aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
blob: b671d68031a89809f4e361884096062ace8af2ee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Correlated Value Propagation pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "correlated-value-propagation"

STATISTIC(NumPhis,      "Number of phis propagated");
STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
STATISTIC(NumSelects,   "Number of selects propagated");
STATISTIC(NumMemAccess, "Number of memory access targets propagated");
STATISTIC(NumCmps,      "Number of comparisons propagated");
STATISTIC(NumReturns,   "Number of return values propagated");
STATISTIC(NumDeadCases, "Number of switch cases removed");
STATISTIC(NumSDivSRemsNarrowed,
          "Number of sdivs/srems whose width was decreased");
STATISTIC(NumSDivs,     "Number of sdiv converted to udiv");
STATISTIC(NumUDivURemsNarrowed,
          "Number of udivs/urems whose width was decreased");
STATISTIC(NumAShrs,     "Number of ashr converted to lshr");
STATISTIC(NumSRems,     "Number of srem converted to urem");
STATISTIC(NumSExt,      "Number of sext converted to zext");
STATISTIC(NumAnd,       "Number of ands removed");
STATISTIC(NumNW,        "Number of no-wrap deductions");
STATISTIC(NumNSW,       "Number of no-signed-wrap deductions");
STATISTIC(NumNUW,       "Number of no-unsigned-wrap deductions");
STATISTIC(NumAddNW,     "Number of no-wrap deductions for add");
STATISTIC(NumAddNSW,    "Number of no-signed-wrap deductions for add");
STATISTIC(NumAddNUW,    "Number of no-unsigned-wrap deductions for add");
STATISTIC(NumSubNW,     "Number of no-wrap deductions for sub");
STATISTIC(NumSubNSW,    "Number of no-signed-wrap deductions for sub");
STATISTIC(NumSubNUW,    "Number of no-unsigned-wrap deductions for sub");
STATISTIC(NumMulNW,     "Number of no-wrap deductions for mul");
STATISTIC(NumMulNSW,    "Number of no-signed-wrap deductions for mul");
STATISTIC(NumMulNUW,    "Number of no-unsigned-wrap deductions for mul");
STATISTIC(NumShlNW,     "Number of no-wrap deductions for shl");
STATISTIC(NumShlNSW,    "Number of no-signed-wrap deductions for shl");
STATISTIC(NumShlNUW,    "Number of no-unsigned-wrap deductions for shl");
STATISTIC(NumOverflows, "Number of overflow checks removed");
STATISTIC(NumSaturating,
    "Number of saturating arithmetics converted to normal arithmetics");

static cl::opt<bool> DontAddNoWrapFlags("cvp-dont-add-nowrap-flags", cl::init(false));

namespace {

  class CorrelatedValuePropagation : public FunctionPass {
  public:
    static char ID;

    CorrelatedValuePropagation(): FunctionPass(ID) {
     initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addRequired<LazyValueInfoWrapperPass>();
      AU.addPreserved<GlobalsAAWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addPreserved<LazyValueInfoWrapperPass>();
    }
  };

} // end anonymous namespace

char CorrelatedValuePropagation::ID = 0;

INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
                "Value Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
                "Value Propagation", false, false)

// Public interface to the Value Propagation pass
Pass *llvm::createCorrelatedValuePropagationPass() {
  return new CorrelatedValuePropagation();
}

static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
  if (S->getType()->isVectorTy()) return false;
  if (isa<Constant>(S->getCondition())) return false;

  Constant *C = LVI->getConstant(S->getCondition(), S);
  if (!C) return false;

  ConstantInt *CI = dyn_cast<ConstantInt>(C);
  if (!CI) return false;

  Value *ReplaceWith = CI->isOne() ? S->getTrueValue() : S->getFalseValue();
  S->replaceAllUsesWith(ReplaceWith);
  S->eraseFromParent();

  ++NumSelects;

  return true;
}

/// Try to simplify a phi with constant incoming values that match the edge
/// values of a non-constant value on all other edges:
/// bb0:
///   %isnull = icmp eq i8* %x, null
///   br i1 %isnull, label %bb2, label %bb1
/// bb1:
///   br label %bb2
/// bb2:
///   %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
/// -->
///   %r = %x
static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
                                   DominatorTree *DT) {
  // Collect incoming constants and initialize possible common value.
  SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
  Value *CommonValue = nullptr;
  for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
    Value *Incoming = P->getIncomingValue(i);
    if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
      IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
    } else if (!CommonValue) {
      // The potential common value is initialized to the first non-constant.
      CommonValue = Incoming;
    } else if (Incoming != CommonValue) {
      // There can be only one non-constant common value.
      return false;
    }
  }

  if (!CommonValue || IncomingConstants.empty())
    return false;

  // The common value must be valid in all incoming blocks.
  BasicBlock *ToBB = P->getParent();
  if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
    if (!DT->dominates(CommonInst, ToBB))
      return false;

  // We have a phi with exactly 1 variable incoming value and 1 or more constant
  // incoming values. See if all constant incoming values can be mapped back to
  // the same incoming variable value.
  for (auto &IncomingConstant : IncomingConstants) {
    Constant *C = IncomingConstant.first;
    BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
    if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
      return false;
  }

  // All constant incoming values map to the same variable along the incoming
  // edges of the phi. The phi is unnecessary. However, we must drop all
  // poison-generating flags to ensure that no poison is propagated to the phi
  // location by performing this substitution.
  // Warning: If the underlying analysis changes, this may not be enough to
  //          guarantee that poison is not propagated.
  // TODO: We may be able to re-infer flags by re-analyzing the instruction.
  if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
    CommonInst->dropPoisonGeneratingFlags();
  P->replaceAllUsesWith(CommonValue);
  P->eraseFromParent();
  ++NumPhiCommon;
  return true;
}

static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
                       const SimplifyQuery &SQ) {
  bool Changed = false;

  BasicBlock *BB = P->getParent();
  for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
    Value *Incoming = P->getIncomingValue(i);
    if (isa<Constant>(Incoming)) continue;

    Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);

    // Look if the incoming value is a select with a scalar condition for which
    // LVI can tells us the value. In that case replace the incoming value with
    // the appropriate value of the select. This often allows us to remove the
    // select later.
    if (!V) {
      SelectInst *SI = dyn_cast<SelectInst>(Incoming);
      if (!SI) continue;

      Value *Condition = SI->getCondition();
      if (!Condition->getType()->isVectorTy()) {
        if (Constant *C = LVI->getConstantOnEdge(
                Condition, P->getIncomingBlock(i), BB, P)) {
          if (C->isOneValue()) {
            V = SI->getTrueValue();
          } else if (C->isZeroValue()) {
            V = SI->getFalseValue();
          }
          // Once LVI learns to handle vector types, we could also add support
          // for vector type constants that are not all zeroes or all ones.
        }
      }

      // Look if the select has a constant but LVI tells us that the incoming
      // value can never be that constant. In that case replace the incoming
      // value with the other value of the select. This often allows us to
      // remove the select later.
      if (!V) {
        Constant *C = dyn_cast<Constant>(SI->getFalseValue());
        if (!C) continue;

        if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
              P->getIncomingBlock(i), BB, P) !=
            LazyValueInfo::False)
          continue;
        V = SI->getTrueValue();
      }

      LLVM_DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
    }

    P->setIncomingValue(i, V);
    Changed = true;
  }

  if (Value *V = SimplifyInstruction(P, SQ)) {
    P->replaceAllUsesWith(V);
    P->eraseFromParent();
    Changed = true;
  }

  if (!Changed)
    Changed = simplifyCommonValuePhi(P, LVI, DT);

  if (Changed)
    ++NumPhis;

  return Changed;
}

static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) {
  Value *Pointer = nullptr;
  if (LoadInst *L = dyn_cast<LoadInst>(I))
    Pointer = L->getPointerOperand();
  else
    Pointer = cast<StoreInst>(I)->getPointerOperand();

  if (isa<Constant>(Pointer)) return false;

  Constant *C = LVI->getConstant(Pointer, I);
  if (!C) return false;

  ++NumMemAccess;
  I->replaceUsesOfWith(Pointer, C);
  return true;
}

/// See if LazyValueInfo's ability to exploit edge conditions or range
/// information is sufficient to prove this comparison. Even for local
/// conditions, this can sometimes prove conditions instcombine can't by
/// exploiting range information.
static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
  Value *Op0 = Cmp->getOperand(0);
  auto *C = dyn_cast<Constant>(Cmp->getOperand(1));
  if (!C)
    return false;

  LazyValueInfo::Tristate Result =
      LVI->getPredicateAt(Cmp->getPredicate(), Op0, C, Cmp,
                          /*UseBlockValue=*/true);
  if (Result == LazyValueInfo::Unknown)
    return false;

  ++NumCmps;
  Constant *TorF = ConstantInt::get(Type::getInt1Ty(Cmp->getContext()), Result);
  Cmp->replaceAllUsesWith(TorF);
  Cmp->eraseFromParent();
  return true;
}

/// Simplify a switch instruction by removing cases which can never fire. If the
/// uselessness of a case could be determined locally then constant propagation
/// would already have figured it out. Instead, walk the predecessors and
/// statically evaluate cases based on information available on that edge. Cases
/// that cannot fire no matter what the incoming edge can safely be removed. If
/// a case fires on every incoming edge then the entire switch can be removed
/// and replaced with a branch to the case destination.
static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
                          DominatorTree *DT) {
  DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
  Value *Cond = I->getCondition();
  BasicBlock *BB = I->getParent();

  // Analyse each switch case in turn.
  bool Changed = false;
  DenseMap<BasicBlock*, int> SuccessorsCount;
  for (auto *Succ : successors(BB))
    SuccessorsCount[Succ]++;

  { // Scope for SwitchInstProfUpdateWrapper. It must not live during
    // ConstantFoldTerminator() as the underlying SwitchInst can be changed.
    SwitchInstProfUpdateWrapper SI(*I);

    for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
      ConstantInt *Case = CI->getCaseValue();
      LazyValueInfo::Tristate State =
          LVI->getPredicateAt(CmpInst::ICMP_EQ, Cond, Case, I,
                              /* UseBlockValue */ true);

      if (State == LazyValueInfo::False) {
        // This case never fires - remove it.
        BasicBlock *Succ = CI->getCaseSuccessor();
        Succ->removePredecessor(BB);
        CI = SI.removeCase(CI);
        CE = SI->case_end();

        // The condition can be modified by removePredecessor's PHI simplification
        // logic.
        Cond = SI->getCondition();

        ++NumDeadCases;
        Changed = true;
        if (--SuccessorsCount[Succ] == 0)
          DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
        continue;
      }
      if (State == LazyValueInfo::True) {
        // This case always fires.  Arrange for the switch to be turned into an
        // unconditional branch by replacing the switch condition with the case
        // value.
        SI->setCondition(Case);
        NumDeadCases += SI->getNumCases();
        Changed = true;
        break;
      }

      // Increment the case iterator since we didn't delete it.
      ++CI;
    }
  }

  if (Changed)
    // If the switch has been simplified to the point where it can be replaced
    // by a branch then do so now.
    ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
                           /*TLI = */ nullptr, &DTU);
  return Changed;
}

// See if we can prove that the given binary op intrinsic will not overflow.
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
  ConstantRange LRange = LVI->getConstantRange(BO->getLHS(), BO);
  ConstantRange RRange = LVI->getConstantRange(BO->getRHS(), BO);
  ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
      BO->getBinaryOp(), RRange, BO->getNoWrapKind());
  return NWRegion.contains(LRange);
}

static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
                                       bool NewNSW, bool NewNUW) {
  Statistic *OpcNW, *OpcNSW, *OpcNUW;
  switch (Opcode) {
  case Instruction::Add:
    OpcNW = &NumAddNW;
    OpcNSW = &NumAddNSW;
    OpcNUW = &NumAddNUW;
    break;
  case Instruction::Sub:
    OpcNW = &NumSubNW;
    OpcNSW = &NumSubNSW;
    OpcNUW = &NumSubNUW;
    break;
  case Instruction::Mul:
    OpcNW = &NumMulNW;
    OpcNSW = &NumMulNSW;
    OpcNUW = &NumMulNUW;
    break;
  case Instruction::Shl:
    OpcNW = &NumShlNW;
    OpcNSW = &NumShlNSW;
    OpcNUW = &NumShlNUW;
    break;
  default:
    llvm_unreachable("Will not be called with other binops");
  }

  auto *Inst = dyn_cast<Instruction>(V);
  if (NewNSW) {
    ++NumNW;
    ++*OpcNW;
    ++NumNSW;
    ++*OpcNSW;
    if (Inst)
      Inst->setHasNoSignedWrap();
  }
  if (NewNUW) {
    ++NumNW;
    ++*OpcNW;
    ++NumNUW;
    ++*OpcNUW;
    if (Inst)
      Inst->setHasNoUnsignedWrap();
  }
}

static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);

// Rewrite this with.overflow intrinsic as non-overflowing.
static void processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
  IRBuilder<> B(WO);
  Instruction::BinaryOps Opcode = WO->getBinaryOp();
  bool NSW = WO->isSigned();
  bool NUW = !WO->isSigned();

  Value *NewOp =
      B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
  setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);

  StructType *ST = cast<StructType>(WO->getType());
  Constant *Struct = ConstantStruct::get(ST,
      { UndefValue::get(ST->getElementType(0)),
        ConstantInt::getFalse(ST->getElementType(1)) });
  Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
  WO->replaceAllUsesWith(NewI);
  WO->eraseFromParent();
  ++NumOverflows;

  // See if we can infer the other no-wrap too.
  if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
    processBinOp(BO, LVI);
}

static void processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
  Instruction::BinaryOps Opcode = SI->getBinaryOp();
  bool NSW = SI->isSigned();
  bool NUW = !SI->isSigned();
  BinaryOperator *BinOp = BinaryOperator::Create(
      Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI);
  BinOp->setDebugLoc(SI->getDebugLoc());
  setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);

  SI->replaceAllUsesWith(BinOp);
  SI->eraseFromParent();
  ++NumSaturating;

  // See if we can infer the other no-wrap too.
  if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
    processBinOp(BO, LVI);
}

/// Infer nonnull attributes for the arguments at the specified callsite.
static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {

  if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
    if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) {
      processOverflowIntrinsic(WO, LVI);
      return true;
    }
  }

  if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
    if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) {
      processSaturatingInst(SI, LVI);
      return true;
    }
  }

  bool Changed = false;

  // Deopt bundle operands are intended to capture state with minimal
  // perturbance of the code otherwise.  If we can find a constant value for
  // any such operand and remove a use of the original value, that's
  // desireable since it may allow further optimization of that value (e.g. via
  // single use rules in instcombine).  Since deopt uses tend to,
  // idiomatically, appear along rare conditional paths, it's reasonable likely
  // we may have a conditional fact with which LVI can fold.
  if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) {
    for (const Use &ConstU : DeoptBundle->Inputs) {
      Use &U = const_cast<Use&>(ConstU);
      Value *V = U.get();
      if (V->getType()->isVectorTy()) continue;
      if (isa<Constant>(V)) continue;

      Constant *C = LVI->getConstant(V, &CB);
      if (!C) continue;
      U.set(C);
      Changed = true;
    }
  }

  SmallVector<unsigned, 4> ArgNos;
  unsigned ArgNo = 0;

  for (Value *V : CB.args()) {
    PointerType *Type = dyn_cast<PointerType>(V->getType());
    // Try to mark pointer typed parameters as non-null.  We skip the
    // relatively expensive analysis for constants which are obviously either
    // null or non-null to start with.
    if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) &&
        !isa<Constant>(V) &&
        LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
                            ConstantPointerNull::get(Type),
                            &CB) == LazyValueInfo::False)
      ArgNos.push_back(ArgNo);
    ArgNo++;
  }

  assert(ArgNo == CB.arg_size() && "sanity check");

  if (ArgNos.empty())
    return Changed;

  AttributeList AS = CB.getAttributes();
  LLVMContext &Ctx = CB.getContext();
  AS = AS.addParamAttribute(Ctx, ArgNos,
                            Attribute::get(Ctx, Attribute::NonNull));
  CB.setAttributes(AS);

  return true;
}

static bool isNonNegative(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
  Constant *Zero = ConstantInt::get(V->getType(), 0);
  auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, V, Zero, CxtI);
  return Result == LazyValueInfo::True;
}

static bool isNonPositive(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
  Constant *Zero = ConstantInt::get(V->getType(), 0);
  auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SLE, V, Zero, CxtI);
  return Result == LazyValueInfo::True;
}

enum class Domain { NonNegative, NonPositive, Unknown };

Domain getDomain(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
  if (isNonNegative(V, LVI, CxtI))
    return Domain::NonNegative;
  if (isNonPositive(V, LVI, CxtI))
    return Domain::NonPositive;
  return Domain::Unknown;
}

/// Try to shrink a sdiv/srem's width down to the smallest power of two that's
/// sufficient to contain its operands.
static bool narrowSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
  assert(Instr->getOpcode() == Instruction::SDiv ||
         Instr->getOpcode() == Instruction::SRem);
  if (Instr->getType()->isVectorTy())
    return false;

  // Find the smallest power of two bitwidth that's sufficient to hold Instr's
  // operands.
  unsigned OrigWidth = Instr->getType()->getIntegerBitWidth();

  // What is the smallest bit width that can accomodate the entire value ranges
  // of both of the operands?
  std::array<Optional<ConstantRange>, 2> CRs;
  unsigned MinSignedBits = 0;
  for (auto I : zip(Instr->operands(), CRs)) {
    std::get<1>(I) = LVI->getConstantRange(std::get<0>(I), Instr);
    MinSignedBits = std::max(std::get<1>(I)->getMinSignedBits(), MinSignedBits);
  }

  // sdiv/srem is UB if divisor is -1 and divident is INT_MIN, so unless we can
  // prove that such a combination is impossible, we need to bump the bitwidth.
  if (CRs[1]->contains(APInt::getAllOnesValue(OrigWidth)) &&
      CRs[0]->contains(
          APInt::getSignedMinValue(MinSignedBits).sextOrSelf(OrigWidth)))
    ++MinSignedBits;

  // Don't shrink below 8 bits wide.
  unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MinSignedBits), 8);

  // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
  // two.
  if (NewWidth >= OrigWidth)
    return false;

  ++NumSDivSRemsNarrowed;
  IRBuilder<> B{Instr};
  auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
  auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
                                     Instr->getName() + ".lhs.trunc");
  auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
                                     Instr->getName() + ".rhs.trunc");
  auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
  auto *Sext = B.CreateSExt(BO, Instr->getType(), Instr->getName() + ".sext");
  if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
    if (BinOp->getOpcode() == Instruction::SDiv)
      BinOp->setIsExact(Instr->isExact());

  Instr->replaceAllUsesWith(Sext);
  Instr->eraseFromParent();
  return true;
}

/// Try to shrink a udiv/urem's width down to the smallest power of two that's
/// sufficient to contain its operands.
static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
  assert(Instr->getOpcode() == Instruction::UDiv ||
         Instr->getOpcode() == Instruction::URem);
  if (Instr->getType()->isVectorTy())
    return false;

  // Find the smallest power of two bitwidth that's sufficient to hold Instr's
  // operands.

  // What is the smallest bit width that can accomodate the entire value ranges
  // of both of the operands?
  unsigned MaxActiveBits = 0;
  for (Value *Operand : Instr->operands()) {
    ConstantRange CR = LVI->getConstantRange(Operand, Instr);
    MaxActiveBits = std::max(CR.getActiveBits(), MaxActiveBits);
  }
  // Don't shrink below 8 bits wide.
  unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MaxActiveBits), 8);

  // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
  // two.
  if (NewWidth >= Instr->getType()->getIntegerBitWidth())
    return false;

  ++NumUDivURemsNarrowed;
  IRBuilder<> B{Instr};
  auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
  auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
                                     Instr->getName() + ".lhs.trunc");
  auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
                                     Instr->getName() + ".rhs.trunc");
  auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
  auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
  if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
    if (BinOp->getOpcode() == Instruction::UDiv)
      BinOp->setIsExact(Instr->isExact());

  Instr->replaceAllUsesWith(Zext);
  Instr->eraseFromParent();
  return true;
}

static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) {
  assert(SDI->getOpcode() == Instruction::SRem);
  if (SDI->getType()->isVectorTy())
    return false;

  struct Operand {
    Value *V;
    Domain D;
  };
  std::array<Operand, 2> Ops;

  for (const auto I : zip(Ops, SDI->operands())) {
    Operand &Op = std::get<0>(I);
    Op.V = std::get<1>(I);
    Op.D = getDomain(Op.V, LVI, SDI);
    if (Op.D == Domain::Unknown)
      return false;
  }

  // We know domains of both of the operands!
  ++NumSRems;

  // We need operands to be non-negative, so negate each one that isn't.
  for (Operand &Op : Ops) {
    if (Op.D == Domain::NonNegative)
      continue;
    auto *BO =
        BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
    BO->setDebugLoc(SDI->getDebugLoc());
    Op.V = BO;
  }

  auto *URem =
      BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
  URem->setDebugLoc(SDI->getDebugLoc());

  Value *Res = URem;

  // If the divident was non-positive, we need to negate the result.
  if (Ops[0].D == Domain::NonPositive)
    Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);

  SDI->replaceAllUsesWith(Res);
  SDI->eraseFromParent();

  // Try to simplify our new urem.
  processUDivOrURem(URem, LVI);

  return true;
}

/// See if LazyValueInfo's ability to exploit edge conditions or range
/// information is sufficient to prove the signs of both operands of this SDiv.
/// If this is the case, replace the SDiv with a UDiv. Even for local
/// conditions, this can sometimes prove conditions instcombine can't by
/// exploiting range information.
static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) {
  assert(SDI->getOpcode() == Instruction::SDiv);
  if (SDI->getType()->isVectorTy())
    return false;

  struct Operand {
    Value *V;
    Domain D;
  };
  std::array<Operand, 2> Ops;

  for (const auto I : zip(Ops, SDI->operands())) {
    Operand &Op = std::get<0>(I);
    Op.V = std::get<1>(I);
    Op.D = getDomain(Op.V, LVI, SDI);
    if (Op.D == Domain::Unknown)
      return false;
  }

  // We know domains of both of the operands!
  ++NumSDivs;

  // We need operands to be non-negative, so negate each one that isn't.
  for (Operand &Op : Ops) {
    if (Op.D == Domain::NonNegative)
      continue;
    auto *BO =
        BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
    BO->setDebugLoc(SDI->getDebugLoc());
    Op.V = BO;
  }

  auto *UDiv =
      BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
  UDiv->setDebugLoc(SDI->getDebugLoc());
  UDiv->setIsExact(SDI->isExact());

  Value *Res = UDiv;

  // If the operands had two different domains, we need to negate the result.
  if (Ops[0].D != Ops[1].D)
    Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);

  SDI->replaceAllUsesWith(Res);
  SDI->eraseFromParent();

  // Try to simplify our new udiv.
  processUDivOrURem(UDiv, LVI);

  return true;
}

static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
  assert(Instr->getOpcode() == Instruction::SDiv ||
         Instr->getOpcode() == Instruction::SRem);
  if (Instr->getType()->isVectorTy())
    return false;

  if (Instr->getOpcode() == Instruction::SDiv)
    if (processSDiv(Instr, LVI))
      return true;

  if (Instr->getOpcode() == Instruction::SRem)
    if (processSRem(Instr, LVI))
      return true;

  return narrowSDivOrSRem(Instr, LVI);
}

static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
  if (SDI->getType()->isVectorTy())
    return false;

  if (!isNonNegative(SDI->getOperand(0), LVI, SDI))
    return false;

  ++NumAShrs;
  auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
                                        SDI->getName(), SDI);
  BO->setDebugLoc(SDI->getDebugLoc());
  BO->setIsExact(SDI->isExact());
  SDI->replaceAllUsesWith(BO);
  SDI->eraseFromParent();

  return true;
}

static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
  if (SDI->getType()->isVectorTy())
    return false;

  Value *Base = SDI->getOperand(0);

  if (!isNonNegative(Base, LVI, SDI))
    return false;

  ++NumSExt;
  auto *ZExt =
      CastInst::CreateZExtOrBitCast(Base, SDI->getType(), SDI->getName(), SDI);
  ZExt->setDebugLoc(SDI->getDebugLoc());
  SDI->replaceAllUsesWith(ZExt);
  SDI->eraseFromParent();

  return true;
}

static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
  using OBO = OverflowingBinaryOperator;

  if (DontAddNoWrapFlags)
    return false;

  if (BinOp->getType()->isVectorTy())
    return false;

  bool NSW = BinOp->hasNoSignedWrap();
  bool NUW = BinOp->hasNoUnsignedWrap();
  if (NSW && NUW)
    return false;

  Instruction::BinaryOps Opcode = BinOp->getOpcode();
  Value *LHS = BinOp->getOperand(0);
  Value *RHS = BinOp->getOperand(1);

  ConstantRange LRange = LVI->getConstantRange(LHS, BinOp);
  ConstantRange RRange = LVI->getConstantRange(RHS, BinOp);

  bool Changed = false;
  bool NewNUW = false, NewNSW = false;
  if (!NUW) {
    ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
        Opcode, RRange, OBO::NoUnsignedWrap);
    NewNUW = NUWRange.contains(LRange);
    Changed |= NewNUW;
  }
  if (!NSW) {
    ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
        Opcode, RRange, OBO::NoSignedWrap);
    NewNSW = NSWRange.contains(LRange);
    Changed |= NewNSW;
  }

  setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);

  return Changed;
}

static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
  if (BinOp->getType()->isVectorTy())
    return false;

  // Pattern match (and lhs, C) where C includes a superset of bits which might
  // be set in lhs.  This is a common truncation idiom created by instcombine.
  Value *LHS = BinOp->getOperand(0);
  ConstantInt *RHS = dyn_cast<ConstantInt>(BinOp->getOperand(1));
  if (!RHS || !RHS->getValue().isMask())
    return false;

  // We can only replace the AND with LHS based on range info if the range does
  // not include undef.
  ConstantRange LRange =
      LVI->getConstantRange(LHS, BinOp, /*UndefAllowed=*/false);
  if (!LRange.getUnsignedMax().ule(RHS->getValue()))
    return false;

  BinOp->replaceAllUsesWith(LHS);
  BinOp->eraseFromParent();
  NumAnd++;
  return true;
}


static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
  if (Constant *C = LVI->getConstant(V, At))
    return C;

  // TODO: The following really should be sunk inside LVI's core algorithm, or
  // at least the outer shims around such.
  auto *C = dyn_cast<CmpInst>(V);
  if (!C) return nullptr;

  Value *Op0 = C->getOperand(0);
  Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
  if (!Op1) return nullptr;

  LazyValueInfo::Tristate Result =
    LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At);
  if (Result == LazyValueInfo::Unknown)
    return nullptr;

  return (Result == LazyValueInfo::True) ?
    ConstantInt::getTrue(C->getContext()) :
    ConstantInt::getFalse(C->getContext());
}

static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
                    const SimplifyQuery &SQ) {
  bool FnChanged = false;
  // Visiting in a pre-order depth-first traversal causes us to simplify early
  // blocks before querying later blocks (which require us to analyze early
  // blocks).  Eagerly simplifying shallow blocks means there is strictly less
  // work to do for deep blocks.  This also means we don't visit unreachable
  // blocks.
  for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
    bool BBChanged = false;
    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
      Instruction *II = &*BI++;
      switch (II->getOpcode()) {
      case Instruction::Select:
        BBChanged |= processSelect(cast<SelectInst>(II), LVI);
        break;
      case Instruction::PHI:
        BBChanged |= processPHI(cast<PHINode>(II), LVI, DT, SQ);
        break;
      case Instruction::ICmp:
      case Instruction::FCmp:
        BBChanged |= processCmp(cast<CmpInst>(II), LVI);
        break;
      case Instruction::Load:
      case Instruction::Store:
        BBChanged |= processMemAccess(II, LVI);
        break;
      case Instruction::Call:
      case Instruction::Invoke:
        BBChanged |= processCallSite(cast<CallBase>(*II), LVI);
        break;
      case Instruction::SRem:
      case Instruction::SDiv:
        BBChanged |= processSDivOrSRem(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::UDiv:
      case Instruction::URem:
        BBChanged |= processUDivOrURem(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::AShr:
        BBChanged |= processAShr(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::SExt:
        BBChanged |= processSExt(cast<SExtInst>(II), LVI);
        break;
      case Instruction::Add:
      case Instruction::Sub:
      case Instruction::Mul:
      case Instruction::Shl:
        BBChanged |= processBinOp(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::And:
        BBChanged |= processAnd(cast<BinaryOperator>(II), LVI);
        break;
      }
    }

    Instruction *Term = BB->getTerminator();
    switch (Term->getOpcode()) {
    case Instruction::Switch:
      BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
      break;
    case Instruction::Ret: {
      auto *RI = cast<ReturnInst>(Term);
      // Try to determine the return value if we can.  This is mainly here to
      // simplify the writing of unit tests, but also helps to enable IPO by
      // constant folding the return values of callees.
      auto *RetVal = RI->getReturnValue();
      if (!RetVal) break; // handle "ret void"
      if (isa<Constant>(RetVal)) break; // nothing to do
      if (auto *C = getConstantAt(RetVal, RI, LVI)) {
        ++NumReturns;
        RI->replaceUsesOfWith(RetVal, C);
        BBChanged = true;
      }
    }
    }

    FnChanged |= BBChanged;
  }

  return FnChanged;
}

bool CorrelatedValuePropagation::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F));
}

PreservedAnalyses
CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
  LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);

  bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));

  PreservedAnalyses PA;
  if (!Changed) {
    PA = PreservedAnalyses::all();
  } else {
    PA.preserve<GlobalsAA>();
    PA.preserve<DominatorTreeAnalysis>();
    PA.preserve<LazyValueAnalysis>();
  }

  // Keeping LVI alive is expensive, both because it uses a lot of memory, and
  // because invalidating values in LVI is expensive. While CVP does preserve
  // LVI, we know that passes after JumpThreading+CVP will not need the result
  // of this analysis, so we forcefully discard it early.
  PA.abandon<LazyValueAnalysis>();
  return PA;
}