aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/BPF/BTFDebug.cpp
blob: c1f8ea99b959bd0bd30f3050bea56df22a4650bf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
//===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing BTF debug info.
//
//===----------------------------------------------------------------------===//

#include "BTFDebug.h"
#include "BPF.h"
#include "BPFCORE.h"
#include "MCTargetDesc/BPFMCTargetDesc.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Target/TargetLoweringObjectFile.h"

using namespace llvm;

static const char *BTFKindStr[] = {
#define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
#include "BTF.def"
};

/// Emit a BTF common type.
void BTFTypeBase::emitType(MCStreamer &OS) {
  OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
                ")");
  OS.emitInt32(BTFType.NameOff);
  OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
  OS.emitInt32(BTFType.Info);
  OS.emitInt32(BTFType.Size);
}

BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
                               bool NeedsFixup)
    : DTy(DTy), NeedsFixup(NeedsFixup) {
  switch (Tag) {
  case dwarf::DW_TAG_pointer_type:
    Kind = BTF::BTF_KIND_PTR;
    break;
  case dwarf::DW_TAG_const_type:
    Kind = BTF::BTF_KIND_CONST;
    break;
  case dwarf::DW_TAG_volatile_type:
    Kind = BTF::BTF_KIND_VOLATILE;
    break;
  case dwarf::DW_TAG_typedef:
    Kind = BTF::BTF_KIND_TYPEDEF;
    break;
  case dwarf::DW_TAG_restrict_type:
    Kind = BTF::BTF_KIND_RESTRICT;
    break;
  default:
    llvm_unreachable("Unknown DIDerivedType Tag");
  }
  BTFType.Info = Kind << 24;
}

void BTFTypeDerived::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(DTy->getName());

  if (NeedsFixup)
    return;

  // The base type for PTR/CONST/VOLATILE could be void.
  const DIType *ResolvedType = DTy->getBaseType();
  if (!ResolvedType) {
    assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
            Kind == BTF::BTF_KIND_VOLATILE) &&
           "Invalid null basetype");
    BTFType.Type = 0;
  } else {
    BTFType.Type = BDebug.getTypeId(ResolvedType);
  }
}

void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }

void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
  BTFType.Type = PointeeType;
}

/// Represent a struct/union forward declaration.
BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
  Kind = BTF::BTF_KIND_FWD;
  BTFType.Info = IsUnion << 31 | Kind << 24;
  BTFType.Type = 0;
}

void BTFTypeFwd::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(Name);
}

void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }

BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
                       uint32_t OffsetInBits, StringRef TypeName)
    : Name(TypeName) {
  // Translate IR int encoding to BTF int encoding.
  uint8_t BTFEncoding;
  switch (Encoding) {
  case dwarf::DW_ATE_boolean:
    BTFEncoding = BTF::INT_BOOL;
    break;
  case dwarf::DW_ATE_signed:
  case dwarf::DW_ATE_signed_char:
    BTFEncoding = BTF::INT_SIGNED;
    break;
  case dwarf::DW_ATE_unsigned:
  case dwarf::DW_ATE_unsigned_char:
    BTFEncoding = 0;
    break;
  default:
    llvm_unreachable("Unknown BTFTypeInt Encoding");
  }

  Kind = BTF::BTF_KIND_INT;
  BTFType.Info = Kind << 24;
  BTFType.Size = roundupToBytes(SizeInBits);
  IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
}

void BTFTypeInt::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(Name);
}

void BTFTypeInt::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  OS.AddComment("0x" + Twine::utohexstr(IntVal));
  OS.emitInt32(IntVal);
}

BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
  Kind = BTF::BTF_KIND_ENUM;
  BTFType.Info = Kind << 24 | VLen;
  BTFType.Size = roundupToBytes(ETy->getSizeInBits());
}

void BTFTypeEnum::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(ETy->getName());

  DINodeArray Elements = ETy->getElements();
  for (const auto Element : Elements) {
    const auto *Enum = cast<DIEnumerator>(Element);

    struct BTF::BTFEnum BTFEnum;
    BTFEnum.NameOff = BDebug.addString(Enum->getName());
    // BTF enum value is 32bit, enforce it.
    uint32_t Value;
    if (Enum->isUnsigned())
      Value = static_cast<uint32_t>(Enum->getValue().getZExtValue());
    else
      Value = static_cast<uint32_t>(Enum->getValue().getSExtValue());
    BTFEnum.Val = Value;
    EnumValues.push_back(BTFEnum);
  }
}

void BTFTypeEnum::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  for (const auto &Enum : EnumValues) {
    OS.emitInt32(Enum.NameOff);
    OS.emitInt32(Enum.Val);
  }
}

BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) {
  Kind = BTF::BTF_KIND_ARRAY;
  BTFType.NameOff = 0;
  BTFType.Info = Kind << 24;
  BTFType.Size = 0;

  ArrayInfo.ElemType = ElemTypeId;
  ArrayInfo.Nelems = NumElems;
}

/// Represent a BTF array.
void BTFTypeArray::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  // The IR does not really have a type for the index.
  // A special type for array index should have been
  // created during initial type traversal. Just
  // retrieve that type id.
  ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
}

void BTFTypeArray::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  OS.emitInt32(ArrayInfo.ElemType);
  OS.emitInt32(ArrayInfo.IndexType);
  OS.emitInt32(ArrayInfo.Nelems);
}

/// Represent either a struct or a union.
BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
                             bool HasBitField, uint32_t Vlen)
    : STy(STy), HasBitField(HasBitField) {
  Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
  BTFType.Size = roundupToBytes(STy->getSizeInBits());
  BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
}

void BTFTypeStruct::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(STy->getName());

  // Add struct/union members.
  const DINodeArray Elements = STy->getElements();
  for (const auto *Element : Elements) {
    struct BTF::BTFMember BTFMember;
    const auto *DDTy = cast<DIDerivedType>(Element);

    BTFMember.NameOff = BDebug.addString(DDTy->getName());
    if (HasBitField) {
      uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
      BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
    } else {
      BTFMember.Offset = DDTy->getOffsetInBits();
    }
    const auto *BaseTy = DDTy->getBaseType();
    BTFMember.Type = BDebug.getTypeId(BaseTy);
    Members.push_back(BTFMember);
  }
}

void BTFTypeStruct::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  for (const auto &Member : Members) {
    OS.emitInt32(Member.NameOff);
    OS.emitInt32(Member.Type);
    OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
    OS.emitInt32(Member.Offset);
  }
}

std::string BTFTypeStruct::getName() { return std::string(STy->getName()); }

/// The Func kind represents both subprogram and pointee of function
/// pointers. If the FuncName is empty, it represents a pointee of function
/// pointer. Otherwise, it represents a subprogram. The func arg names
/// are empty for pointee of function pointer case, and are valid names
/// for subprogram.
BTFTypeFuncProto::BTFTypeFuncProto(
    const DISubroutineType *STy, uint32_t VLen,
    const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
    : STy(STy), FuncArgNames(FuncArgNames) {
  Kind = BTF::BTF_KIND_FUNC_PROTO;
  BTFType.Info = (Kind << 24) | VLen;
}

void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  DITypeRefArray Elements = STy->getTypeArray();
  auto RetType = Elements[0];
  BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
  BTFType.NameOff = 0;

  // For null parameter which is typically the last one
  // to represent the vararg, encode the NameOff/Type to be 0.
  for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
    struct BTF::BTFParam Param;
    auto Element = Elements[I];
    if (Element) {
      Param.NameOff = BDebug.addString(FuncArgNames[I]);
      Param.Type = BDebug.getTypeId(Element);
    } else {
      Param.NameOff = 0;
      Param.Type = 0;
    }
    Parameters.push_back(Param);
  }
}

void BTFTypeFuncProto::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  for (const auto &Param : Parameters) {
    OS.emitInt32(Param.NameOff);
    OS.emitInt32(Param.Type);
  }
}

BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId,
    uint32_t Scope)
    : Name(FuncName) {
  Kind = BTF::BTF_KIND_FUNC;
  BTFType.Info = (Kind << 24) | Scope;
  BTFType.Type = ProtoTypeId;
}

void BTFTypeFunc::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(Name);
}

void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }

BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
    : Name(VarName) {
  Kind = BTF::BTF_KIND_VAR;
  BTFType.Info = Kind << 24;
  BTFType.Type = TypeId;
  Info = VarInfo;
}

void BTFKindVar::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(Name);
}

void BTFKindVar::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  OS.emitInt32(Info);
}

BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
    : Asm(AsmPrt), Name(SecName) {
  Kind = BTF::BTF_KIND_DATASEC;
  BTFType.Info = Kind << 24;
  BTFType.Size = 0;
}

void BTFKindDataSec::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(Name);
  BTFType.Info |= Vars.size();
}

void BTFKindDataSec::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);

  for (const auto &V : Vars) {
    OS.emitInt32(std::get<0>(V));
    Asm->emitLabelReference(std::get<1>(V), 4);
    OS.emitInt32(std::get<2>(V));
  }
}

BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName)
    : Name(TypeName) {
  Kind = BTF::BTF_KIND_FLOAT;
  BTFType.Info = Kind << 24;
  BTFType.Size = roundupToBytes(SizeInBits);
}

void BTFTypeFloat::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(Name);
}

uint32_t BTFStringTable::addString(StringRef S) {
  // Check whether the string already exists.
  for (auto &OffsetM : OffsetToIdMap) {
    if (Table[OffsetM.second] == S)
      return OffsetM.first;
  }
  // Not find, add to the string table.
  uint32_t Offset = Size;
  OffsetToIdMap[Offset] = Table.size();
  Table.push_back(std::string(S));
  Size += S.size() + 1;
  return Offset;
}

BTFDebug::BTFDebug(AsmPrinter *AP)
    : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
      LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
      MapDefNotCollected(true) {
  addString("\0");
}

uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
                           const DIType *Ty) {
  TypeEntry->setId(TypeEntries.size() + 1);
  uint32_t Id = TypeEntry->getId();
  DIToIdMap[Ty] = Id;
  TypeEntries.push_back(std::move(TypeEntry));
  return Id;
}

uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
  TypeEntry->setId(TypeEntries.size() + 1);
  uint32_t Id = TypeEntry->getId();
  TypeEntries.push_back(std::move(TypeEntry));
  return Id;
}

void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
  // Only int and binary floating point types are supported in BTF.
  uint32_t Encoding = BTy->getEncoding();
  std::unique_ptr<BTFTypeBase> TypeEntry;
  switch (Encoding) {
  case dwarf::DW_ATE_boolean:
  case dwarf::DW_ATE_signed:
  case dwarf::DW_ATE_signed_char:
  case dwarf::DW_ATE_unsigned:
  case dwarf::DW_ATE_unsigned_char:
    // Create a BTF type instance for this DIBasicType and put it into
    // DIToIdMap for cross-type reference check.
    TypeEntry = std::make_unique<BTFTypeInt>(
        Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
    break;
  case dwarf::DW_ATE_float:
    TypeEntry =
        std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName());
    break;
  default:
    return;
  }

  TypeId = addType(std::move(TypeEntry), BTy);
}

/// Handle subprogram or subroutine types.
void BTFDebug::visitSubroutineType(
    const DISubroutineType *STy, bool ForSubprog,
    const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
    uint32_t &TypeId) {
  DITypeRefArray Elements = STy->getTypeArray();
  uint32_t VLen = Elements.size() - 1;
  if (VLen > BTF::MAX_VLEN)
    return;

  // Subprogram has a valid non-zero-length name, and the pointee of
  // a function pointer has an empty name. The subprogram type will
  // not be added to DIToIdMap as it should not be referenced by
  // any other types.
  auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
  if (ForSubprog)
    TypeId = addType(std::move(TypeEntry)); // For subprogram
  else
    TypeId = addType(std::move(TypeEntry), STy); // For func ptr

  // Visit return type and func arg types.
  for (const auto Element : Elements) {
    visitTypeEntry(Element);
  }
}

/// Handle structure/union types.
void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
                               uint32_t &TypeId) {
  const DINodeArray Elements = CTy->getElements();
  uint32_t VLen = Elements.size();
  if (VLen > BTF::MAX_VLEN)
    return;

  // Check whether we have any bitfield members or not
  bool HasBitField = false;
  for (const auto *Element : Elements) {
    auto E = cast<DIDerivedType>(Element);
    if (E->isBitField()) {
      HasBitField = true;
      break;
    }
  }

  auto TypeEntry =
      std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
  StructTypes.push_back(TypeEntry.get());
  TypeId = addType(std::move(TypeEntry), CTy);

  // Visit all struct members.
  for (const auto *Element : Elements)
    visitTypeEntry(cast<DIDerivedType>(Element));
}

void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
  // Visit array element type.
  uint32_t ElemTypeId;
  const DIType *ElemType = CTy->getBaseType();
  visitTypeEntry(ElemType, ElemTypeId, false, false);

  // Visit array dimensions.
  DINodeArray Elements = CTy->getElements();
  for (int I = Elements.size() - 1; I >= 0; --I) {
    if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
      if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
        const DISubrange *SR = cast<DISubrange>(Element);
        auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
        int64_t Count = CI->getSExtValue();

        // For struct s { int b; char c[]; }, the c[] will be represented
        // as an array with Count = -1.
        auto TypeEntry =
            std::make_unique<BTFTypeArray>(ElemTypeId,
                Count >= 0 ? Count : 0);
        if (I == 0)
          ElemTypeId = addType(std::move(TypeEntry), CTy);
        else
          ElemTypeId = addType(std::move(TypeEntry));
      }
  }

  // The array TypeId is the type id of the outermost dimension.
  TypeId = ElemTypeId;

  // The IR does not have a type for array index while BTF wants one.
  // So create an array index type if there is none.
  if (!ArrayIndexTypeId) {
    auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
                                                   0, "__ARRAY_SIZE_TYPE__");
    ArrayIndexTypeId = addType(std::move(TypeEntry));
  }
}

void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
  DINodeArray Elements = CTy->getElements();
  uint32_t VLen = Elements.size();
  if (VLen > BTF::MAX_VLEN)
    return;

  auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen);
  TypeId = addType(std::move(TypeEntry), CTy);
  // No need to visit base type as BTF does not encode it.
}

/// Handle structure/union forward declarations.
void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
                                uint32_t &TypeId) {
  auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
  TypeId = addType(std::move(TypeEntry), CTy);
}

/// Handle structure, union, array and enumeration types.
void BTFDebug::visitCompositeType(const DICompositeType *CTy,
                                  uint32_t &TypeId) {
  auto Tag = CTy->getTag();
  if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
    // Handle forward declaration differently as it does not have members.
    if (CTy->isForwardDecl())
      visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
    else
      visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
  } else if (Tag == dwarf::DW_TAG_array_type)
    visitArrayType(CTy, TypeId);
  else if (Tag == dwarf::DW_TAG_enumeration_type)
    visitEnumType(CTy, TypeId);
}

/// Handle pointer, typedef, const, volatile, restrict and member types.
void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
                                bool CheckPointer, bool SeenPointer) {
  unsigned Tag = DTy->getTag();

  /// Try to avoid chasing pointees, esp. structure pointees which may
  /// unnecessary bring in a lot of types.
  if (CheckPointer && !SeenPointer) {
    SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
  }

  if (CheckPointer && SeenPointer) {
    const DIType *Base = DTy->getBaseType();
    if (Base) {
      if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
        auto CTag = CTy->getTag();
        if ((CTag == dwarf::DW_TAG_structure_type ||
             CTag == dwarf::DW_TAG_union_type) &&
            !CTy->getName().empty() && !CTy->isForwardDecl()) {
          /// Find a candidate, generate a fixup. Later on the struct/union
          /// pointee type will be replaced with either a real type or
          /// a forward declaration.
          auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true);
          auto &Fixup = FixupDerivedTypes[CTy->getName()];
          Fixup.first = CTag == dwarf::DW_TAG_union_type;
          Fixup.second.push_back(TypeEntry.get());
          TypeId = addType(std::move(TypeEntry), DTy);
          return;
        }
      }
    }
  }

  if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
      Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
      Tag == dwarf::DW_TAG_restrict_type) {
    auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false);
    TypeId = addType(std::move(TypeEntry), DTy);
  } else if (Tag != dwarf::DW_TAG_member) {
    return;
  }

  // Visit base type of pointer, typedef, const, volatile, restrict or
  // struct/union member.
  uint32_t TempTypeId = 0;
  if (Tag == dwarf::DW_TAG_member)
    visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
  else
    visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
}

void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
                              bool CheckPointer, bool SeenPointer) {
  if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
    TypeId = DIToIdMap[Ty];

    // To handle the case like the following:
    //    struct t;
    //    typedef struct t _t;
    //    struct s1 { _t *c; };
    //    int test1(struct s1 *arg) { ... }
    //
    //    struct t { int a; int b; };
    //    struct s2 { _t c; }
    //    int test2(struct s2 *arg) { ... }
    //
    // During traversing test1() argument, "_t" is recorded
    // in DIToIdMap and a forward declaration fixup is created
    // for "struct t" to avoid pointee type traversal.
    //
    // During traversing test2() argument, even if we see "_t" is
    // already defined, we should keep moving to eventually
    // bring in types for "struct t". Otherwise, the "struct s2"
    // definition won't be correct.
    if (Ty && (!CheckPointer || !SeenPointer)) {
      if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
        unsigned Tag = DTy->getTag();
        if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type ||
            Tag == dwarf::DW_TAG_volatile_type ||
            Tag == dwarf::DW_TAG_restrict_type) {
          uint32_t TmpTypeId;
          visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer,
                         SeenPointer);
        }
      }
    }

    return;
  }

  if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
    visitBasicType(BTy, TypeId);
  else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
    visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
                        TypeId);
  else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
    visitCompositeType(CTy, TypeId);
  else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
    visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
  else
    llvm_unreachable("Unknown DIType");
}

void BTFDebug::visitTypeEntry(const DIType *Ty) {
  uint32_t TypeId;
  visitTypeEntry(Ty, TypeId, false, false);
}

void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
  if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
    TypeId = DIToIdMap[Ty];
    return;
  }

  // MapDef type may be a struct type or a non-pointer derived type
  const DIType *OrigTy = Ty;
  while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
    auto Tag = DTy->getTag();
    if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
        Tag != dwarf::DW_TAG_volatile_type &&
        Tag != dwarf::DW_TAG_restrict_type)
      break;
    Ty = DTy->getBaseType();
  }

  const auto *CTy = dyn_cast<DICompositeType>(Ty);
  if (!CTy)
    return;

  auto Tag = CTy->getTag();
  if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
    return;

  // Visit all struct members to ensure pointee type is visited
  const DINodeArray Elements = CTy->getElements();
  for (const auto *Element : Elements) {
    const auto *MemberType = cast<DIDerivedType>(Element);
    visitTypeEntry(MemberType->getBaseType());
  }

  // Visit this type, struct or a const/typedef/volatile/restrict type
  visitTypeEntry(OrigTy, TypeId, false, false);
}

/// Read file contents from the actual file or from the source
std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
  auto File = SP->getFile();
  std::string FileName;

  if (!File->getFilename().startswith("/") && File->getDirectory().size())
    FileName = File->getDirectory().str() + "/" + File->getFilename().str();
  else
    FileName = std::string(File->getFilename());

  // No need to populate the contends if it has been populated!
  if (FileContent.find(FileName) != FileContent.end())
    return FileName;

  std::vector<std::string> Content;
  std::string Line;
  Content.push_back(Line); // Line 0 for empty string

  std::unique_ptr<MemoryBuffer> Buf;
  auto Source = File->getSource();
  if (Source)
    Buf = MemoryBuffer::getMemBufferCopy(*Source);
  else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
               MemoryBuffer::getFile(FileName))
    Buf = std::move(*BufOrErr);
  if (Buf)
    for (line_iterator I(*Buf, false), E; I != E; ++I)
      Content.push_back(std::string(*I));

  FileContent[FileName] = Content;
  return FileName;
}

void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
                                 uint32_t Line, uint32_t Column) {
  std::string FileName = populateFileContent(SP);
  BTFLineInfo LineInfo;

  LineInfo.Label = Label;
  LineInfo.FileNameOff = addString(FileName);
  // If file content is not available, let LineOff = 0.
  if (Line < FileContent[FileName].size())
    LineInfo.LineOff = addString(FileContent[FileName][Line]);
  else
    LineInfo.LineOff = 0;
  LineInfo.LineNum = Line;
  LineInfo.ColumnNum = Column;
  LineInfoTable[SecNameOff].push_back(LineInfo);
}

void BTFDebug::emitCommonHeader() {
  OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
  OS.emitIntValue(BTF::MAGIC, 2);
  OS.emitInt8(BTF::VERSION);
  OS.emitInt8(0);
}

void BTFDebug::emitBTFSection() {
  // Do not emit section if no types and only "" string.
  if (!TypeEntries.size() && StringTable.getSize() == 1)
    return;

  MCContext &Ctx = OS.getContext();
  OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));

  // Emit header.
  emitCommonHeader();
  OS.emitInt32(BTF::HeaderSize);

  uint32_t TypeLen = 0, StrLen;
  for (const auto &TypeEntry : TypeEntries)
    TypeLen += TypeEntry->getSize();
  StrLen = StringTable.getSize();

  OS.emitInt32(0);
  OS.emitInt32(TypeLen);
  OS.emitInt32(TypeLen);
  OS.emitInt32(StrLen);

  // Emit type table.
  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->emitType(OS);

  // Emit string table.
  uint32_t StringOffset = 0;
  for (const auto &S : StringTable.getTable()) {
    OS.AddComment("string offset=" + std::to_string(StringOffset));
    OS.emitBytes(S);
    OS.emitBytes(StringRef("\0", 1));
    StringOffset += S.size() + 1;
  }
}

void BTFDebug::emitBTFExtSection() {
  // Do not emit section if empty FuncInfoTable and LineInfoTable
  // and FieldRelocTable.
  if (!FuncInfoTable.size() && !LineInfoTable.size() &&
      !FieldRelocTable.size())
    return;

  MCContext &Ctx = OS.getContext();
  OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));

  // Emit header.
  emitCommonHeader();
  OS.emitInt32(BTF::ExtHeaderSize);

  // Account for FuncInfo/LineInfo record size as well.
  uint32_t FuncLen = 4, LineLen = 4;
  // Do not account for optional FieldReloc.
  uint32_t FieldRelocLen = 0;
  for (const auto &FuncSec : FuncInfoTable) {
    FuncLen += BTF::SecFuncInfoSize;
    FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
  }
  for (const auto &LineSec : LineInfoTable) {
    LineLen += BTF::SecLineInfoSize;
    LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
  }
  for (const auto &FieldRelocSec : FieldRelocTable) {
    FieldRelocLen += BTF::SecFieldRelocSize;
    FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize;
  }

  if (FieldRelocLen)
    FieldRelocLen += 4;

  OS.emitInt32(0);
  OS.emitInt32(FuncLen);
  OS.emitInt32(FuncLen);
  OS.emitInt32(LineLen);
  OS.emitInt32(FuncLen + LineLen);
  OS.emitInt32(FieldRelocLen);

  // Emit func_info table.
  OS.AddComment("FuncInfo");
  OS.emitInt32(BTF::BPFFuncInfoSize);
  for (const auto &FuncSec : FuncInfoTable) {
    OS.AddComment("FuncInfo section string offset=" +
                  std::to_string(FuncSec.first));
    OS.emitInt32(FuncSec.first);
    OS.emitInt32(FuncSec.second.size());
    for (const auto &FuncInfo : FuncSec.second) {
      Asm->emitLabelReference(FuncInfo.Label, 4);
      OS.emitInt32(FuncInfo.TypeId);
    }
  }

  // Emit line_info table.
  OS.AddComment("LineInfo");
  OS.emitInt32(BTF::BPFLineInfoSize);
  for (const auto &LineSec : LineInfoTable) {
    OS.AddComment("LineInfo section string offset=" +
                  std::to_string(LineSec.first));
    OS.emitInt32(LineSec.first);
    OS.emitInt32(LineSec.second.size());
    for (const auto &LineInfo : LineSec.second) {
      Asm->emitLabelReference(LineInfo.Label, 4);
      OS.emitInt32(LineInfo.FileNameOff);
      OS.emitInt32(LineInfo.LineOff);
      OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
                    std::to_string(LineInfo.ColumnNum));
      OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum);
    }
  }

  // Emit field reloc table.
  if (FieldRelocLen) {
    OS.AddComment("FieldReloc");
    OS.emitInt32(BTF::BPFFieldRelocSize);
    for (const auto &FieldRelocSec : FieldRelocTable) {
      OS.AddComment("Field reloc section string offset=" +
                    std::to_string(FieldRelocSec.first));
      OS.emitInt32(FieldRelocSec.first);
      OS.emitInt32(FieldRelocSec.second.size());
      for (const auto &FieldRelocInfo : FieldRelocSec.second) {
        Asm->emitLabelReference(FieldRelocInfo.Label, 4);
        OS.emitInt32(FieldRelocInfo.TypeID);
        OS.emitInt32(FieldRelocInfo.OffsetNameOff);
        OS.emitInt32(FieldRelocInfo.RelocKind);
      }
    }
  }
}

void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
  auto *SP = MF->getFunction().getSubprogram();
  auto *Unit = SP->getUnit();

  if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
    SkipInstruction = true;
    return;
  }
  SkipInstruction = false;

  // Collect MapDef types. Map definition needs to collect
  // pointee types. Do it first. Otherwise, for the following
  // case:
  //    struct m { ...};
  //    struct t {
  //      struct m *key;
  //    };
  //    foo(struct t *arg);
  //
  //    struct mapdef {
  //      ...
  //      struct m *key;
  //      ...
  //    } __attribute__((section(".maps"))) hash_map;
  //
  // If subroutine foo is traversed first, a type chain
  // "ptr->struct m(fwd)" will be created and later on
  // when traversing mapdef, since "ptr->struct m" exists,
  // the traversal of "struct m" will be omitted.
  if (MapDefNotCollected) {
    processGlobals(true);
    MapDefNotCollected = false;
  }

  // Collect all types locally referenced in this function.
  // Use RetainedNodes so we can collect all argument names
  // even if the argument is not used.
  std::unordered_map<uint32_t, StringRef> FuncArgNames;
  for (const DINode *DN : SP->getRetainedNodes()) {
    if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
      // Collect function arguments for subprogram func type.
      uint32_t Arg = DV->getArg();
      if (Arg) {
        visitTypeEntry(DV->getType());
        FuncArgNames[Arg] = DV->getName();
      }
    }
  }

  // Construct subprogram func proto type.
  uint32_t ProtoTypeId;
  visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);

  // Construct subprogram func type
  uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL;
  auto FuncTypeEntry =
      std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
  uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));

  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->completeType(*this);

  // Construct funcinfo and the first lineinfo for the function.
  MCSymbol *FuncLabel = Asm->getFunctionBegin();
  BTFFuncInfo FuncInfo;
  FuncInfo.Label = FuncLabel;
  FuncInfo.TypeId = FuncTypeId;
  if (FuncLabel->isInSection()) {
    MCSection &Section = FuncLabel->getSection();
    const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
    assert(SectionELF && "Null section for Function Label");
    SecNameOff = addString(SectionELF->getName());
  } else {
    SecNameOff = addString(".text");
  }
  FuncInfoTable[SecNameOff].push_back(FuncInfo);
}

void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
  SkipInstruction = false;
  LineInfoGenerated = false;
  SecNameOff = 0;
}

/// On-demand populate types as requested from abstract member
/// accessing or preserve debuginfo type.
unsigned BTFDebug::populateType(const DIType *Ty) {
  unsigned Id;
  visitTypeEntry(Ty, Id, false, false);
  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->completeType(*this);
  return Id;
}

/// Generate a struct member field relocation.
void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId,
                                     const GlobalVariable *GVar, bool IsAma) {
  BTFFieldReloc FieldReloc;
  FieldReloc.Label = ORSym;
  FieldReloc.TypeID = RootId;

  StringRef AccessPattern = GVar->getName();
  size_t FirstDollar = AccessPattern.find_first_of('$');
  if (IsAma) {
    size_t FirstColon = AccessPattern.find_first_of(':');
    size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1);
    StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1);
    StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1,
        SecondColon - FirstColon);
    StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1,
        FirstDollar - SecondColon);

    FieldReloc.OffsetNameOff = addString(IndexPattern);
    FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr));
    PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)),
                                     FieldReloc.RelocKind);
  } else {
    StringRef RelocStr = AccessPattern.substr(FirstDollar + 1);
    FieldReloc.OffsetNameOff = addString("0");
    FieldReloc.RelocKind = std::stoull(std::string(RelocStr));
    PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind);
  }
  FieldRelocTable[SecNameOff].push_back(FieldReloc);
}

void BTFDebug::processGlobalValue(const MachineOperand &MO) {
  // check whether this is a candidate or not
  if (MO.isGlobal()) {
    const GlobalValue *GVal = MO.getGlobal();
    auto *GVar = dyn_cast<GlobalVariable>(GVal);
    if (!GVar) {
      // Not a global variable. Maybe an extern function reference.
      processFuncPrototypes(dyn_cast<Function>(GVal));
      return;
    }

    if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) &&
        !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr))
      return;

    MCSymbol *ORSym = OS.getContext().createTempSymbol();
    OS.emitLabel(ORSym);

    MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
    uint32_t RootId = populateType(dyn_cast<DIType>(MDN));
    generatePatchImmReloc(ORSym, RootId, GVar,
                          GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr));
  }
}

void BTFDebug::beginInstruction(const MachineInstr *MI) {
  DebugHandlerBase::beginInstruction(MI);

  if (SkipInstruction || MI->isMetaInstruction() ||
      MI->getFlag(MachineInstr::FrameSetup))
    return;

  if (MI->isInlineAsm()) {
    // Count the number of register definitions to find the asm string.
    unsigned NumDefs = 0;
    for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
         ++NumDefs)
      ;

    // Skip this inline asm instruction if the asmstr is empty.
    const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
    if (AsmStr[0] == 0)
      return;
  }

  if (MI->getOpcode() == BPF::LD_imm64) {
    // If the insn is "r2 = LD_imm64 @<an AmaAttr global>",
    // add this insn into the .BTF.ext FieldReloc subsection.
    // Relocation looks like:
    //  . SecName:
    //    . InstOffset
    //    . TypeID
    //    . OffSetNameOff
    //    . RelocType
    // Later, the insn is replaced with "r2 = <offset>"
    // where "<offset>" equals to the offset based on current
    // type definitions.
    //
    // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>",
    // The LD_imm64 result will be replaced with a btf type id.
    processGlobalValue(MI->getOperand(1));
  } else if (MI->getOpcode() == BPF::CORE_MEM ||
             MI->getOpcode() == BPF::CORE_ALU32_MEM ||
             MI->getOpcode() == BPF::CORE_SHIFT) {
    // relocation insn is a load, store or shift insn.
    processGlobalValue(MI->getOperand(3));
  } else if (MI->getOpcode() == BPF::JAL) {
    // check extern function references
    const MachineOperand &MO = MI->getOperand(0);
    if (MO.isGlobal()) {
      processFuncPrototypes(dyn_cast<Function>(MO.getGlobal()));
    }
  }

  if (!CurMI) // no debug info
    return;

  // Skip this instruction if no DebugLoc or the DebugLoc
  // is the same as the previous instruction.
  const DebugLoc &DL = MI->getDebugLoc();
  if (!DL || PrevInstLoc == DL) {
    // This instruction will be skipped, no LineInfo has
    // been generated, construct one based on function signature.
    if (LineInfoGenerated == false) {
      auto *S = MI->getMF()->getFunction().getSubprogram();
      MCSymbol *FuncLabel = Asm->getFunctionBegin();
      constructLineInfo(S, FuncLabel, S->getLine(), 0);
      LineInfoGenerated = true;
    }

    return;
  }

  // Create a temporary label to remember the insn for lineinfo.
  MCSymbol *LineSym = OS.getContext().createTempSymbol();
  OS.emitLabel(LineSym);

  // Construct the lineinfo.
  auto SP = DL.get()->getScope()->getSubprogram();
  constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());

  LineInfoGenerated = true;
  PrevInstLoc = DL;
}

void BTFDebug::processGlobals(bool ProcessingMapDef) {
  // Collect all types referenced by globals.
  const Module *M = MMI->getModule();
  for (const GlobalVariable &Global : M->globals()) {
    // Decide the section name.
    StringRef SecName;
    if (Global.hasSection()) {
      SecName = Global.getSection();
    } else if (Global.hasInitializer()) {
      // data, bss, or readonly sections
      if (Global.isConstant())
        SecName = ".rodata";
      else
        SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data";
    }

    if (ProcessingMapDef != SecName.startswith(".maps"))
      continue;

    // Create a .rodata datasec if the global variable is an initialized
    // constant with private linkage and if it won't be in .rodata.str<#>
    // and .rodata.cst<#> sections.
    if (SecName == ".rodata" && Global.hasPrivateLinkage() &&
        DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
      SectionKind GVKind =
          TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM);
      // skip .rodata.str<#> and .rodata.cst<#> sections
      if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) {
        DataSecEntries[std::string(SecName)] =
            std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
      }
    }

    SmallVector<DIGlobalVariableExpression *, 1> GVs;
    Global.getDebugInfo(GVs);

    // No type information, mostly internal, skip it.
    if (GVs.size() == 0)
      continue;

    uint32_t GVTypeId = 0;
    for (auto *GVE : GVs) {
      if (SecName.startswith(".maps"))
        visitMapDefType(GVE->getVariable()->getType(), GVTypeId);
      else
        visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false);
      break;
    }

    // Only support the following globals:
    //  . static variables
    //  . non-static weak or non-weak global variables
    //  . weak or non-weak extern global variables
    // Whether DataSec is readonly or not can be found from corresponding ELF
    // section flags. Whether a BTF_KIND_VAR is a weak symbol or not
    // can be found from the corresponding ELF symbol table.
    auto Linkage = Global.getLinkage();
    if (Linkage != GlobalValue::InternalLinkage &&
        Linkage != GlobalValue::ExternalLinkage &&
        Linkage != GlobalValue::WeakAnyLinkage &&
        Linkage != GlobalValue::WeakODRLinkage &&
        Linkage != GlobalValue::ExternalWeakLinkage)
      continue;

    uint32_t GVarInfo;
    if (Linkage == GlobalValue::InternalLinkage) {
      GVarInfo = BTF::VAR_STATIC;
    } else if (Global.hasInitializer()) {
      GVarInfo = BTF::VAR_GLOBAL_ALLOCATED;
    } else {
      GVarInfo = BTF::VAR_GLOBAL_EXTERNAL;
    }

    auto VarEntry =
        std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
    uint32_t VarId = addType(std::move(VarEntry));

    // An empty SecName means an extern variable without section attribute.
    if (SecName.empty())
      continue;

    // Find or create a DataSec
    if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
      DataSecEntries[std::string(SecName)] =
          std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
    }

    // Calculate symbol size
    const DataLayout &DL = Global.getParent()->getDataLayout();
    uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType());

    DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId,
        Asm->getSymbol(&Global), Size);
  }
}

/// Emit proper patchable instructions.
bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
  if (MI->getOpcode() == BPF::LD_imm64) {
    const MachineOperand &MO = MI->getOperand(1);
    if (MO.isGlobal()) {
      const GlobalValue *GVal = MO.getGlobal();
      auto *GVar = dyn_cast<GlobalVariable>(GVal);
      if (GVar) {
        // Emit "mov ri, <imm>"
        int64_t Imm;
        uint32_t Reloc;
        if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) ||
            GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) {
          Imm = PatchImms[GVar].first;
          Reloc = PatchImms[GVar].second;
        } else {
          return false;
        }

        if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE ||
            Reloc == BPFCoreSharedInfo::ENUM_VALUE ||
            Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL ||
            Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE)
          OutMI.setOpcode(BPF::LD_imm64);
        else
          OutMI.setOpcode(BPF::MOV_ri);
        OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
        OutMI.addOperand(MCOperand::createImm(Imm));
        return true;
      }
    }
  } else if (MI->getOpcode() == BPF::CORE_MEM ||
             MI->getOpcode() == BPF::CORE_ALU32_MEM ||
             MI->getOpcode() == BPF::CORE_SHIFT) {
    const MachineOperand &MO = MI->getOperand(3);
    if (MO.isGlobal()) {
      const GlobalValue *GVal = MO.getGlobal();
      auto *GVar = dyn_cast<GlobalVariable>(GVal);
      if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
        uint32_t Imm = PatchImms[GVar].first;
        OutMI.setOpcode(MI->getOperand(1).getImm());
        if (MI->getOperand(0).isImm())
          OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm()));
        else
          OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
        OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg()));
        OutMI.addOperand(MCOperand::createImm(Imm));
        return true;
      }
    }
  }
  return false;
}

void BTFDebug::processFuncPrototypes(const Function *F) {
  if (!F)
    return;

  const DISubprogram *SP = F->getSubprogram();
  if (!SP || SP->isDefinition())
    return;

  // Do not emit again if already emitted.
  if (ProtoFunctions.find(F) != ProtoFunctions.end())
    return;
  ProtoFunctions.insert(F);

  uint32_t ProtoTypeId;
  const std::unordered_map<uint32_t, StringRef> FuncArgNames;
  visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId);

  uint8_t Scope = BTF::FUNC_EXTERN;
  auto FuncTypeEntry =
      std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
  uint32_t FuncId = addType(std::move(FuncTypeEntry));
  if (F->hasSection()) {
    StringRef SecName = F->getSection();

    if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
      DataSecEntries[std::string(SecName)] =
          std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
    }

    // We really don't know func size, set it to 0.
    DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId,
        Asm->getSymbol(F), 0);
  }
}

void BTFDebug::endModule() {
  // Collect MapDef globals if not collected yet.
  if (MapDefNotCollected) {
    processGlobals(true);
    MapDefNotCollected = false;
  }

  // Collect global types/variables except MapDef globals.
  processGlobals(false);

  for (auto &DataSec : DataSecEntries)
    addType(std::move(DataSec.second));

  // Fixups
  for (auto &Fixup : FixupDerivedTypes) {
    StringRef TypeName = Fixup.first;
    bool IsUnion = Fixup.second.first;

    // Search through struct types
    uint32_t StructTypeId = 0;
    for (const auto &StructType : StructTypes) {
      if (StructType->getName() == TypeName) {
        StructTypeId = StructType->getId();
        break;
      }
    }

    if (StructTypeId == 0) {
      auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion);
      StructTypeId = addType(std::move(FwdTypeEntry));
    }

    for (auto &DType : Fixup.second.second) {
      DType->setPointeeType(StructTypeId);
    }
  }

  // Complete BTF type cross refereences.
  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->completeType(*this);

  // Emit BTF sections.
  emitBTFSection();
  emitBTFExtSection();
}