusteredNodes = true;
        break;
      }
    }
  }

  LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
                    << *SU->getInstr());
  return SU;
}

GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
                        std::unique_ptr<MachineSchedStrategy> S) :
  ScheduleDAGMILive(C, std::move(S)),
  ST(MF.getSubtarget<GCNSubtarget>()),
  MFI(*MF.getInfo<SIMachineFunctionInfo>()),
  StartingOccupancy(MFI.getOccupancy()),
  MinOccupancy(StartingOccupancy), Stage(Collect), RegionIdx(0) {

  LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
}

void GCNScheduleDAGMILive::schedule() {
  if (Stage == Collect) {
    // Just record regions at the first pass.
    Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
    return;
  }

  std::vector<MachineInstr*> Unsched;
  Unsched.reserve(NumRegionInstrs);
  for (auto &I : *this) {
    Unsched.push_back(&I);
  }

  GCNRegPressure PressureBefore;
  if (LIS) {
    PressureBefore = Pressure[RegionIdx];

    LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
               GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
               dbgs() << "Region live-in pressure:  ";
               llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
               dbgs() << "Region register pressure: ";
               PressureBefore.print(dbgs()));
  }

  GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
  // Set HasClusteredNodes to true for late stages where we have already
  // collected it. That way pickNode() will not scan SDep's when not needed.
  S.HasClusteredNodes = Stage > InitialSchedule;
  S.HasExcessPressure = false;
  ScheduleDAGMILive::schedule();
  Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
  RescheduleRegions[RegionIdx] = false;
  if (Stage == InitialSchedule && S.HasClusteredNodes)
    RegionsWithClusters[RegionIdx] = true;
  if (S.HasExcessPressure)
    RegionsWithHighRP[RegionIdx] = true;

  if (!LIS)
    return;

  // Check the results of scheduling.
  auto PressureAfter = getRealRegPressure();

  LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
             PressureAfter.print(dbgs()));

  if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
      PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
    Pressure[RegionIdx] = PressureAfter;
    RegionsWithMinOcc[RegionIdx] =
        PressureAfter.getOccupancy(ST) == MinOccupancy;

    LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
    return;
  }

  unsigned WavesAfter =
      std::min(S.TargetOccupancy, PressureAfter.getOccupancy(ST));
  unsigned WavesBefore =
      std::min(S.TargetOccupancy, PressureBefore.getOccupancy(ST));
  LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
                    << ", after " << WavesAfter << ".\n");

  // We may not be able to keep the current target occupancy because of the just
  // scheduled region. We might still be able to revert scheduling if the
  // occupancy before was higher, or if the current schedule has register
  // pressure higher than the excess limits which could lead to more spilling.
  unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);

  // Allow memory bound functions to drop to 4 waves if not limited by an
  // attribute.
  if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
      WavesAfter >= MFI.getMinAllowedOccupancy()) {
    LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
                      << MFI.getMinAllowedOccupancy() << " waves\n");
    NewOccupancy = WavesAfter;
  }

  if (NewOccupancy < MinOccupancy) {
    MinOccupancy = NewOccupancy;
    MFI.limitOccupancy(MinOccupancy);
    RegionsWithMinOcc.reset();
    LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
                      << MinOccupancy << ".\n");
  }

  unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
  unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
  if (PressureAfter.getVGPRNum(false) > MaxVGPRs ||
      PressureAfter.getAGPRNum() > MaxVGPRs ||
      PressureAfter.getSGPRNum() > MaxSGPRs) {
    RescheduleRegions[RegionIdx] = true;
    RegionsWithHighRP[RegionIdx] = true;
  }

  // If this condition is true, then either the occupancy before and after
  // scheduling is the same, or we are allowing the occupancy to drop because
  // the function is memory bound. Even if we are OK with the current occupancy,
  // we still need to verify that we will not introduce any extra chance of
  // spilling.
  if (WavesAfter >= MinOccupancy) {
    if (Stage == UnclusteredReschedule &&
        !PressureAfter.less(ST, PressureBefore)) {
      LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
    } else if (WavesAfter > MFI.getMinWavesPerEU() ||
        PressureAfter.less(ST, PressureBefore) ||
        !RescheduleRegions[RegionIdx]) {
      Pressure[RegionIdx] = PressureAfter;
      RegionsWithMinOcc[RegionIdx] =
          PressureAfter.getOccupancy(ST) == MinOccupancy;
      if (!RegionsWithClusters[RegionIdx] &&
          (Stage + 1) == UnclusteredReschedule)
        RescheduleRegions[RegionIdx] = false;
      return;
    } else {
      LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
    }
  }

  RegionsWithMinOcc[RegionIdx] =
      PressureBefore.getOccupancy(ST) == MinOccupancy;
  LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
  RescheduleRegions[RegionIdx] = RegionsWithClusters[RegionIdx] ||
                                 (Stage + 1) != UnclusteredReschedule;
  RegionEnd = RegionBegin;
  int SkippedDebugInstr = 0;
  for (MachineInstr *MI : Unsched) {
    if (MI->isDebugInstr()) {
      ++SkippedDebugInstr;
      continue;
    }

    if (MI->getIterator() != RegionEnd) {
      BB->remove(MI);
      BB->insert(RegionEnd, MI);
      if (!MI->isDebugInstr())
        LIS->handleMove(*MI, true);
    }
    // Reset read-undef flags and update them later.
    for (auto &Op : MI->operands())
      if (Op.isReg() && Op.isDef())
        Op.setIsUndef(false);
    RegisterOperands RegOpers;
    RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
    if (!MI->isDebugInstr()) {
      if (ShouldTrackLaneMasks) {
        // Adjust liveness and add missing dead+read-undef flags.
        SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
        RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
      } else {
        // Adjust for missing dead-def flags.
        RegOpers.detectDeadDefs(*MI, *LIS);
      }
    }
    RegionEnd = MI->getIterator();
    ++RegionEnd;
    LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
  }

  // After reverting schedule, debug instrs will now be at the end of the block
  // and RegionEnd will point to the first debug instr. Increment RegionEnd
  // pass debug instrs to the actual end of the scheduling region.
  while (SkippedDebugInstr-- > 0)
    ++RegionEnd;

  // If Unsched.front() instruction is a debug instruction, this will actually
  // shrink the region since we moved all debug instructions to the end of the
  // block. Find the first instruction that is not a debug instruction.
  RegionBegin = Unsched.front()->getIterator();
  if (RegionBegin->isDebugInstr()) {
    for (MachineInstr *MI : Unsched) {
      if (MI->isDebugInstr())
        continue;
      RegionBegin = MI->getIterator();
      break;
    }
  }

  // Then move the debug instructions back into their correct place and set
  // RegionBegin and RegionEnd if needed.
  placeDebugValues();

  Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
}

GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
  GCNDownwardRPTracker RPTracker(*LIS);
  RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
  return RPTracker.moveMaxPressure();
}

void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
  GCNDownwardRPTracker RPTracker(*LIS);

  // If the block has the only successor then live-ins of that successor are
  // live-outs of the current block. We can reuse calculated live set if the
  // successor will be sent to scheduling past current block.
  const MachineBasicBlock *OnlySucc = nullptr;
  if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
    SlotIndexes *Ind = LIS->getSlotIndexes();
    if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
      OnlySucc = *MBB->succ_begin();
  }

  // Scheduler sends regions from the end of the block upwards.
  size_t CurRegion = RegionIdx;
  for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
    if (Regions[CurRegion].first->getParent() != MBB)
      break;
  --CurRegion;

  auto I = MBB->begin();
  auto LiveInIt = MBBLiveIns.find(MBB);
  auto &Rgn = Regions[CurRegion];
  auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
  if (LiveInIt != MBBLiveIns.end()) {
    auto LiveIn = std::move(LiveInIt->second);
    RPTracker.reset(*MBB->begin(), &LiveIn);
    MBBLiveIns.erase(LiveInIt);
  } else {
    I = Rgn.first;
    auto LRS = BBLiveInMap.lookup(NonDbgMI);
#ifdef EXPENSIVE_CHECKS
    assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
#endif
    RPTracker.reset(*I, &LRS);
  }

  for ( ; ; ) {
    I = RPTracker.getNext();

    if (Regions[CurRegion].first == I || NonDbgMI == I) {
      LiveIns[CurRegion] = RPTracker.getLiveRegs();
      RPTracker.clearMaxPressure();
    }

    if (Regions[CurRegion].second == I) {
      Pressure[CurRegion] = RPTracker.moveMaxPressure();
      if (CurRegion-- == RegionIdx)
        break;
    }
    RPTracker.advanceToNext();
    RPTracker.advanceBeforeNext();
  }

  if (OnlySucc) {
    if (I != MBB->end()) {
      RPTracker.advanceToNext();
      RPTracker.advance(MBB->end());
    }
    RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
    RPTracker.advanceBeforeNext();
    MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
  }
}

DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getBBLiveInMap() const {
  assert(!Regions.empty());
  std::vector<MachineInstr *> BBStarters;
  BBStarters.reserve(Regions.size());
  auto I = Regions.rbegin(), E = Regions.rend();
  auto *BB = I->first->getParent();
  do {
    auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
    BBStarters.push_back(MI);
    do {
      ++I;
    } while (I != E && I->first->getParent() == BB);
  } while (I != E);
  return getLiveRegMap(BBStarters, false /*After*/, *LIS);
}

void GCNScheduleDAGMILive::finalizeSchedule() {
  LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");

  LiveIns.resize(Regions.size());
  Pressure.resize(Regions.size());
  RescheduleRegions.resize(Regions.size());
  RegionsWithClusters.resize(Regions.size());
  RegionsWithHighRP.resize(Regions.size());
  RegionsWithMinOcc.resize(Regions.size());
  RescheduleRegions.set();
  RegionsWithClusters.reset();
  RegionsWithHighRP.reset();
  RegionsWithMinOcc.reset();

  if (!Regions.empty())
    BBLiveInMap = getBBLiveInMap();

  std::vector<std::unique_ptr<ScheduleDAGMutation>> SavedMutations;

  do {
    Stage++;
    RegionIdx = 0;
    MachineBasicBlock *MBB = nullptr;

    if (Stage > InitialSchedule) {
      if (!LIS)
        break;

      // Retry function scheduling if we found resulting occupancy and it is
      // lower than used for first pass scheduling. This will give more freedom
      // to schedule low register pressure blocks.
      // Code is partially copied from MachineSchedulerBase::scheduleRegions().

      if (Stage == UnclusteredReschedule) {
        if (RescheduleRegions.none())
          continue;
        LLVM_DEBUG(dbgs() <<
          "Retrying function scheduling without clustering.\n");
      }

      if (Stage == ClusteredLowOccupancyReschedule) {
        if (StartingOccupancy <= MinOccupancy)
          break;

        LLVM_DEBUG(
            dbgs()
            << "Retrying function scheduling with lowest recorded occupancy "
            << MinOccupancy << ".\n");
      }

      if (Stage == PreRARematerialize) {
        if (RegionsWithMinOcc.none() || Regions.size() == 1)
          break;

        const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
        const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
        // Check maximum occupancy
        if (ST.computeOccupancy(MF.getFunction(), MFI.getLDSSize()) ==
            MinOccupancy)
          break;

        // FIXME: This pass will invalidate cached MBBLiveIns for regions
        // inbetween the defs and region we sinked the def to. Cached pressure
        // for regions where a def is sinked from will also be invalidated. Will
        // need to be fixed if there is another pass after this pass.
        static_assert(LastStage == PreRARematerialize,
                      "Passes after PreRARematerialize are not supported");

        collectRematerializableInstructions();
        if (RematerializableInsts.empty() || !sinkTriviallyRematInsts(ST, TII))
          break;

        LLVM_DEBUG(
            dbgs() << "Retrying function scheduling with improved occupancy of "
                   << MinOccupancy << " from rematerializing\n");
      }
    }

    if (Stage == UnclusteredReschedule)
      SavedMutations.swap(Mutations);

    for (auto Region : Regions) {
      if (((Stage == UnclusteredReschedule || Stage == PreRARematerialize) &&
           !RescheduleRegions[RegionIdx]) ||
          (Stage == ClusteredLowOccupancyReschedule &&
           !RegionsWithClusters[RegionIdx] && !RegionsWithHighRP[RegionIdx])) {

        ++RegionIdx;
        continue;
      }

      RegionBegin = Region.first;
      RegionEnd = Region.second;

      if (RegionBegin->getParent() != MBB) {
        if (MBB) finishBlock();
        MBB = RegionBegin->getParent();
        startBlock(MBB);
        if (Stage == InitialSchedule)
          computeBlockPressure(MBB);
      }

      unsigned NumRegionInstrs = std::distance(begin(), end());
      enterRegion(MBB, begin(), end(), NumRegionInstrs);

      // Skip empty scheduling regions (0 or 1 schedulable instructions).
      if (begin() == end() || begin() == std::prev(end())) {
        exitRegion();
        ++RegionIdx;
        continue;
      }

      LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
      LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
                        << MBB->getName() << "\n  From: " << *begin()
                        << "    To: ";
                 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
                 else dbgs() << "End";
                 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');

      schedule();

      exitRegion();
      ++RegionIdx;
    }
    finishBlock();

    if (Stage == UnclusteredReschedule)
      SavedMutations.swap(Mutations);
  } while (Stage != LastStage);
}

void GCNScheduleDAGMILive::collectRematerializableInstructions() {
  const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(TRI);
  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
    Register Reg = Register::index2VirtReg(I);
    if (!LIS->hasInterval(Reg))
      continue;

    // TODO: Handle AGPR and SGPR rematerialization
    if (!SRI->isVGPRClass(MRI.getRegClass(Reg)) || !MRI.hasOneDef(Reg) ||
        !MRI.hasOneNonDBGUse(Reg))
      continue;

    MachineOperand *Op = MRI.getOneDef(Reg);
    MachineInstr *Def = Op->getParent();
    if (Op->getSubReg() != 0 || !isTriviallyReMaterializable(*Def, AA))
      continue;

    MachineInstr *UseI = &*MRI.use_instr_nodbg_begin(Reg);
    if (Def->getParent() == UseI->getParent())
      continue;

    // We are only collecting defs that are defined in another block and are
    // live-through or used inside regions at MinOccupancy. This means that the
    // register must be in the live-in set for the region.
    bool AddedToRematList = false;
    for (unsigned I = 0, E = Regions.size(); I != E; ++I) {
      auto It = LiveIns[I].find(Reg);
      if (It != LiveIns[I].end() && !It->second.none()) {
        if (RegionsWithMinOcc[I]) {
          RematerializableInsts[I][Def] = UseI;
          AddedToRematList = true;
        }

        // Collect regions with rematerializable reg as live-in to avoid
        // searching later when updating RP.
        RematDefToLiveInRegions[Def].push_back(I);
      }
    }
    if (!AddedToRematList)
      RematDefToLiveInRegions.erase(Def);
  }
}

bool GCNScheduleDAGMILive::sinkTriviallyRematInsts(const GCNSubtarget &ST,
                                                   const TargetInstrInfo *TII) {
  // Temporary copies of cached variables we will be modifying and replacing if
  // sinking succeeds.
  SmallVector<
      std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>, 32>
      NewRegions;
  DenseMap<unsigned, GCNRPTracker::LiveRegSet> NewLiveIns;
  DenseMap<unsigned, GCNRegPressure> NewPressure;
  BitVector NewRescheduleRegions;

  NewRegions.resize(Regions.size());
  NewRescheduleRegions.resize(Regions.size());

  // Collect only regions that has a rematerializable def as a live-in.
  SmallSet<unsigned, 16> ImpactedRegions;
  for (const auto &It : RematDefToLiveInRegions)
    ImpactedRegions.insert(It.second.begin(), It.second.end());

  // Make copies of register pressure and live-ins cache that will be updated
  // as we rematerialize.
  for (auto Idx : ImpactedRegions) {
    NewPressure[Idx] = Pressure[Idx];
    NewLiveIns[Idx] = LiveIns[Idx];
  }
  NewRegions = Regions;
  NewRescheduleRegions.reset();

  DenseMap<MachineInstr *, MachineInstr *> InsertedMIToOldDef;
  bool Improved = false;
  for (auto I : ImpactedRegions) {
    if (!RegionsWithMinOcc[I])
      continue;

    Improved = false;
    int VGPRUsage = NewPressure[I].getVGPRNum(ST.hasGFX90AInsts());
    int SGPRUsage = NewPressure[I].getSGPRNum();

    // TODO: Handle occupancy drop due to AGPR and SGPR.
    // Check if cause of occupancy drop is due to VGPR usage and not SGPR.
    if (ST.getOccupancyWithNumSGPRs(SGPRUsage) == MinOccupancy)
      break;

    // The occupancy of this region could have been improved by a previous
    // iteration's sinking of defs.
    if (NewPressure[I].getOccupancy(ST) > MinOccupancy) {
      NewRescheduleRegions[I] = true;
      Improved = true;
      continue;
    }

    // First check if we have enough trivially rematerializable instructions to
    // improve occupancy. Optimistically assume all instructions we are able to
    // sink decreased RP.
    int TotalSinkableRegs = 0;
    for (const auto &It : RematerializableInsts[I]) {
      MachineInstr *Def = It.first;
      Register DefReg = Def->getOperand(0).getReg();
      TotalSinkableRegs +=
          SIRegisterInfo::getNumCoveredRegs(NewLiveIns[I][DefReg]);
    }
    int VGPRsAfterSink = VGPRUsage - TotalSinkableRegs;
    unsigned OptimisticOccupancy = ST.getOccupancyWithNumVGPRs(VGPRsAfterSink);
    // If in the most optimistic scenario, we cannot improve occupancy, then do
    // not attempt to sink any instructions.
    if (OptimisticOccupancy <= MinOccupancy)
      break;

    unsigned ImproveOccupancy = 0;
    SmallVector<MachineInstr *, 4> SinkedDefs;
    for (auto &It : RematerializableInsts[I]) {
      MachineInstr *Def = It.first;
      MachineBasicBlock::iterator InsertPos =
          MachineBasicBlock::iterator(It.second);
      Register Reg = Def->getOperand(0).getReg();
      // Rematerialize MI to its use block. Since we are only rematerializing
      // instructions that do not have any virtual reg uses, we do not need to
      // call LiveRangeEdit::allUsesAvailableAt() and
      // LiveRangeEdit::canRematerializeAt().
      TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg,
                         Def->getOperand(0).getSubReg(), *Def, *TRI);
      MachineInstr *NewMI = &*(--InsertPos);
      LIS->InsertMachineInstrInMaps(*NewMI);
      LIS->removeInterval(Reg);
      LIS->createAndComputeVirtRegInterval(Reg);
      InsertedMIToOldDef[NewMI] = Def;

      // Update region boundaries in scheduling region we sinked from since we
      // may sink an instruction that was at the beginning or end of its region
      updateRegionBoundaries(NewRegions, Def, /*NewMI =*/nullptr,
                             /*Removing =*/true);

      // Update region boundaries in region we sinked to.
      updateRegionBoundaries(NewRegions, InsertPos, NewMI);

      LaneBitmask PrevMask = NewLiveIns[I][Reg];
      // FIXME: Also update cached pressure for where the def was sinked from.
      // Update RP for all regions that has this reg as a live-in and remove
      // the reg from all regions as a live-in.
      for (auto Idx : RematDefToLiveInRegions[Def]) {
        NewLiveIns[Idx].erase(Reg);
        if (InsertPos->getParent() != Regions[Idx].first->getParent()) {
          // Def is live-through and not used in this block.
          NewPressure[Idx].inc(Reg, PrevMask, LaneBitmask::getNone(), MRI);
        } else {
          // Def is used and rematerialized into this block.
          GCNDownwardRPTracker RPT(*LIS);
          auto *NonDbgMI = &*skipDebugInstructionsForward(
              NewRegions[Idx].first, NewRegions[Idx].second);
          RPT.reset(*NonDbgMI, &NewLiveIns[Idx]);
          RPT.advance(NewRegions[Idx].second);
          NewPressure[Idx] = RPT.moveMaxPressure();
        }
      }

      SinkedDefs.push_back(Def);
      ImproveOccupancy = NewPressure[I].getOccupancy(ST);
      if (ImproveOccupancy > MinOccupancy)
        break;
    }

    // Remove defs we just sinked from all regions' list of sinkable defs
    for (auto &Def : SinkedDefs)
      for (auto TrackedIdx : RematDefToLiveInRegions[Def])
        RematerializableInsts[TrackedIdx].erase(Def);

    if (ImproveOccupancy <= MinOccupancy)
      break;

    NewRescheduleRegions[I] = true;
    Improved = true;
  }

  if (!Improved) {
    // Occupancy was not improved for all regions that were at MinOccupancy.
    // Undo sinking and remove newly rematerialized instructions.
    for (auto &Entry : InsertedMIToOldDef) {
      MachineInstr *MI = Entry.first;
      MachineInstr *OldMI = Entry.second;
      Register Reg = MI->getOperand(0).getReg();
      LIS->RemoveMachineInstrFromMaps(*MI);
      MI->eraseFromParent();
      OldMI->clearRegisterDeads(Reg);
      LIS->removeInterval(Reg);
      LIS->createAndComputeVirtRegInterval(Reg);
    }
    return false;
  }

  // Occupancy was improved for all regions.
  for (auto &Entry : InsertedMIToOldDef) {
    MachineInstr *MI = Entry.first;
    MachineInstr *OldMI = Entry.second;

    // Remove OldMI from BBLiveInMap since we are sinking it from its MBB.
    BBLiveInMap.erase(OldMI);

    // Remove OldMI and update LIS
    Register Reg = MI->getOperand(0).getReg();
    LIS->RemoveMachineInstrFromMaps(*OldMI);
    OldMI->eraseFromParent();
    LIS->removeInterval(Reg);
    LIS->createAndComputeVirtRegInterval(Reg);
  }

  // Update live-ins, register pressure, and regions caches.
  for (auto Idx : ImpactedRegions) {
    LiveIns[Idx] = NewLiveIns[Idx];
    Pressure[Idx] = NewPressure[Idx];
    MBBLiveIns.erase(Regions[Idx].first->getParent());
  }
  Regions = NewRegions;
  RescheduleRegions = NewRescheduleRegions;

  SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
  MFI.increaseOccupancy(MF, ++MinOccupancy);

  return true;
}

// Copied from MachineLICM
bool GCNScheduleDAGMILive::isTriviallyReMaterializable(const MachineInstr &MI,
                                                       AAResults *AA) {
  if (!TII->isTriviallyReMaterializable(MI, AA))
    return false;

  for (const MachineOperand &MO : MI.operands())
    if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual())
      return false;

  return true;
}

// When removing, we will have to check both beginning and ending of the region.
// When inserting, we will only have to check if we are inserting NewMI in front
// of a scheduling region and do not need to check the ending since we will only
// ever be inserting before an already existing MI.
void GCNScheduleDAGMILive::updateRegionBoundaries(
    SmallVectorImpl<std::pair<MachineBasicBlock::iterator,
                              MachineBasicBlock::iterator>> &RegionBoundaries,
    MachineBasicBlock::iterator MI, MachineInstr *NewMI, bool Removing) {
  unsigned I = 0, E = RegionBoundaries.size();
  // Search for first region of the block where MI is located
  while (I != E && MI->getParent() != RegionBoundaries[I].first->getParent())
    ++I;

  for (; I != E; ++I) {
    if (MI->getParent() != RegionBoundaries[I].first->getParent())
      return;

    if (Removing && MI == RegionBoundaries[I].first &&
        MI == RegionBoundaries[I].second) {
      // MI is in a region with size 1, after removing, the region will be
      // size 0, set RegionBegin and RegionEnd to pass end of block iterator.
      RegionBoundaries[I] =
          std::make_pair(MI->getParent()->end(), MI->getParent()->end());
      return;
    }
    if (MI == RegionBoundaries[I].first) {
      if (Removing)
        RegionBoundaries[I] =
            std::make_pair(std::next(MI), RegionBoundaries[I].second);
      else
        // Inserted NewMI in front of region, set new RegionBegin to NewMI
        RegionBoundaries[I] = std::make_pair(MachineBasicBlock::iterator(NewMI),
                                             RegionBoundaries[I].second);
      return;
    }
    if (Removing && MI == RegionBoundaries[I].second) {
      RegionBoundaries[I] =
          std::make_pair(RegionBoundaries[I].first, std::prev(MI));
      return;
    }
  }
}