aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/SystemZ/SystemZCallingConv.h
blob: 96c1080d52375c42ed3a217cb30e2ef6b02f1db6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H

#include "SystemZSubtarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/MC/MCRegisterInfo.h"

namespace llvm {
namespace SystemZ {
  const unsigned ELFNumArgGPRs = 5;
  extern const MCPhysReg ELFArgGPRs[ELFNumArgGPRs];

  const unsigned ELFNumArgFPRs = 4;
  extern const MCPhysReg ELFArgFPRs[ELFNumArgFPRs];

  const unsigned XPLINK64NumArgGPRs = 3;
  extern const MCPhysReg XPLINK64ArgGPRs[XPLINK64NumArgGPRs];

  const unsigned XPLINK64NumArgFPRs = 4;
  extern const MCPhysReg XPLINK64ArgFPRs[XPLINK64NumArgFPRs];
} // end namespace SystemZ

class SystemZCCState : public CCState {
private:
  /// Records whether the value was a fixed argument.
  /// See ISD::OutputArg::IsFixed.
  SmallVector<bool, 4> ArgIsFixed;

  /// Records whether the value was widened from a short vector type.
  SmallVector<bool, 4> ArgIsShortVector;

  // Check whether ArgVT is a short vector type.
  bool IsShortVectorType(EVT ArgVT) {
    return ArgVT.isVector() && ArgVT.getStoreSize() <= 8;
  }

public:
  SystemZCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
                 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
      : CCState(CC, isVarArg, MF, locs, C) {}

  void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
                              CCAssignFn Fn) {
    // Formal arguments are always fixed.
    ArgIsFixed.clear();
    for (unsigned i = 0; i < Ins.size(); ++i)
      ArgIsFixed.push_back(true);
    // Record whether the call operand was a short vector.
    ArgIsShortVector.clear();
    for (unsigned i = 0; i < Ins.size(); ++i)
      ArgIsShortVector.push_back(IsShortVectorType(Ins[i].ArgVT));

    CCState::AnalyzeFormalArguments(Ins, Fn);
  }

  void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
                           CCAssignFn Fn) {
    // Record whether the call operand was a fixed argument.
    ArgIsFixed.clear();
    for (unsigned i = 0; i < Outs.size(); ++i)
      ArgIsFixed.push_back(Outs[i].IsFixed);
    // Record whether the call operand was a short vector.
    ArgIsShortVector.clear();
    for (unsigned i = 0; i < Outs.size(); ++i)
      ArgIsShortVector.push_back(IsShortVectorType(Outs[i].ArgVT));

    CCState::AnalyzeCallOperands(Outs, Fn);
  }

  // This version of AnalyzeCallOperands in the base class is not usable
  // since we must provide a means of accessing ISD::OutputArg::IsFixed.
  void AnalyzeCallOperands(const SmallVectorImpl<MVT> &Outs,
                           SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
                           CCAssignFn Fn) = delete;

  bool IsFixed(unsigned ValNo) { return ArgIsFixed[ValNo]; }
  bool IsShortVector(unsigned ValNo) { return ArgIsShortVector[ValNo]; }
};

// Handle i128 argument types.  These need to be passed by implicit
// reference.  This could be as simple as the following .td line:
//    CCIfType<[i128], CCPassIndirect<i64>>,
// except that i128 is not a legal type, and therefore gets split by
// common code into a pair of i64 arguments.
inline bool CC_SystemZ_I128Indirect(unsigned &ValNo, MVT &ValVT,
                                    MVT &LocVT,
                                    CCValAssign::LocInfo &LocInfo,
                                    ISD::ArgFlagsTy &ArgFlags,
                                    CCState &State) {
  SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();

  // ArgFlags.isSplit() is true on the first part of a i128 argument;
  // PendingMembers.empty() is false on all subsequent parts.
  if (!ArgFlags.isSplit() && PendingMembers.empty())
    return false;

  // Push a pending Indirect value location for each part.
  LocVT = MVT::i64;
  LocInfo = CCValAssign::Indirect;
  PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT,
                                                   LocVT, LocInfo));
  if (!ArgFlags.isSplitEnd())
    return true;

  // OK, we've collected all parts in the pending list.  Allocate
  // the location (register or stack slot) for the indirect pointer.
  // (This duplicates the usual i64 calling convention rules.)
  unsigned Reg;
  const SystemZSubtarget &Subtarget =
      State.getMachineFunction().getSubtarget<SystemZSubtarget>();
  if (Subtarget.isTargetELF())
    Reg = State.AllocateReg(SystemZ::ELFArgGPRs);
  else if (Subtarget.isTargetXPLINK64())
    Reg = State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
  else
    llvm_unreachable("Unknown Calling Convention!");

  unsigned Offset = Reg ? 0 : State.AllocateStack(8, Align(8));

  // Use that same location for all the pending parts.
  for (auto &It : PendingMembers) {
    if (Reg)
      It.convertToReg(Reg);
    else
      It.convertToMem(Offset);
    State.addLoc(It);
  }

  PendingMembers.clear();

  return true;
}

inline bool CC_XPLINK64_Shadow_Reg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                                   CCValAssign::LocInfo &LocInfo,
                                   ISD::ArgFlagsTy &ArgFlags, CCState &State) {
  if (LocVT == MVT::f32 || LocVT == MVT::f64) {
    State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
  }
  if (LocVT == MVT::f128 || LocVT.is128BitVector()) {
    // Shadow next two GPRs, if available.
    State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
    State.AllocateReg(SystemZ::XPLINK64ArgGPRs);

    // Quad precision floating point needs to
    // go inside pre-defined FPR pair.
    if (LocVT == MVT::f128) {
      for (unsigned I = 0; I < SystemZ::XPLINK64NumArgFPRs; I += 2)
        if (State.isAllocated(SystemZ::XPLINK64ArgFPRs[I]))
          State.AllocateReg(SystemZ::XPLINK64ArgFPRs[I + 1]);
    }
  }
  return false;
}

inline bool CC_XPLINK64_Allocate128BitVararg(unsigned &ValNo, MVT &ValVT,
                                             MVT &LocVT,
                                             CCValAssign::LocInfo &LocInfo,
                                             ISD::ArgFlagsTy &ArgFlags,
                                             CCState &State) {
  if (LocVT.getSizeInBits() < 128)
    return false;

  if (static_cast<SystemZCCState *>(&State)->IsFixed(ValNo))
    return false;

  // For any C or C++ program, this should always be
  // false, since it is illegal to have a function
  // where the first argument is variadic. Therefore
  // the first fixed argument should already have
  // allocated GPR1 either through shadowing it or
  // using it for parameter passing.
  State.AllocateReg(SystemZ::R1D);

  bool AllocGPR2 = State.AllocateReg(SystemZ::R2D);
  bool AllocGPR3 = State.AllocateReg(SystemZ::R3D);

  // If GPR2 and GPR3 are available, then we may pass vararg in R2Q.
  if (AllocGPR2 && AllocGPR3) {
    State.addLoc(
        CCValAssign::getReg(ValNo, ValVT, SystemZ::R2Q, LocVT, LocInfo));
    return true;
  }

  // If only GPR3 is available, we allocate on stack but need to
  // set custom handling to copy hi bits into GPR3.
  if (!AllocGPR2 && AllocGPR3) {
    auto Offset = State.AllocateStack(16, Align(8));
    State.addLoc(
        CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
    return true;
  }

  return false;
}

inline bool RetCC_SystemZ_Error(unsigned &, MVT &, MVT &,
                                CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
                                CCState &) {
  llvm_unreachable("Return value calling convention currently unsupported.");
}

inline bool CC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &,
                             ISD::ArgFlagsTy &, CCState &) {
  llvm_unreachable("Argument calling convention currently unsupported.");
}

inline bool CC_SystemZ_GHC_Error(unsigned &, MVT &, MVT &,
                                 CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
                                 CCState &) {
  report_fatal_error("No registers left in GHC calling convention");
  return false;
}

} // end namespace llvm

#endif