aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp
blob: 42c183a6408e32da8d59d9fa98b9462566ccf5b0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
//===- LowerMatrixIntrinsics.cpp -  Lower matrix intrinsics -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Lower matrix intrinsics to vector operations.
//
// TODO:
//  * Improve fusion:
//   * Support more cases, e.g. multiply-add, multiply-sub, operands/results
//     transposed.
//   * Improve cost-modeling, e.g. choose different number of rows/columns
//     columns for tiles, consider cost of copies on alias.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MatrixBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/MatrixUtils.h"

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "lower-matrix-intrinsics"

static cl::opt<bool>
    FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
               cl::desc("Enable/disable fusing matrix instructions."));
// TODO: Allow and use non-square tiles.
static cl::opt<unsigned> TileSize(
    "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
    cl::desc(
        "Tile size for matrix instruction fusion using square-shaped tiles."));
static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
                                  cl::Hidden,
                                  cl::desc("Generate loop nest for tiling."));
static cl::opt<bool> ForceFusion(
    "force-fuse-matrix", cl::init(false), cl::Hidden,
    cl::desc("Force matrix instruction fusion even if not profitable."));
static cl::opt<bool> AllowContractEnabled(
    "matrix-allow-contract", cl::init(false), cl::Hidden,
    cl::desc("Allow the use of FMAs if available and profitable. This may "
             "result in different results, due to less rounding error."));

enum class MatrixLayoutTy { ColumnMajor, RowMajor };

static cl::opt<MatrixLayoutTy> MatrixLayout(
    "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
    cl::desc("Sets the default matrix layout"),
    cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
                          "Use column-major layout"),
               clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
                          "Use row-major layout")));

/// Helper function to either return Scope, if it is a subprogram or the
/// attached subprogram for a local scope.
static DISubprogram *getSubprogram(DIScope *Scope) {
  if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
    return Subprogram;
  return cast<DILocalScope>(Scope)->getSubprogram();
}

namespace {

// Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
// the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
// assuming \p Stride elements between start two consecutive vectors.
// \p Stride must be >= \p NumElements.
// For column-major matrixes, the function computes the address of a column
// vectors and \p NumElements must be set to the number of elements in a column
// (= number of rows of the matrix). For row-major matrixes, the function
// computes the address of a row vector and \p NumElements must be set to the
// number of elements in a column (= number of columns of the matrix).
//
// Consider a 4x4 matrix in column-mjaor layout like below
//
//      0       1      2      3
// 0   v_0_0  v_0_1  v_0_2  v_0_3
// 1   v_1_0  v_1_1  v_1_2  v_1_3
// 2   v_2_0  v_2_1  v_2_2  v_2_3
// 3   v_3_0  v_3_1  v_3_2  v_3_3

// To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
// we need a pointer to the first element of the submatrix as base pointer.
// Then we can use computeVectorAddr to compute the addresses for the columns
// of the sub-matrix.
//
// Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
//           -> just returns Base
// Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
//           -> returns Base + (1 * 4)
// Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
//           -> returns Base + (2 * 4)
//
// The graphic below illustrates the number of elements in a column (marked
// with |) and the number of skipped elements (marked with }).
//
//         v_0_0  v_0_1 {v_0_2 {v_0_3
//                Base   Col 1  Col 2
//                  |     |      |
//         v_1_0 |v_1_1 |v_1_2 |v_1_3
//         v_2_0 |v_2_1 |v_2_2 |v_2_3
//         v_3_0 {v_3_1 {v_3_2  v_3_3
//
Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
                         unsigned NumElements, Type *EltType,
                         IRBuilder<> &Builder) {

  assert((!isa<ConstantInt>(Stride) ||
          cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
         "Stride must be >= the number of elements in the result vector.");
  unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();

  // Compute the start of the vector with index VecIdx as VecIdx * Stride.
  Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");

  // Get pointer to the start of the selected vector. Skip GEP creation,
  // if we select vector 0.
  if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
    VecStart = BasePtr;
  else
    VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");

  // Cast elementwise vector start pointer to a pointer to a vector
  // (EltType x NumElements)*.
  auto *VecType = FixedVectorType::get(EltType, NumElements);
  Type *VecPtrType = PointerType::get(VecType, AS);
  return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
}

/// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
///
/// Currently, the lowering for each matrix intrinsic is done as follows:
/// 1. Propagate the shape information from intrinsics to connected
/// instructions.
/// 2. Lower instructions with shape information (assuming column-major layout).
///  The lowering works similarly using row-major layout.
///  2.1. Get column vectors for each argument. If we already lowered the
///       definition of an argument, use the produced column vectors directly.
///       If not, split the operand vector containing an embedded matrix into
///       a set of column vectors,
///  2.2. Lower the instruction in terms of column major operations, which
///       yields a set of column vectors containing result matrix. Note that we
///       lower all instructions that have shape information. Besides the
///       intrinsics, this includes stores for example.
///  2.3. Update uses of the lowered instruction. If we have shape information
///       for a user, there is nothing to do, as we will look up the result
///       column matrix when lowering the user. For other uses, we embed the
///       result matrix in a flat vector and update the use.
///  2.4. Cache the result column matrix for the instruction we lowered
/// 3. After we lowered all instructions in a function, remove the now
///    obsolete instructions.
///
class LowerMatrixIntrinsics {
  Function &Func;
  const DataLayout &DL;
  const TargetTransformInfo &TTI;
  AliasAnalysis *AA;
  DominatorTree *DT;
  LoopInfo *LI;
  OptimizationRemarkEmitter *ORE;

  /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
  struct OpInfoTy {
    /// Number of stores emitted to generate this matrix.
    unsigned NumStores = 0;
    /// Number of loads emitted to generate this matrix.
    unsigned NumLoads = 0;
    /// Number of compute operations emitted to generate this matrix.
    unsigned NumComputeOps = 0;
    /// Most of the time transposes can be fused with matrix multiplies or can
    /// be folded away via algebraic simplifications.  This is the number of
    /// transposes that we failed to make "free" via such optimizations.
    unsigned NumExposedTransposes = 0;

    OpInfoTy &operator+=(const OpInfoTy &RHS) {
      NumStores += RHS.NumStores;
      NumLoads += RHS.NumLoads;
      NumComputeOps += RHS.NumComputeOps;
      NumExposedTransposes += RHS.NumExposedTransposes;
      return *this;
    }
  };

  /// Wrapper class representing a matrix as a set of vectors, either in row or
  /// column major layout. All vectors must have the same vector type.
  class MatrixTy {
    SmallVector<Value *, 16> Vectors;

    OpInfoTy OpInfo;

    bool IsColumnMajor = true;

  public:
    MatrixTy()
        : Vectors(),
          IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
    MatrixTy(ArrayRef<Value *> Vectors)
        : Vectors(Vectors.begin(), Vectors.end()),
          IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
    MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
        : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {

      unsigned D = isColumnMajor() ? NumColumns : NumRows;
      for (unsigned J = 0; J < D; ++J)
        addVector(UndefValue::get(FixedVectorType::get(
            EltTy, isColumnMajor() ? NumRows : NumColumns)));
    }

    Value *getVector(unsigned i) const { return Vectors[i]; }
    Value *getColumn(unsigned i) const {
      assert(isColumnMajor() && "only supported for column-major matrixes");
      return Vectors[i];
    }
    Value *getRow(unsigned i) const {
      assert(!isColumnMajor() && "only supported for row-major matrixes");
      return Vectors[i];
    }

    void setVector(unsigned i, Value *V) { Vectors[i] = V; }

    Type *getElementType() const { return getVectorTy()->getElementType(); }

    unsigned getNumVectors() const {
      if (isColumnMajor())
        return getNumColumns();
      return getNumRows();
    }

    unsigned getNumColumns() const {
      if (isColumnMajor())
        return Vectors.size();
      else {
        assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
        return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
      }
    }
    unsigned getNumRows() const {
      if (isColumnMajor()) {
        assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
        return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
      } else
        return Vectors.size();
    }

    void addVector(Value *V) { Vectors.push_back(V); }
    VectorType *getColumnTy() {
      assert(isColumnMajor() && "only supported for column-major matrixes");
      return getVectorTy();
    }

    VectorType *getVectorTy() const {
      return cast<VectorType>(Vectors[0]->getType());
    }

    iterator_range<SmallVector<Value *, 8>::iterator> columns() {
      assert(isColumnMajor() &&
             "columns() only supported for column-major matrixes");
      return make_range(Vectors.begin(), Vectors.end());
    }

    iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
      return make_range(Vectors.begin(), Vectors.end());
    }

    /// Embed the vectors of the matrix into a flat vector by concatenating
    /// them.
    Value *embedInVector(IRBuilder<> &Builder) const {
      return Vectors.size() == 1 ? Vectors[0]
                                 : concatenateVectors(Builder, Vectors);
    }

    MatrixTy &addNumLoads(unsigned N) {
      OpInfo.NumLoads += N;
      return *this;
    }

    void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }

    MatrixTy &addNumStores(unsigned N) {
      OpInfo.NumStores += N;
      return *this;
    }

    MatrixTy &addNumExposedTransposes(unsigned N) {
      OpInfo.NumExposedTransposes += N;
      return *this;
    }

    MatrixTy &addNumComputeOps(unsigned N) {
      OpInfo.NumComputeOps += N;
      return *this;
    }

    unsigned getNumStores() const { return OpInfo.NumStores; }
    unsigned getNumLoads() const { return OpInfo.NumLoads; }
    unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }

    const OpInfoTy &getOpInfo() const { return OpInfo; }

    bool isColumnMajor() const { return IsColumnMajor; }

    unsigned getStride() const {
      if (isColumnMajor())
        return getNumRows();
      return getNumColumns();
    }

    /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
    /// matrix is column-major, the result vector is extracted from a column
    /// vector, otherwise from a row vector.
    Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
                         IRBuilder<> &Builder) const {
      Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
      return Builder.CreateShuffleVector(
          Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
          "block");
    }
  };

  struct ShapeInfo {
    unsigned NumRows;
    unsigned NumColumns;

    bool IsColumnMajor;

    ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
        : NumRows(NumRows), NumColumns(NumColumns),
          IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}

    ShapeInfo(Value *NumRows, Value *NumColumns)
        : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
                    cast<ConstantInt>(NumColumns)->getZExtValue()) {}

    bool operator==(const ShapeInfo &other) {
      return NumRows == other.NumRows && NumColumns == other.NumColumns;
    }
    bool operator!=(const ShapeInfo &other) { return !(*this == other); }

    /// Returns true if shape-information is defined, meaning both dimensions
    /// are != 0.
    operator bool() const {
      assert(NumRows == 0 || NumColumns != 0);
      return NumRows != 0;
    }

    unsigned getStride() const {
      if (IsColumnMajor)
        return NumRows;
      return NumColumns;
    }

    unsigned getNumVectors() const {
      if (IsColumnMajor)
        return NumColumns;
      return NumRows;
    }
  };

  /// Maps instructions to their shape information. The shape information
  /// describes the shape to be used while lowering. This matches the shape of
  /// the result value of the instruction, with the only exceptions being store
  /// instructions and the matrix_column_major_store intrinsics. For those, the
  /// shape information indicates that those instructions should be lowered
  /// using shape information as well.  A ValueMap is used so that when
  /// sub-passes like optimizeTransposes performs RAUW the map stays
  /// up-to-date.
  ValueMap<Value *, ShapeInfo> ShapeMap;

  /// List of instructions to remove. While lowering, we are not replacing all
  /// users of a lowered instruction, if shape information is available and
  /// those need to be removed after we finished lowering.
  SmallVector<Instruction *, 16> ToRemove;

  /// Map from instructions to their produced column matrix.
  MapVector<Value *, MatrixTy> Inst2ColumnMatrix;

private:
  static FastMathFlags getFastMathFlags(Instruction *Inst) {
    FastMathFlags FMF;

    if (isa<FPMathOperator>(*Inst))
      FMF = Inst->getFastMathFlags();

    FMF.setAllowContract(AllowContractEnabled || FMF.allowContract());

    return FMF;
  }

public:
  LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
                        AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
                        OptimizationRemarkEmitter *ORE)
      : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
        LI(LI), ORE(ORE) {}

  unsigned getNumOps(Type *VT) {
    assert(isa<VectorType>(VT) && "Expected vector type");
    return getNumOps(VT->getScalarType(),
                     cast<FixedVectorType>(VT)->getNumElements());
  }

  /// Is this the minimal version executed in the backend pipelines.
  bool isMinimal() const {
    return !DT;
  }

  /// Return the estimated number of vector ops required for an operation on
  /// \p VT * N.
  unsigned getNumOps(Type *ST, unsigned N) {
    return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
                     double(TTI.getRegisterBitWidth(
                                   TargetTransformInfo::RGK_FixedWidthVector)
                                .getFixedSize()));
  }

  /// Return the set of vectors that a matrix value is lowered to.
  ///
  /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
  /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
  /// into vectors.
  MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
                     IRBuilder<> &Builder) {
    VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
    assert(VType && "MatrixVal must be a vector type");
    assert(cast<FixedVectorType>(VType)->getNumElements() ==
               SI.NumRows * SI.NumColumns &&
           "The vector size must match the number of matrix elements");

    // Check if we lowered MatrixVal using shape information. In that case,
    // return the existing matrix, if it matches the requested shape
    // information. If there is a mis-match, embed the result in a flat
    // vector and split it later.
    auto Found = Inst2ColumnMatrix.find(MatrixVal);
    if (Found != Inst2ColumnMatrix.end()) {
      MatrixTy &M = Found->second;
      // Return the found matrix, if its shape matches the requested shape
      // information
      if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
        return M;

      MatrixVal = M.embedInVector(Builder);
    }

    // Otherwise split MatrixVal.
    SmallVector<Value *, 16> SplitVecs;
    for (unsigned MaskStart = 0;
         MaskStart < cast<FixedVectorType>(VType)->getNumElements();
         MaskStart += SI.getStride()) {
      Value *V = Builder.CreateShuffleVector(
          MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
          "split");
      SplitVecs.push_back(V);
    }

    return {SplitVecs};
  }

  /// If \p V already has a known shape return false.  Otherwise set the shape
  /// for instructions that support it.
  bool setShapeInfo(Value *V, ShapeInfo Shape) {
    assert(Shape && "Shape not set");
    if (isa<UndefValue>(V) || !supportsShapeInfo(V))
      return false;

    auto SIter = ShapeMap.find(V);
    if (SIter != ShapeMap.end()) {
      LLVM_DEBUG(dbgs() << "  not overriding existing shape: "
                        << SIter->second.NumRows << " "
                        << SIter->second.NumColumns << " for " << *V << "\n");
      return false;
    }

    ShapeMap.insert({V, Shape});
    LLVM_DEBUG(dbgs() << "  " << Shape.NumRows << " x " << Shape.NumColumns
                      << " for " << *V << "\n");
    return true;
  }

  bool isUniformShape(Value *V) {
    Instruction *I = dyn_cast<Instruction>(V);
    if (!I)
      return true;

    switch (I->getOpcode()) {
    case Instruction::FAdd:
    case Instruction::FSub:
    case Instruction::FMul: // Scalar multiply.
    case Instruction::FNeg:
    case Instruction::Add:
    case Instruction::Mul:
    case Instruction::Sub:
      return true;
    default:
      return false;
    }
  }

  /// Returns true if shape information can be used for \p V. The supported
  /// instructions must match the instructions that can be lowered by this pass.
  bool supportsShapeInfo(Value *V) {
    Instruction *Inst = dyn_cast<Instruction>(V);
    if (!Inst)
      return false;

    IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
    if (II)
      switch (II->getIntrinsicID()) {
      case Intrinsic::matrix_multiply:
      case Intrinsic::matrix_transpose:
      case Intrinsic::matrix_column_major_load:
      case Intrinsic::matrix_column_major_store:
        return true;
      default:
        return false;
      }
    return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
  }

  /// Propagate the shape information of instructions to their users.
  /// The work list contains instructions for which we can compute the shape,
  /// either based on the information provided by matrix intrinsics or known
  /// shapes of operands.
  SmallVector<Instruction *, 32>
  propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
    SmallVector<Instruction *, 32> NewWorkList;
    // Pop an element for which we guaranteed to have at least one of the
    // operand shapes.  Add the shape for this and then add users to the work
    // list.
    LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
    while (!WorkList.empty()) {
      Instruction *Inst = WorkList.pop_back_val();

      // New entry, set the value and insert operands
      bool Propagate = false;

      Value *MatrixA;
      Value *MatrixB;
      Value *M;
      Value *N;
      Value *K;
      if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
                          m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
                          m_Value(N), m_Value(K)))) {
        Propagate = setShapeInfo(Inst, {M, K});
      } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
                                 m_Value(MatrixA), m_Value(M), m_Value(N)))) {
        // Flip dimensions.
        Propagate = setShapeInfo(Inst, {N, M});
      } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
                                 m_Value(MatrixA), m_Value(), m_Value(),
                                 m_Value(), m_Value(M), m_Value(N)))) {
        Propagate = setShapeInfo(Inst, {N, M});
      } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
                                 m_Value(), m_Value(), m_Value(), m_Value(M),
                                 m_Value(N)))) {
        Propagate = setShapeInfo(Inst, {M, N});
      } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
        auto OpShape = ShapeMap.find(MatrixA);
        if (OpShape != ShapeMap.end())
          setShapeInfo(Inst, OpShape->second);
        continue;
      } else if (isUniformShape(Inst)) {
        // Find the first operand that has a known shape and use that.
        for (auto &Op : Inst->operands()) {
          auto OpShape = ShapeMap.find(Op.get());
          if (OpShape != ShapeMap.end()) {
            Propagate |= setShapeInfo(Inst, OpShape->second);
            break;
          }
        }
      }

      if (Propagate) {
        NewWorkList.push_back(Inst);
        for (auto *User : Inst->users())
          if (ShapeMap.count(User) == 0)
            WorkList.push_back(cast<Instruction>(User));
      }
    }

    return NewWorkList;
  }

  /// Propagate the shape to operands of instructions with shape information.
  /// \p Worklist contains the instruction for which we already know the shape.
  SmallVector<Instruction *, 32>
  propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
    SmallVector<Instruction *, 32> NewWorkList;

    auto pushInstruction = [](Value *V,
                              SmallVectorImpl<Instruction *> &WorkList) {
      Instruction *I = dyn_cast<Instruction>(V);
      if (I)
        WorkList.push_back(I);
    };
    // Pop an element with known shape.  Traverse the operands, if their shape
    // derives from the result shape and is unknown, add it and add them to the
    // worklist.
    LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
    while (!WorkList.empty()) {
      Value *V = WorkList.pop_back_val();

      size_t BeforeProcessingV = WorkList.size();
      if (!isa<Instruction>(V))
        continue;

      Value *MatrixA;
      Value *MatrixB;
      Value *M;
      Value *N;
      Value *K;
      if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
                       m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
                       m_Value(N), m_Value(K)))) {
        if (setShapeInfo(MatrixA, {M, N}))
          pushInstruction(MatrixA, WorkList);

        if (setShapeInfo(MatrixB, {N, K}))
          pushInstruction(MatrixB, WorkList);

      } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
                              m_Value(MatrixA), m_Value(M), m_Value(N)))) {
        // Flip dimensions.
        if (setShapeInfo(MatrixA, {M, N}))
          pushInstruction(MatrixA, WorkList);
      } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
                              m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
                              m_Value(M), m_Value(N)))) {
        if (setShapeInfo(MatrixA, {M, N})) {
          pushInstruction(MatrixA, WorkList);
        }
      } else if (isa<LoadInst>(V) ||
                 match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
        // Nothing to do, no matrix input.
      } else if (isa<StoreInst>(V)) {
        // Nothing to do.  We forward-propagated to this so we would just
        // backward propagate to an instruction with an already known shape.
      } else if (isUniformShape(V)) {
        // Propagate to all operands.
        ShapeInfo Shape = ShapeMap[V];
        for (Use &U : cast<Instruction>(V)->operands()) {
          if (setShapeInfo(U.get(), Shape))
            pushInstruction(U.get(), WorkList);
        }
      }
      // After we discovered new shape info for new instructions in the
      // worklist, we use their users as seeds for the next round of forward
      // propagation.
      for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
        for (User *U : WorkList[I]->users())
          if (isa<Instruction>(U) && V != U)
            NewWorkList.push_back(cast<Instruction>(U));
    }
    return NewWorkList;
  }

  /// Try moving transposes in order to fold them away or into multiplies.
  void optimizeTransposes() {
    auto ReplaceAllUsesWith = [this](Instruction &Old, Value *New) {
      // We need to remove Old from the ShapeMap otherwise RAUW will replace it
      // with New. We should only add New it it supportsShapeInfo so we insert
      // it conditionally instead.
      auto S = ShapeMap.find(&Old);
      if (S != ShapeMap.end()) {
        ShapeMap.erase(S);
        if (supportsShapeInfo(New))
          ShapeMap.insert({New, S->second});
      }
      Old.replaceAllUsesWith(New);
    };

    // First sink all transposes inside matmuls, hoping that we end up with NN,
    // NT or TN variants.
    for (BasicBlock &BB : reverse(Func)) {
      for (auto II = BB.rbegin(); II != BB.rend();) {
        Instruction &I = *II;
        // We may remove II.  By default continue on the next/prev instruction.
        ++II;
        // If we were to erase II, move again.
        auto EraseFromParent = [&II](Value *V) {
          auto *Inst = cast<Instruction>(V);
          if (Inst->use_empty()) {
            if (Inst == &*II) {
              ++II;
            }
            Inst->eraseFromParent();
          }
        };

        // If we're creating a new instruction, continue from there.
        Instruction *NewInst = nullptr;

        IRBuilder<> IB(&I);
        MatrixBuilder<IRBuilder<>> Builder(IB);

        Value *TA, *TAMA, *TAMB;
        ConstantInt *R, *K, *C;
        if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) {

          // Transpose of a transpose is a nop
          Value *TATA;
          if (match(TA,
                    m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) {
            ReplaceAllUsesWith(I, TATA);
            EraseFromParent(&I);
            EraseFromParent(TA);
          }

          // (A * B)^t -> B^t * A^t
          // RxK KxC      CxK   KxR
          else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>(
                                 m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
                                 m_ConstantInt(K), m_ConstantInt(C)))) {
            Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(),
                                                      C->getZExtValue(),
                                                      TAMB->getName() + "_t");
            // We are being run after shape prop, add shape for newly created
            // instructions so that we lower them later.
            setShapeInfo(T0, {C, K});
            Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(),
                                                      K->getZExtValue(),
                                                      TAMA->getName() + "_t");
            setShapeInfo(T1, {K, R});
            NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(),
                                                   K->getZExtValue(),
                                                   R->getZExtValue(), "mmul");
            ReplaceAllUsesWith(I, NewInst);
            EraseFromParent(&I);
            EraseFromParent(TA);
          }
        }

        // If we replaced I with a new instruction, continue from there.
        if (NewInst)
          II = std::next(BasicBlock::reverse_iterator(NewInst));
      }
    }

    // If we have a TT matmul, lift the transpose.  We may be able to fold into
    // consuming multiply.
    for (BasicBlock &BB : Func) {
      for (BasicBlock::iterator II = BB.begin(); II != BB.end();) {
        Instruction *I = &*II;
        // We may remove I.
        ++II;
        Value *A, *B, *AT, *BT;
        ConstantInt *R, *K, *C;
        // A^t * B ^t -> (B * A)^t
        if (match(&*I, m_Intrinsic<Intrinsic::matrix_multiply>(
                           m_Value(A), m_Value(B), m_ConstantInt(R),
                           m_ConstantInt(K), m_ConstantInt(C))) &&
            match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) &&
            match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) {
          IRBuilder<> IB(&*I);
          MatrixBuilder<IRBuilder<>> Builder(IB);
          Value *M = Builder.CreateMatrixMultiply(
              BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
          setShapeInfo(M, {C, R});
          Instruction *NewInst = Builder.CreateMatrixTranspose(
              M, C->getZExtValue(), R->getZExtValue());
          ReplaceAllUsesWith(*I, NewInst);
          if (I->use_empty())
            I->eraseFromParent();
          if (A->use_empty())
            cast<Instruction>(A)->eraseFromParent();
          if (A != B && B->use_empty())
            cast<Instruction>(B)->eraseFromParent();
        }
      }
    }
  }

  bool Visit() {
    SmallVector<Instruction *, 32> WorkList;

    // Initially only the shape of matrix intrinsics is known.
    // Initialize the work list with ops carrying shape information.
    for (BasicBlock &BB : Func)
      for (Instruction &Inst : BB) {
        IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
        if (!II)
          continue;

        switch (II->getIntrinsicID()) {
        case Intrinsic::matrix_multiply:
        case Intrinsic::matrix_transpose:
        case Intrinsic::matrix_column_major_load:
        case Intrinsic::matrix_column_major_store:
          WorkList.push_back(&Inst);
          break;
        default:
          break;
        }
      }

    // Avoid unnecessary work if there are no matrix intrinsics in the function.
    if (WorkList.empty())
      return false;

    // Propagate shapes until nothing changes any longer.
    while (!WorkList.empty()) {
      WorkList = propagateShapeForward(WorkList);
      WorkList = propagateShapeBackward(WorkList);
    }

    if (!isMinimal()) {
      optimizeTransposes();
      LLVM_DEBUG({
        dbgs() << "Dump after matrix transpose optimization:\n";
        Func.dump();
      });
    }

    bool Changed = false;
    SmallVector<CallInst *, 16> MaybeFusableInsts;
    SmallVector<Instruction *, 16> MatrixInsts;

    // First, collect all instructions with shape information and candidates for
    // fusion (currently only matrix multiplies).
    ReversePostOrderTraversal<Function *> RPOT(&Func);
    for (auto *BB : RPOT)
      for (Instruction &I : *BB) {
        if (ShapeMap.find(&I) == ShapeMap.end())
          continue;
        if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
          MaybeFusableInsts.push_back(cast<CallInst>(&I));
        MatrixInsts.push_back(&I);
      }

    // Second, try to fuse candidates.
    SmallPtrSet<Instruction *, 16> FusedInsts;
    for (CallInst *CI : MaybeFusableInsts)
      LowerMatrixMultiplyFused(CI, FusedInsts);
    Changed = !FusedInsts.empty();

    // Third, lower remaining instructions with shape information.
    for (Instruction *Inst : MatrixInsts) {
      if (FusedInsts.count(Inst))
        continue;

      IRBuilder<> Builder(Inst);

      if (CallInst *CInst = dyn_cast<CallInst>(Inst))
        Changed |= VisitCallInst(CInst);

      Value *Op1;
      Value *Op2;
      if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
        Changed |= VisitBinaryOperator(BinOp);
      if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
        Changed |= VisitUnaryOperator(UnOp);
      if (match(Inst, m_Load(m_Value(Op1))))
        Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
      else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
        Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
    }

    if (ORE) {
      RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
      RemarkGen.emitRemarks();
    }

    // Delete the instructions backwards, as it has a reduced likelihood of
    // having to update as many def-use and use-def chains.
    //
    // Because we add to ToRemove during fusion we can't guarantee that defs
    // are before uses.  Change uses to undef temporarily as these should get
    // removed as well.
    //
    // For verification, we keep track of where we changed uses to undefs in
    // UndefedInsts and then check that we in fact remove them.
    SmallSet<Instruction *, 16> UndefedInsts;
    for (auto *Inst : reverse(ToRemove)) {
      for (auto I = Inst->use_begin(), E = Inst->use_end(); I != E;) {
        Use &U = *I++;
        if (auto *Undefed = dyn_cast<Instruction>(U.getUser()))
          UndefedInsts.insert(Undefed);
        U.set(UndefValue::get(Inst->getType()));
      }
      Inst->eraseFromParent();
      UndefedInsts.erase(Inst);
    }
    if (!UndefedInsts.empty()) {
      // If we didn't remove all undefed instructions, it's a hard error.
      dbgs() << "Undefed but present instructions:\n";
      for (auto *I : UndefedInsts)
        dbgs() << *I << "\n";
      llvm_unreachable("Undefed but instruction not removed");
    }

    return Changed;
  }

  /// Turns \p BasePtr into an elementwise pointer to \p EltType.
  Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
    unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
    Type *EltPtrType = PointerType::get(EltType, AS);
    return Builder.CreatePointerCast(BasePtr, EltPtrType);
  }

  /// Replace intrinsic calls
  bool VisitCallInst(CallInst *Inst) {
    if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
      return false;

    switch (Inst->getCalledFunction()->getIntrinsicID()) {
    case Intrinsic::matrix_multiply:
      LowerMultiply(Inst);
      break;
    case Intrinsic::matrix_transpose:
      LowerTranspose(Inst);
      break;
    case Intrinsic::matrix_column_major_load:
      LowerColumnMajorLoad(Inst);
      break;
    case Intrinsic::matrix_column_major_store:
      LowerColumnMajorStore(Inst);
      break;
    default:
      return false;
    }
    return true;
  }

  /// Compute the alignment for a column/row \p Idx with \p Stride between them.
  /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
  /// ConstantInt, reduce the initial alignment based on the byte offset. For
  /// non-ConstantInt strides, return the common alignment of the initial
  /// alignment and the element size in bytes.
  Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
                         MaybeAlign A) const {
    Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
    if (Idx == 0)
      return InitialAlign;

    TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
    if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
      uint64_t StrideInBytes =
          ConstStride->getZExtValue() * ElementSizeInBits / 8;
      return commonAlignment(InitialAlign, Idx * StrideInBytes);
    }
    return commonAlignment(InitialAlign, ElementSizeInBits / 8);
  }

  /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
  /// vectors.
  MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
                      bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
    auto *VType = cast<VectorType>(Ty);
    Type *EltTy = VType->getElementType();
    Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
    Value *EltPtr = createElementPtr(Ptr, EltTy, Builder);
    MatrixTy Result;
    for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
      Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride,
                                     Shape.getStride(), EltTy, Builder);
      Value *Vector = Builder.CreateAlignedLoad(
          VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
          IsVolatile, "col.load");

      Result.addVector(Vector);
    }
    return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
                              Result.getNumVectors());
  }

  /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
  /// starting at \p MatrixPtr[I][J].
  MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
                      ShapeInfo MatrixShape, Value *I, Value *J,
                      ShapeInfo ResultShape, Type *EltTy,
                      IRBuilder<> &Builder) {

    Value *Offset = Builder.CreateAdd(
        Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);

    unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
    Value *EltPtr =
        Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
    Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
    auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
                                                   ResultShape.NumColumns);
    Type *TilePtrTy = PointerType::get(TileTy, AS);
    Value *TilePtr =
        Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");

    return loadMatrix(TileTy, TilePtr, Align,
                      Builder.getInt64(MatrixShape.getStride()), IsVolatile,
                      ResultShape, Builder);
  }

  /// Lower a load instruction with shape information.
  void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
                 bool IsVolatile, ShapeInfo Shape) {
    IRBuilder<> Builder(Inst);
    finalizeLowering(Inst,
                     loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
                                Shape, Builder),
                     Builder);
  }

  /// Lowers llvm.matrix.column.major.load.
  ///
  /// The intrinsic loads a matrix from memory using a stride between columns.
  void LowerColumnMajorLoad(CallInst *Inst) {
    assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
           "Intrinsic only supports column-major layout!");
    Value *Ptr = Inst->getArgOperand(0);
    Value *Stride = Inst->getArgOperand(1);
    LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
              cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
              {Inst->getArgOperand(3), Inst->getArgOperand(4)});
  }

  /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
  /// MatrixPtr[I][J].
  void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
                   MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
                   Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
    Value *Offset = Builder.CreateAdd(
        Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);

    unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
    Value *EltPtr =
        Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
    Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
    auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
                                                   StoreVal.getNumColumns());
    Type *TilePtrTy = PointerType::get(TileTy, AS);
    Value *TilePtr =
        Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");

    storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
                Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
  }

  /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
  /// vectors.
  MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
                       MaybeAlign MAlign, Value *Stride, bool IsVolatile,
                       IRBuilder<> &Builder) {
    auto VType = cast<VectorType>(Ty);
    Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
    for (auto Vec : enumerate(StoreVal.vectors())) {
      Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()),
                                     Stride, StoreVal.getStride(),
                                     VType->getElementType(), Builder);
      Builder.CreateAlignedStore(Vec.value(), GEP,
                                 getAlignForIndex(Vec.index(), Stride,
                                                  VType->getElementType(),
                                                  MAlign),
                                 IsVolatile);
    }
    return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
                                   StoreVal.getNumVectors());
  }

  /// Lower a store instruction with shape information.
  void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
                  Value *Stride, bool IsVolatile, ShapeInfo Shape) {
    IRBuilder<> Builder(Inst);
    auto StoreVal = getMatrix(Matrix, Shape, Builder);
    finalizeLowering(Inst,
                     storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
                                 IsVolatile, Builder),
                     Builder);
  }

  /// Lowers llvm.matrix.column.major.store.
  ///
  /// The intrinsic store a matrix back memory using a stride between columns.
  void LowerColumnMajorStore(CallInst *Inst) {
    assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
           "Intrinsic only supports column-major layout!");
    Value *Matrix = Inst->getArgOperand(0);
    Value *Ptr = Inst->getArgOperand(1);
    Value *Stride = Inst->getArgOperand(2);
    LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
               cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
               {Inst->getArgOperand(4), Inst->getArgOperand(5)});
  }

  // Set elements I..I+NumElts-1 to Block
  Value *insertVector(Value *Col, unsigned I, Value *Block,
                      IRBuilder<> &Builder) {

    // First, bring Block to the same size as Col
    unsigned BlockNumElts =
        cast<FixedVectorType>(Block->getType())->getNumElements();
    unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
    assert(NumElts >= BlockNumElts && "Too few elements for current block");

    Block = Builder.CreateShuffleVector(
        Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));

    // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
    // 8, 4, 5, 6
    SmallVector<int, 16> Mask;
    unsigned i;
    for (i = 0; i < I; i++)
      Mask.push_back(i);

    unsigned VecNumElts =
        cast<FixedVectorType>(Col->getType())->getNumElements();
    for (; i < I + BlockNumElts; i++)
      Mask.push_back(i - I + VecNumElts);

    for (; i < VecNumElts; i++)
      Mask.push_back(i);

    return Builder.CreateShuffleVector(Col, Block, Mask);
  }

  Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
                      IRBuilder<> &Builder, bool AllowContraction,
                      unsigned &NumComputeOps) {
    NumComputeOps += getNumOps(A->getType());
    if (!Sum)
      return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);

    if (UseFPOp) {
      if (AllowContraction) {
        // Use fmuladd for floating point operations and let the backend decide
        // if that's profitable.
        Function *FMulAdd = Intrinsic::getDeclaration(
            Func.getParent(), Intrinsic::fmuladd, A->getType());
        return Builder.CreateCall(FMulAdd, {A, B, Sum});
      }
      NumComputeOps += getNumOps(A->getType());
      Value *Mul = Builder.CreateFMul(A, B);
      return Builder.CreateFAdd(Sum, Mul);
    }

    NumComputeOps += getNumOps(A->getType());
    Value *Mul = Builder.CreateMul(A, B);
    return Builder.CreateAdd(Sum, Mul);
  }

  /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
  /// users with shape information, there's nothing to do: they will use the
  /// cached value when they are lowered. For other users, \p Matrix is
  /// flattened and the uses are updated to use it. Also marks \p Inst for
  /// deletion.
  void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
                        IRBuilder<> &Builder) {
    auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
    (void)inserted;
    assert(inserted.second && "multiple matrix lowering mapping");

    ToRemove.push_back(Inst);
    Value *Flattened = nullptr;
    for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
      if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
        if (!Flattened)
          Flattened = Matrix.embedInVector(Builder);
        U.set(Flattened);
      }
    }
  }

  /// Compute \p Result += \p A * \p B for input matrices with left-associating
  /// addition.
  ///
  /// We can fold a transpose into the operand that is used to extract scalars.
  /// This is the first operands with row-major and the second with
  /// column-major.  If \p IsScalarMatrixTransposed we assume the appropriate
  /// operand is transposed.
  void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
                          const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
                          bool IsScalarMatrixTransposed, FastMathFlags FMF) {
    const unsigned VF = std::max<unsigned>(
        TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
                .getFixedSize() /
            Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
        1U);
    unsigned R = Result.getNumRows();
    unsigned C = Result.getNumColumns();
    unsigned M = A.getNumColumns();

    bool IsFP = Result.getElementType()->isFloatingPointTy();
    assert(A.isColumnMajor() == B.isColumnMajor() &&
           Result.isColumnMajor() == A.isColumnMajor() &&
           "operands must agree on matrix layout");
    unsigned NumComputeOps = 0;

    Builder.setFastMathFlags(FMF);

    if (A.isColumnMajor()) {
      // Multiply columns from the first operand with scalars from the second
      // operand. Then move along the K axes and accumulate the columns.  With
      // this the adds can be vectorized without reassociation.
      for (unsigned J = 0; J < C; ++J) {
        unsigned BlockSize = VF;
        // If Result is zero, we don't need to accumulate in the K==0 iteration.
        bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));

        for (unsigned I = 0; I < R; I += BlockSize) {
          // Gradually lower the vectorization factor to cover the remainder.
          while (I + BlockSize > R)
            BlockSize /= 2;

          Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
                               : nullptr;
          for (unsigned K = 0; K < M; ++K) {
            Value *L = A.extractVector(I, K, BlockSize, Builder);
            Value *RH = Builder.CreateExtractElement(
                B.getColumn(IsScalarMatrixTransposed ? K : J),
                IsScalarMatrixTransposed ? J : K);
            Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
            Sum =
                createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
                             IsFP, Builder, FMF.allowContract(), NumComputeOps);
          }
          Result.setVector(J,
                           insertVector(Result.getVector(J), I, Sum, Builder));
        }
      }
    } else {
      // Multiply rows from the second operand with scalars from the first
      // operand. Then move along the K axes and accumulate the rows.  With this
      // the adds can be vectorized without reassociation.
      for (unsigned I = 0; I < R; ++I) {
        unsigned BlockSize = VF;
        bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
        for (unsigned J = 0; J < C; J += BlockSize) {
          // Gradually lower the vectorization factor to cover the remainder.
          while (J + BlockSize > C)
            BlockSize /= 2;

          Value *Sum = nullptr;
          for (unsigned K = 0; K < M; ++K) {
            Value *R = B.extractVector(K, J, BlockSize, Builder);
            Value *LH = Builder.CreateExtractElement(
                A.getVector(IsScalarMatrixTransposed ? K : I),
                IsScalarMatrixTransposed ? I : K);
            Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
            Sum =
                createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
                             IsFP, Builder, FMF.allowContract(), NumComputeOps);
          }
          Result.setVector(I,
                           insertVector(Result.getVector(I), J, Sum, Builder));
        }
      }
    }
    Result.addNumComputeOps(NumComputeOps);
  }

  /// Ensure that the memory in \p Load does not alias \p Store by potentially
  /// copying it to a new location.  This new or otherwise the original location
  /// is returned.
  Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
                               CallInst *MatMul) {
    MemoryLocation StoreLoc = MemoryLocation::get(Store);
    MemoryLocation LoadLoc = MemoryLocation::get(Load);

    // If we can statically determine noalias we're good.
    if (AA->isNoAlias(LoadLoc, StoreLoc))
      return Load->getPointerOperand();

    // Create code to check if the memory locations of the Load and Store
    // overlap and if they do, copy Load's operand to a new buffer.

    // First, create  new blocks for 2n part of the check and the copy.
    BasicBlock *Check0 = MatMul->getParent();
    // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
    // DT. Manually collect dominator tree updates, to avoid unnecessary work,
    // as we adjust Check0 and Check1's branches.
    SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
    for (BasicBlock *Succ : successors(Check0))
      DTUpdates.push_back({DT->Delete, Check0, Succ});

    BasicBlock *Check1 =
        SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
                   nullptr, "alias_cont");
    BasicBlock *Copy =
        SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
                   nullptr, "copy");
    BasicBlock *Fusion =
        SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
                   nullptr, "no_alias");

    // Check if the loaded memory location begins before the end of the store
    // location. If the condition holds, they might overlap, otherwise they are
    // guaranteed to not overlap.
    IRBuilder<> Builder(MatMul);
    Check0->getTerminator()->eraseFromParent();
    Builder.SetInsertPoint(Check0);
    Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
    Value *StoreBegin = Builder.CreatePtrToInt(
        const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
    Value *StoreEnd = Builder.CreateAdd(
        StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
        "store.end", true, true);
    Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
                                              IntPtrTy, "load.begin");
    Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
                         Fusion);

    // Check if the store begins before the end of the load location. If the
    // condition holds, they alias, otherwise they are guaranteed to not
    // overlap.
    Check1->getTerminator()->eraseFromParent();
    Builder.SetInsertPoint(Check1, Check1->begin());
    Value *LoadEnd = Builder.CreateAdd(
        LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
        "load.end", true, true);
    Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
                         Fusion);

    // Copy load operand to new alloca.
    Builder.SetInsertPoint(Copy, Copy->begin());
    AllocaInst *NewLd =
        Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace());
    Builder.CreateMemCpy(NewLd, NewLd->getAlign(),
                         Load->getPointerOperand(), Load->getAlign(),
                         LoadLoc.Size.getValue());
    Builder.SetInsertPoint(Fusion, Fusion->begin());
    PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
    PHI->addIncoming(Load->getPointerOperand(), Check0);
    PHI->addIncoming(Load->getPointerOperand(), Check1);
    PHI->addIncoming(NewLd, Copy);

    // Adjust DT.
    DTUpdates.push_back({DT->Insert, Check0, Check1});
    DTUpdates.push_back({DT->Insert, Check0, Fusion});
    DTUpdates.push_back({DT->Insert, Check1, Copy});
    DTUpdates.push_back({DT->Insert, Check1, Fusion});
    DT->applyUpdates(DTUpdates);
    return PHI;
  }

  bool isFusionProfitable(CallInst *MatMul) {
    if (ForceFusion)
      return true;

    ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
    ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));

    const unsigned R = LShape.NumRows;
    const unsigned C = RShape.NumColumns;
    const unsigned M = LShape.NumColumns;
    auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();

    const unsigned VF = std::max<unsigned>(
        TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
                .getFixedSize() /
            EltType->getPrimitiveSizeInBits().getFixedSize(),
        1U);

    // Cost model for tiling
    //
    // For tiling to be beneficial, we need reuse either along the R or
    // the C axis.  We vectorize along the R axis so that means at least
    // 3 elements.
    // TODO: Also consider cost of copying if operands alias.
    if (R <= VF && C == 1)
      return false;
    // Then we need enough elements to exceed the number of vector
    // registers we have.  Note that this is an oversimplification since
    // fusing also takes some extra loads which may exceed the number of
    // reloads necessary.
    unsigned Op0Regs = (R + VF - 1) / VF * M;
    unsigned Op1Regs = (M + VF - 1) / VF * C;
    return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true);
  }

  MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
    MatrixTy Res;
    auto *ColumType = FixedVectorType::get(EltType, R);
    for (unsigned I = 0; I < C; ++I)
      Res.addVector(ConstantAggregateZero::get(ColumType));
    return Res;
  }

  void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
                        Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
    auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();

    // Create the main tiling loop nest.
    TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
    DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
    Instruction *InsertI = cast<Instruction>(MatMul);
    BasicBlock *Start = InsertI->getParent();
    BasicBlock *End =
        SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
    IRBuilder<> Builder(MatMul);
    BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);

    Type *TileVecTy =
        FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
    MatrixTy TileResult;
    // Insert in the inner loop header.
    Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator());
    // Create PHI nodes for the result columns to accumulate across iterations.
    SmallVector<PHINode *, 4> ColumnPhis;
    for (unsigned I = 0; I < TileSize; I++) {
      auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
      Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
                       TI.RowLoopHeader->getSingleSuccessor());
      TileResult.addVector(Phi);
      ColumnPhis.push_back(Phi);
    }

    // Insert in the inner loop body, which computes
    //   Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
    Builder.SetInsertPoint(InnerBody->getTerminator());
    // Load tiles of the operands.
    MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK,
                            {TileSize, TileSize}, EltType, Builder);
    MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol,
                            {TileSize, TileSize}, EltType, Builder);
    emitMatrixMultiply(TileResult, A, B, Builder, true, false,
                       getFastMathFlags(MatMul));
    // Store result after the inner loop is done.
    Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator());
    storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
                Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
                TI.CurrentRow, TI.CurrentCol, EltType, Builder);

    for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
      ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch);

    // Force unrolling of a few iterations of the inner loop, to make sure there
    // is enough work per iteration.
    // FIXME: The unroller should make this decision directly instead, but
    // currently the cost-model is not up to the task.
    unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
    addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader),
                            "llvm.loop.unroll.count", InnerLoopUnrollCount);
  }

  void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
                      StoreInst *Store,
                      SmallPtrSetImpl<Instruction *> &FusedInsts) {
    assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
           "Tiling only supported for column-major matrixes at the moment!");
    if (!isFusionProfitable(MatMul))
      return;

    ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
    ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));

    const unsigned R = LShape.NumRows;
    const unsigned C = RShape.NumColumns;
    const unsigned M = LShape.NumColumns;
    auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();

    Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
    Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
    Value *CPtr = Store->getPointerOperand();

    if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
      createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
    else {
      IRBuilder<> Builder(Store);
      for (unsigned J = 0; J < C; J += TileSize)
        for (unsigned I = 0; I < R; I += TileSize) {
          const unsigned TileR = std::min(R - I, unsigned(TileSize));
          const unsigned TileC = std::min(C - J, unsigned(TileSize));
          MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);

          for (unsigned K = 0; K < M; K += TileSize) {
            const unsigned TileM = std::min(M - K, unsigned(TileSize));
            MatrixTy A =
                loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
                           LShape, Builder.getInt64(I), Builder.getInt64(K),
                           {TileR, TileM}, EltType, Builder);
            MatrixTy B =
                loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
                           RShape, Builder.getInt64(K), Builder.getInt64(J),
                           {TileM, TileC}, EltType, Builder);
            emitMatrixMultiply(Res, A, B, Builder, true, false,
                               getFastMathFlags(MatMul));
          }
          storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
                      Builder.getInt64(I), Builder.getInt64(J), EltType,
                      Builder);
        }
    }

    // Mark eliminated instructions as fused and remove them.
    FusedInsts.insert(Store);
    FusedInsts.insert(MatMul);
    Store->eraseFromParent();
    MatMul->eraseFromParent();
    if (LoadOp0->hasNUses(0)) {
      FusedInsts.insert(LoadOp0);
      LoadOp0->eraseFromParent();
    }
    if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) {
      FusedInsts.insert(LoadOp1);
      LoadOp1->eraseFromParent();
    }
  }

  /// Try to lower matrix multiply chains by fusing operations.
  ///
  /// Call finalizeLowering on lowered instructions.  Instructions that are
  /// completely eliminated by fusion are added to \p FusedInsts.
  void LowerMatrixMultiplyFused(CallInst *MatMul,
                                SmallPtrSetImpl<Instruction *> &FusedInsts) {
    if (!FuseMatrix || !DT)
      return;

    assert(AA && LI && "Analyses should be available");

    Value *A = MatMul->getArgOperand(0);
    Value *B = MatMul->getArgOperand(1);

    // We can fold the transpose into the operand that is used to fetch scalars.
    Value *T;
    if (MatrixLayout == MatrixLayoutTy::ColumnMajor
            ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
            : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
      IRBuilder<> Builder(MatMul);
      auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
      ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
      ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
      const unsigned R = LShape.NumRows;
      const unsigned M = LShape.NumColumns;
      const unsigned C = RShape.NumColumns;

      MatrixTy MA;
      MatrixTy MB;

      Value *Transpose;
      if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
        MA = getMatrix(A, ShapeInfo(R, M), Builder);
        MB = getMatrix(T, ShapeInfo(C, M), Builder);
        Transpose = B;
      } else {
        MA = getMatrix(T, ShapeInfo(R, M), Builder);
        MB = getMatrix(B, ShapeInfo(C, M), Builder);
        Transpose = A;
      }

      // Initialize the output
      MatrixTy Result(R, C, EltType);

      emitMatrixMultiply(Result, MA, MB, Builder, false, true,
                         getFastMathFlags(MatMul));

      FusedInsts.insert(MatMul);
      if (Transpose->hasOneUse()) {
        FusedInsts.insert(cast<Instruction>(Transpose));
        ToRemove.push_back(cast<Instruction>(Transpose));
        // TODO: add a fake entry for the folded instruction so that this is
        // included in the expression in the remark.
        Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
      }
      finalizeLowering(MatMul, Result, Builder);
      return;
    }

    if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
      return;

    // Lower {ld, ld} -> matmul -> st chains.  No need to call finalizeLowering
    // since the single store user will be lowered as part of this.
    auto *LoadOp0 = dyn_cast<LoadInst>(A);
    auto *LoadOp1 = dyn_cast<LoadInst>(B);
    auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
    if (LoadOp0 && LoadOp1 && Store) {
      // The store address must dominate the MatMul instruction, otherwise
      // we create invalid IR.
      SetVector<Value *> WorkList;
      WorkList.insert(Store->getOperand(1));
      SmallVector<Instruction *> ToHoist;
      for (unsigned I = 0; I != WorkList.size(); ++I) {
        Value *Current = WorkList[I];
        auto *CurrI = dyn_cast<Instruction>(Current);
        if (!CurrI)
          continue;
        if (isa<PHINode>(CurrI))
          return;
        if (DT->dominates(CurrI, MatMul))
          continue;
        if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory())
          return;
        ToHoist.push_back(CurrI);
        WorkList.insert(CurrI->op_begin(), CurrI->op_end());
      }

      sort(ToHoist, [this](Instruction *A, Instruction *B) {
        return DT->dominates(A, B);
      });
      for (Instruction *I : ToHoist)
        I->moveBefore(MatMul);

      emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
      return;
    }
  }

  /// Lowers llvm.matrix.multiply.
  void LowerMultiply(CallInst *MatMul) {
    IRBuilder<> Builder(MatMul);
    auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
    ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
    ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));

    const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
    const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
    assert(Lhs.getElementType() == Rhs.getElementType() &&
           "Matrix multiply argument element types do not match.");

    const unsigned R = LShape.NumRows;
    const unsigned C = RShape.NumColumns;
    assert(LShape.NumColumns == RShape.NumRows);

    // Initialize the output
    MatrixTy Result(R, C, EltType);
    assert(Lhs.getElementType() == Result.getElementType() &&
           "Matrix multiply result element type does not match arguments.");

    emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
                       getFastMathFlags(MatMul));
    finalizeLowering(MatMul, Result, Builder);
  }

  /// Lowers llvm.matrix.transpose.
  void LowerTranspose(CallInst *Inst) {
    MatrixTy Result;
    IRBuilder<> Builder(Inst);
    Value *InputVal = Inst->getArgOperand(0);
    VectorType *VectorTy = cast<VectorType>(InputVal->getType());
    ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
    MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);

    const unsigned NewNumVecs =
        InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
    const unsigned NewNumElts =
        InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;

    for (unsigned I = 0; I < NewNumVecs; ++I) {
      // Build a single result vector. First initialize it.
      Value *ResultVector = UndefValue::get(
          FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
      // Go through the old elements and insert it into the resulting vector.
      for (auto J : enumerate(InputMatrix.vectors())) {
        Value *Elt = Builder.CreateExtractElement(J.value(), I);
        // Row and column indices are transposed.
        ResultVector =
            Builder.CreateInsertElement(ResultVector, Elt, J.index());
      }
      Result.addVector(ResultVector);
    }

    // TODO: Improve estimate of operations needed for transposes. Currently we
    // just count the insertelement/extractelement instructions, but do not
    // account for later simplifications/combines.
    finalizeLowering(
        Inst,
        Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
            .addNumExposedTransposes(1),
        Builder);
  }

  /// Lower load instructions, if shape information is available.
  bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
    auto I = ShapeMap.find(Inst);
    if (I == ShapeMap.end())
      return false;

    LowerLoad(Inst, Ptr, Inst->getAlign(),
              Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
              I->second);
    return true;
  }

  bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
                  IRBuilder<> &Builder) {
    auto I = ShapeMap.find(StoredVal);
    if (I == ShapeMap.end())
      return false;

    LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
               Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
               I->second);
    return true;
  }

  /// Lower binary operators, if shape information is available.
  bool VisitBinaryOperator(BinaryOperator *Inst) {
    auto I = ShapeMap.find(Inst);
    if (I == ShapeMap.end())
      return false;

    Value *Lhs = Inst->getOperand(0);
    Value *Rhs = Inst->getOperand(1);

    IRBuilder<> Builder(Inst);
    ShapeInfo &Shape = I->second;

    MatrixTy Result;
    MatrixTy A = getMatrix(Lhs, Shape, Builder);
    MatrixTy B = getMatrix(Rhs, Shape, Builder);
    assert(A.isColumnMajor() == B.isColumnMajor() &&
           Result.isColumnMajor() == A.isColumnMajor() &&
           "operands must agree on matrix layout");

    Builder.setFastMathFlags(getFastMathFlags(Inst));

    // Helper to perform binary op on vectors.
    auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
      switch (Inst->getOpcode()) {
      case Instruction::Add:
        return Builder.CreateAdd(LHS, RHS);
      case Instruction::Mul:
        return Builder.CreateMul(LHS, RHS);
      case Instruction::Sub:
        return Builder.CreateSub(LHS, RHS);
      case Instruction::FAdd:
        return Builder.CreateFAdd(LHS, RHS);
      case Instruction::FMul:
        return Builder.CreateFMul(LHS, RHS);
      case Instruction::FSub:
        return Builder.CreateFSub(LHS, RHS);
      default:
        llvm_unreachable("Unsupported binary operator for matrix");
      }
    };

    for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
      Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));

    finalizeLowering(Inst,
                     Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
                                             Result.getNumVectors()),
                     Builder);
    return true;
  }

  /// Lower unary operators, if shape information is available.
  bool VisitUnaryOperator(UnaryOperator *Inst) {
    auto I = ShapeMap.find(Inst);
    if (I == ShapeMap.end())
      return false;

    Value *Op = Inst->getOperand(0);

    IRBuilder<> Builder(Inst);
    ShapeInfo &Shape = I->second;

    MatrixTy Result;
    MatrixTy M = getMatrix(Op, Shape, Builder);

    Builder.setFastMathFlags(getFastMathFlags(Inst));

    // Helper to perform unary op on vectors.
    auto BuildVectorOp = [&Builder, Inst](Value *Op) {
      switch (Inst->getOpcode()) {
      case Instruction::FNeg:
        return Builder.CreateFNeg(Op);
      default:
        llvm_unreachable("Unsupported unary operator for matrix");
      }
    };

    for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
      Result.addVector(BuildVectorOp(M.getVector(I)));

    finalizeLowering(Inst,
                     Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
                                             Result.getNumVectors()),
                     Builder);
    return true;
  }

  /// Helper to linearize a matrix expression tree into a string. Currently
  /// matrix expressions are linarized by starting at an expression leaf and
  /// linearizing bottom up.
  struct ExprLinearizer {
    unsigned LengthToBreak = 100;
    std::string Str;
    raw_string_ostream Stream;
    unsigned LineLength = 0;
    const DataLayout &DL;

    /// Mapping from instructions to matrixes. It is used to identify
    /// matrix instructions.
    const MapVector<Value *, MatrixTy> &Inst2Matrix;

    /// Mapping from values to the leaves of all expressions that the value is
    /// part of.
    const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;

    /// Set of matrix expressions in the scope of a given DISubprogram.
    const SmallSetVector<Value *, 32> &ExprsInSubprogram;

    /// Leaf node of the expression to linearize.
    Value *Leaf;

    /// Used to keep track of sub-expressions that get reused while linearizing
    /// the expression. Re-used sub-expressions are marked as (reused).
    SmallPtrSet<Value *, 8> ReusedExprs;

    ExprLinearizer(const DataLayout &DL,
                   const MapVector<Value *, MatrixTy> &Inst2Matrix,
                   const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
                   const SmallSetVector<Value *, 32> &ExprsInSubprogram,
                   Value *Leaf)
        : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
          ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}

    void indent(unsigned N) {
      LineLength += N;
      for (unsigned i = 0; i < N; i++)
        Stream << " ";
    }

    void lineBreak() {
      Stream << "\n";
      LineLength = 0;
    }

    void maybeIndent(unsigned Indent) {
      if (LineLength >= LengthToBreak)
        lineBreak();

      if (LineLength == 0)
        indent(Indent);
    }

    void write(StringRef S) {
      LineLength += S.size();
      Stream << S;
    }

    Value *getUnderlyingObjectThroughLoads(Value *V) {
      if (Value *Ptr = getPointerOperand(V))
        return getUnderlyingObjectThroughLoads(Ptr);
      else if (V->getType()->isPointerTy())
        return getUnderlyingObject(V);
      return V;
    }

    /// Returns true if \p V is a matrix value in the given subprogram.
    bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }

    /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
    /// \p SS.
    void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
      auto M = Inst2Matrix.find(V);
      if (M == Inst2Matrix.end())
        SS << "unknown";
      else {
        SS << M->second.getNumRows();
        SS << "x";
        SS << M->second.getNumColumns();
      }
    }

    /// Write the called function name. Handles calls to llvm.matrix.*
    /// specially: we write the name, followed by the dimensions of the input
    /// matrixes, followed by the scalar type name.
    void writeFnName(CallInst *CI) {
      if (!CI->getCalledFunction())
        write("<no called fn>");
      else {
        StringRef Name = CI->getCalledFunction()->getName();
        if (!Name.startswith("llvm.matrix")) {
          write(Name);
          return;
        }
        IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
        write(Intrinsic::getBaseName(II->getIntrinsicID())
                  .drop_front(StringRef("llvm.matrix.").size()));
        write(".");
        std::string Tmp;
        raw_string_ostream SS(Tmp);

        switch (II->getIntrinsicID()) {
        case Intrinsic::matrix_multiply:
          prettyPrintMatrixType(II->getOperand(0), SS);
          SS << ".";
          prettyPrintMatrixType(II->getOperand(1), SS);
          SS << "." << *II->getType()->getScalarType();
          break;
        case Intrinsic::matrix_transpose:
          prettyPrintMatrixType(II->getOperand(0), SS);
          SS << "." << *II->getType()->getScalarType();
          break;
        case Intrinsic::matrix_column_major_load:
          prettyPrintMatrixType(II, SS);
          SS << "." << *II->getType()->getScalarType();
          break;
        case Intrinsic::matrix_column_major_store:
          prettyPrintMatrixType(II->getOperand(0), SS);
          SS << "." << *II->getOperand(0)->getType()->getScalarType();
          break;
        default:
          llvm_unreachable("Unhandled case");
        }
        SS.flush();
        write(Tmp);
      }
    }

    unsigned getNumShapeArgs(CallInst *CI) const {
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
        switch (II->getIntrinsicID()) {
        case Intrinsic::matrix_multiply:
          return 3;
        case Intrinsic::matrix_transpose:
          return 2;
        case Intrinsic::matrix_column_major_load:
        case Intrinsic::matrix_column_major_store:
          return 3;
        default:
          return 0;
        }
      }
      return 0;
    }

    /// Special printing for values: for pointers, we print if they refer to an
    /// (function) external address or a stack address, for other values we
    /// either print the constant or "scalar"/"matrix" for other values.
    void write(Value *V) {
      V = getUnderlyingObjectThroughLoads(V);
      if (V->getType()->isPointerTy()) {
        if (isa<AllocaInst>(V)) {
          Stream << "stack addr";
          LineLength += StringRef("stack addr").size();
        } else {
          Stream << "addr";
          LineLength += StringRef("addr").size();
        }
        if (!V->getName().empty()) {
          Stream << " %" << V->getName() << "";
          LineLength += V->getName().size() + 2;
        }
        return;
      }

      std::string Tmp;
      raw_string_ostream TmpStream(Tmp);

      if (auto *CI = dyn_cast<ConstantInt>(V))
        TmpStream << CI->getValue();
      else if (isa<Constant>(V))
        TmpStream << "constant";
      else {
        if (isMatrix(V))
          TmpStream << "matrix";
        else
          TmpStream << "scalar";
      }
      TmpStream.flush();
      Tmp = std::string(StringRef(Tmp).trim());
      LineLength += Tmp.size();
      Stream << Tmp;
    }

    /// Linearize expression \p Expr starting at an indentation of \p Indent.
    /// Expressions that are re-used multiple times are prefixed with (reused)
    /// at the re-used root instruction.
    void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
                       bool ParentShared) {
      auto *I = cast<Instruction>(Expr);
      maybeIndent(Indent);
      SmallVector<Value *, 8> Ops;

      // Is Expr shared with other expression leaves?
      bool ExprShared = false;

      // Deal with shared subtrees. Mark them as shared, if required.
      if (!ParentShared) {
        auto SI = Shared.find(Expr);
        assert(SI != Shared.end() && SI->second.count(Leaf));

        for (Value *S : SI->second) {
          if (S == Leaf)
            continue;
          DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
          write("shared with remark at line " + std::to_string(DL.getLine()) +
                " column " + std::to_string(DL.getCol()) + " (");
        }
        ExprShared = SI->second.size() > 1;
      }

      bool Reused = !ReusedExprs.insert(Expr).second;
      if (Reused && !ParentReused)
        write("(reused) ");

      if (auto *CI = dyn_cast<CallInst>(I)) {
        writeFnName(CI);

        Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
      } else if (isa<BitCastInst>(Expr)) {
        // Special case bitcasts, which are used to materialize matrixes from
        // non-matrix ops.
        write("matrix");
        return;
      } else {
        Ops.append(I->value_op_begin(), I->value_op_end());
        write(std::string(I->getOpcodeName()));
      }

      write(std::string("("));

      unsigned NumOpsToBreak = 1;
      if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
        NumOpsToBreak = 2;

      for (Value *Op : Ops) {
        if (Ops.size() > NumOpsToBreak)
          lineBreak();

        maybeIndent(Indent + 1);
        if (isMatrix(Op))
          linearizeExpr(Op, Indent + 1, Reused, ExprShared);
        else
          write(Op);
        if (Op != Ops.back())
          write(", ");
      }

      write(")");
    }

    const std::string &getResult() {
      Stream.flush();
      return Str;
    }
  };

  /// Generate remarks for matrix operations in a function. To generate remarks
  /// for matrix expressions, the following approach is used:
  /// 1. Use the inlined-at debug information to group matrix operations to the
  ///    DISubprograms they are contained in.
  /// 2. Collect leaves of matrix expressions (done in
  ///    RemarkGenerator::getExpressionLeaves) for each subprogram - expression
  //     mapping.  Leaves are lowered matrix instructions without other matrix
  //     users (like stores) in the current subprogram.
  /// 3. For each leaf, create a remark containing a linearizied version of the
  ///    matrix expression. The expression is linearized by a recursive
  ///    bottom-up traversal of the matrix operands, starting at a leaf. Note
  ///    that multiple leaves can share sub-expressions. Shared subexpressions
  ///    are explicitly marked as shared().
  struct RemarkGenerator {
    const MapVector<Value *, MatrixTy> &Inst2Matrix;
    OptimizationRemarkEmitter &ORE;
    Function &Func;
    const DataLayout &DL;

    RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
                    OptimizationRemarkEmitter &ORE, Function &Func)
        : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
          DL(Func.getParent()->getDataLayout()) {}

    /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
    /// instructions in Inst2Matrix returning void or without any users in
    /// \p ExprsInSubprogram. Currently that should only include stores.
    SmallVector<Value *, 4>
    getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
      SmallVector<Value *, 4> Leaves;
      for (auto *Expr : ExprsInSubprogram)
        if (Expr->getType()->isVoidTy() ||
            !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
              return ExprsInSubprogram.count(U);
            }))
          Leaves.push_back(Expr);
      return Leaves;
    }

    /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
    /// to all visited expressions in \p Shared. Limit the matrix operations to
    /// the ones in \p ExprsInSubprogram.
    void collectSharedInfo(Value *Leaf, Value *V,
                           const SmallSetVector<Value *, 32> &ExprsInSubprogram,
                           DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {

      if (!ExprsInSubprogram.count(V))
        return;

      auto I = Shared.insert({V, {}});
      I.first->second.insert(Leaf);

      for (Value *Op : cast<Instruction>(V)->operand_values())
        collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
    }

    /// Calculate the number of exclusive and shared op counts for expression
    /// starting at \p V. Expressions used multiple times are counted once.
    /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
    std::pair<OpInfoTy, OpInfoTy>
    sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
               const SmallSetVector<Value *, 32> &ExprsInSubprogram,
               DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
      if (!ExprsInSubprogram.count(Root))
        return {};

      // Already counted this expression. Stop.
      if (!ReusedExprs.insert(Root).second)
        return {};

      OpInfoTy SharedCount;
      OpInfoTy Count;

      auto I = Shared.find(Root);
      auto CM = Inst2Matrix.find(Root);
      if (I->second.size() == 1)
        Count = CM->second.getOpInfo();
      else
        SharedCount = CM->second.getOpInfo();

      for (Value *Op : cast<Instruction>(Root)->operand_values()) {
        auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
        Count += C.first;
        SharedCount += C.second;
      }
      return {Count, SharedCount};
    }

    void emitRemarks() {
      if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
        return;

      // Map matrix operations to their containting subprograms, by traversing
      // the inlinedAt chain. If the function does not have a DISubprogram, we
      // only map them to the containing function.
      MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
      for (auto &KV : Inst2Matrix) {
        if (Func.getSubprogram()) {
          auto *I = cast<Instruction>(KV.first);
          DILocation *Context = I->getDebugLoc();
          while (Context) {
            auto I =
                Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
            I.first->second.push_back(KV.first);
            Context = DebugLoc(Context).getInlinedAt();
          }
        } else {
          auto I = Subprog2Exprs.insert({nullptr, {}});
          I.first->second.push_back(KV.first);
        }
      }
      for (auto &KV : Subprog2Exprs) {
        SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
                                                      KV.second.end());
        auto Leaves = getExpressionLeaves(ExprsInSubprogram);

        DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
        for (Value *Leaf : Leaves)
          collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);

        // Generate remarks for each leaf.
        for (auto *L : Leaves) {

          DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
          DILocation *Context = cast<Instruction>(L)->getDebugLoc();
          while (Context) {
            if (getSubprogram(Context->getScope()) == KV.first) {
              Loc = Context;
              break;
            }
            Context = DebugLoc(Context).getInlinedAt();
          }

          SmallPtrSet<Value *, 8> ReusedExprs;
          OpInfoTy Counts, SharedCounts;
          std::tie(Counts, SharedCounts) =
              sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);

          OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
                                 cast<Instruction>(L)->getParent());

          Rem << "Lowered with ";
          Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
              << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
              << ore::NV("NumComputeOps", Counts.NumComputeOps)
              << " compute ops, "
              << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
              << " exposed transposes";

          if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
              SharedCounts.NumComputeOps > 0) {
            Rem << ",\nadditionally "
                << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
                << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
                << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
                << " compute ops"
                << " are shared with other expressions";
          }

          Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
          ORE.emit(Rem);
        }
      }
    }

    std::string
    linearize(Value *L,
              const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
              const SmallSetVector<Value *, 32> &ExprsInSubprogram,
              const DataLayout &DL) {
      ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
      Lin.linearizeExpr(L, 0, false, false);
      return Lin.getResult();
    }
  };
};
} // namespace

PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  OptimizationRemarkEmitter *ORE = nullptr;
  AAResults *AA = nullptr;
  DominatorTree *DT = nullptr;
  LoopInfo *LI = nullptr;

  if (!Minimal) {
    ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
    AA = &AM.getResult<AAManager>(F);
    DT = &AM.getResult<DominatorTreeAnalysis>(F);
    LI = &AM.getResult<LoopAnalysis>(F);
  }

  LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
  if (LMT.Visit()) {
    PreservedAnalyses PA;
    if (!Minimal) {
      PA.preserve<LoopAnalysis>();
      PA.preserve<DominatorTreeAnalysis>();
    }
    return PA;
  }
  return PreservedAnalyses::all();
}

namespace {

class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
public:
  static char ID;

  LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
    initializeLowerMatrixIntrinsicsLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
    bool C = LMT.Visit();
    return C;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
  }
};
} // namespace

static const char pass_name[] = "Lower the matrix intrinsics";
char LowerMatrixIntrinsicsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
                      false, false)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
                    false, false)

Pass *llvm::createLowerMatrixIntrinsicsPass() {
  return new LowerMatrixIntrinsicsLegacyPass();
}

namespace {

/// A lightweight version of the matrix lowering pass that only requires TTI.
/// Advanced features that require DT, AA or ORE like tiling are disabled. This
/// is used to lower matrix intrinsics if the main lowering pass is not run, for
/// example with -O0.
class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
public:
  static char ID;

  LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
    initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
    bool C = LMT.Visit();
    return C;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
  }
};
} // namespace

static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
                      "lower-matrix-intrinsics-minimal", pass_name_minimal,
                      false, false)
INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
                    "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
                    false)

Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
  return new LowerMatrixIntrinsicsMinimalLegacyPass();
}