aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/SCCP.cpp
blob: 8feed9e9ebfe75e7593744df0f67c23476d980d9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements sparse conditional constant propagation and merging:
//
// Specifically, this:
//   * Assumes values are constant unless proven otherwise
//   * Assumes BasicBlocks are dead unless proven otherwise
//   * Proves values to be constant, and replaces them with constants
//   * Proves conditional branches to be unconditional
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include <cassert>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "sccp"

STATISTIC(NumInstRemoved, "Number of instructions removed");
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
STATISTIC(NumInstReplaced,
          "Number of instructions replaced with (simpler) instruction");

STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
STATISTIC(
    IPNumInstReplaced,
    "Number of instructions replaced with (simpler) instruction by IPSCCP");

// The maximum number of range extensions allowed for operations requiring
// widening.
static const unsigned MaxNumRangeExtensions = 10;

/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
  return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
      MaxNumRangeExtensions);
}
namespace {

// Helper to check if \p LV is either a constant or a constant
// range with a single element. This should cover exactly the same cases as the
// old ValueLatticeElement::isConstant() and is intended to be used in the
// transition to ValueLatticeElement.
bool isConstant(const ValueLatticeElement &LV) {
  return LV.isConstant() ||
         (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
}

// Helper to check if \p LV is either overdefined or a constant range with more
// than a single element. This should cover exactly the same cases as the old
// ValueLatticeElement::isOverdefined() and is intended to be used in the
// transition to ValueLatticeElement.
bool isOverdefined(const ValueLatticeElement &LV) {
  return !LV.isUnknownOrUndef() && !isConstant(LV);
}

//===----------------------------------------------------------------------===//
//
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
  const DataLayout &DL;
  std::function<const TargetLibraryInfo &(Function &)> GetTLI;
  SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
  DenseMap<Value *, ValueLatticeElement>
      ValueState; // The state each value is in.

  /// StructValueState - This maintains ValueState for values that have
  /// StructType, for example for formal arguments, calls, insertelement, etc.
  DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;

  /// GlobalValue - If we are tracking any values for the contents of a global
  /// variable, we keep a mapping from the constant accessor to the element of
  /// the global, to the currently known value.  If the value becomes
  /// overdefined, it's entry is simply removed from this map.
  DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;

  /// TrackedRetVals - If we are tracking arguments into and the return
  /// value out of a function, it will have an entry in this map, indicating
  /// what the known return value for the function is.
  MapVector<Function *, ValueLatticeElement> TrackedRetVals;

  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
  /// that return multiple values.
  MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
      TrackedMultipleRetVals;

  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
  /// represented here for efficient lookup.
  SmallPtrSet<Function *, 16> MRVFunctionsTracked;

  /// MustTailFunctions - Each function here is a callee of non-removable
  /// musttail call site.
  SmallPtrSet<Function *, 16> MustTailCallees;

  /// TrackingIncomingArguments - This is the set of functions for whose
  /// arguments we make optimistic assumptions about and try to prove as
  /// constants.
  SmallPtrSet<Function *, 16> TrackingIncomingArguments;

  /// The reason for two worklists is that overdefined is the lowest state
  /// on the lattice, and moving things to overdefined as fast as possible
  /// makes SCCP converge much faster.
  ///
  /// By having a separate worklist, we accomplish this because everything
  /// possibly overdefined will become overdefined at the soonest possible
  /// point.
  SmallVector<Value *, 64> OverdefinedInstWorkList;
  SmallVector<Value *, 64> InstWorkList;

  // The BasicBlock work list
  SmallVector<BasicBlock *, 64>  BBWorkList;

  /// KnownFeasibleEdges - Entries in this set are edges which have already had
  /// PHI nodes retriggered.
  using Edge = std::pair<BasicBlock *, BasicBlock *>;
  DenseSet<Edge> KnownFeasibleEdges;

  DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
  DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;

  LLVMContext &Ctx;

public:
  void addAnalysis(Function &F, AnalysisResultsForFn A) {
    AnalysisResults.insert({&F, std::move(A)});
  }

  const PredicateBase *getPredicateInfoFor(Instruction *I) {
    auto A = AnalysisResults.find(I->getParent()->getParent());
    if (A == AnalysisResults.end())
      return nullptr;
    return A->second.PredInfo->getPredicateInfoFor(I);
  }

  DomTreeUpdater getDTU(Function &F) {
    auto A = AnalysisResults.find(&F);
    assert(A != AnalysisResults.end() && "Need analysis results for function.");
    return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
  }

  SCCPSolver(const DataLayout &DL,
             std::function<const TargetLibraryInfo &(Function &)> GetTLI,
             LLVMContext &Ctx)
      : DL(DL), GetTLI(std::move(GetTLI)), Ctx(Ctx) {}

  /// MarkBlockExecutable - This method can be used by clients to mark all of
  /// the blocks that are known to be intrinsically live in the processed unit.
  ///
  /// This returns true if the block was not considered live before.
  bool MarkBlockExecutable(BasicBlock *BB) {
    if (!BBExecutable.insert(BB).second)
      return false;
    LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
    BBWorkList.push_back(BB);  // Add the block to the work list!
    return true;
  }

  /// TrackValueOfGlobalVariable - Clients can use this method to
  /// inform the SCCPSolver that it should track loads and stores to the
  /// specified global variable if it can.  This is only legal to call if
  /// performing Interprocedural SCCP.
  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    // We only track the contents of scalar globals.
    if (GV->getValueType()->isSingleValueType()) {
      ValueLatticeElement &IV = TrackedGlobals[GV];
      if (!isa<UndefValue>(GV->getInitializer()))
        IV.markConstant(GV->getInitializer());
    }
  }

  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
  /// and out of the specified function (which cannot have its address taken),
  /// this method must be called.
  void AddTrackedFunction(Function *F) {
    // Add an entry, F -> undef.
    if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
      MRVFunctionsTracked.insert(F);
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        TrackedMultipleRetVals.insert(
            std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
    } else if (!F->getReturnType()->isVoidTy())
      TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
  }

  /// AddMustTailCallee - If the SCCP solver finds that this function is called
  /// from non-removable musttail call site.
  void AddMustTailCallee(Function *F) {
    MustTailCallees.insert(F);
  }

  /// Returns true if the given function is called from non-removable musttail
  /// call site.
  bool isMustTailCallee(Function *F) {
    return MustTailCallees.count(F);
  }

  void AddArgumentTrackedFunction(Function *F) {
    TrackingIncomingArguments.insert(F);
  }

  /// Returns true if the given function is in the solver's set of
  /// argument-tracked functions.
  bool isArgumentTrackedFunction(Function *F) {
    return TrackingIncomingArguments.count(F);
  }

  /// Solve - Solve for constants and executable blocks.
  void Solve();

  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
  /// that branches on undef values cannot reach any of their successors.
  /// However, this is not a safe assumption.  After we solve dataflow, this
  /// method should be use to handle this.  If this returns true, the solver
  /// should be rerun.
  bool ResolvedUndefsIn(Function &F);

  bool isBlockExecutable(BasicBlock *BB) const {
    return BBExecutable.count(BB);
  }

  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
  // block to the 'To' basic block is currently feasible.
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;

  std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
    std::vector<ValueLatticeElement> StructValues;
    auto *STy = dyn_cast<StructType>(V->getType());
    assert(STy && "getStructLatticeValueFor() can be called only on structs");
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      auto I = StructValueState.find(std::make_pair(V, i));
      assert(I != StructValueState.end() && "Value not in valuemap!");
      StructValues.push_back(I->second);
    }
    return StructValues;
  }

  void removeLatticeValueFor(Value *V) { ValueState.erase(V); }

  const ValueLatticeElement &getLatticeValueFor(Value *V) const {
    assert(!V->getType()->isStructTy() &&
           "Should use getStructLatticeValueFor");
    DenseMap<Value *, ValueLatticeElement>::const_iterator I =
        ValueState.find(V);
    assert(I != ValueState.end() &&
           "V not found in ValueState nor Paramstate map!");
    return I->second;
  }

  /// getTrackedRetVals - Get the inferred return value map.
  const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
    return TrackedRetVals;
  }

  /// getTrackedGlobals - Get and return the set of inferred initializers for
  /// global variables.
  const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
    return TrackedGlobals;
  }

  /// getMRVFunctionsTracked - Get the set of functions which return multiple
  /// values tracked by the pass.
  const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
    return MRVFunctionsTracked;
  }

  /// getMustTailCallees - Get the set of functions which are called
  /// from non-removable musttail call sites.
  const SmallPtrSet<Function *, 16> getMustTailCallees() {
    return MustTailCallees;
  }

  /// markOverdefined - Mark the specified value overdefined.  This
  /// works with both scalars and structs.
  void markOverdefined(Value *V) {
    if (auto *STy = dyn_cast<StructType>(V->getType()))
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        markOverdefined(getStructValueState(V, i), V);
    else
      markOverdefined(ValueState[V], V);
  }

  // isStructLatticeConstant - Return true if all the lattice values
  // corresponding to elements of the structure are constants,
  // false otherwise.
  bool isStructLatticeConstant(Function *F, StructType *STy) {
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
      assert(It != TrackedMultipleRetVals.end());
      ValueLatticeElement LV = It->second;
      if (!isConstant(LV))
        return false;
    }
    return true;
  }

  /// Helper to return a Constant if \p LV is either a constant or a constant
  /// range with a single element.
  Constant *getConstant(const ValueLatticeElement &LV) const {
    if (LV.isConstant())
      return LV.getConstant();

    if (LV.isConstantRange()) {
      auto &CR = LV.getConstantRange();
      if (CR.getSingleElement())
        return ConstantInt::get(Ctx, *CR.getSingleElement());
    }
    return nullptr;
  }

private:
  ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
    return dyn_cast_or_null<ConstantInt>(getConstant(IV));
  }

  // pushToWorkList - Helper for markConstant/markOverdefined
  void pushToWorkList(ValueLatticeElement &IV, Value *V) {
    if (IV.isOverdefined())
      return OverdefinedInstWorkList.push_back(V);
    InstWorkList.push_back(V);
  }

  // Helper to push \p V to the worklist, after updating it to \p IV. Also
  // prints a debug message with the updated value.
  void pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
    LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
    pushToWorkList(IV, V);
  }

  // markConstant - Make a value be marked as "constant".  If the value
  // is not already a constant, add it to the instruction work list so that
  // the users of the instruction are updated later.
  bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
                    bool MayIncludeUndef = false) {
    if (!IV.markConstant(C, MayIncludeUndef))
      return false;
    LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    pushToWorkList(IV, V);
    return true;
  }

  bool markConstant(Value *V, Constant *C) {
    assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
    return markConstant(ValueState[V], V, C);
  }

  // markOverdefined - Make a value be marked as "overdefined". If the
  // value is not already overdefined, add it to the overdefined instruction
  // work list so that the users of the instruction are updated later.
  bool markOverdefined(ValueLatticeElement &IV, Value *V) {
    if (!IV.markOverdefined()) return false;

    LLVM_DEBUG(dbgs() << "markOverdefined: ";
               if (auto *F = dyn_cast<Function>(V)) dbgs()
               << "Function '" << F->getName() << "'\n";
               else dbgs() << *V << '\n');
    // Only instructions go on the work list
    pushToWorkList(IV, V);
    return true;
  }

  /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
  /// changes.
  bool mergeInValue(ValueLatticeElement &IV, Value *V,
                    ValueLatticeElement MergeWithV,
                    ValueLatticeElement::MergeOptions Opts = {
                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
    if (IV.mergeIn(MergeWithV, Opts)) {
      pushToWorkList(IV, V);
      LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
                        << IV << "\n");
      return true;
    }
    return false;
  }

  bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
                    ValueLatticeElement::MergeOptions Opts = {
                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
    assert(!V->getType()->isStructTy() &&
           "non-structs should use markConstant");
    return mergeInValue(ValueState[V], V, MergeWithV, Opts);
  }

  /// getValueState - Return the ValueLatticeElement object that corresponds to
  /// the value.  This function handles the case when the value hasn't been seen
  /// yet by properly seeding constants etc.
  ValueLatticeElement &getValueState(Value *V) {
    assert(!V->getType()->isStructTy() && "Should use getStructValueState");

    auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
    ValueLatticeElement &LV = I.first->second;

    if (!I.second)
      return LV;  // Common case, already in the map.

    if (auto *C = dyn_cast<Constant>(V))
      LV.markConstant(C);          // Constants are constant

    // All others are unknown by default.
    return LV;
  }

  /// getStructValueState - Return the ValueLatticeElement object that
  /// corresponds to the value/field pair.  This function handles the case when
  /// the value hasn't been seen yet by properly seeding constants etc.
  ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
    assert(V->getType()->isStructTy() && "Should use getValueState");
    assert(i < cast<StructType>(V->getType())->getNumElements() &&
           "Invalid element #");

    auto I = StructValueState.insert(
        std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
    ValueLatticeElement &LV = I.first->second;

    if (!I.second)
      return LV;  // Common case, already in the map.

    if (auto *C = dyn_cast<Constant>(V)) {
      Constant *Elt = C->getAggregateElement(i);

      if (!Elt)
        LV.markOverdefined();      // Unknown sort of constant.
      else if (isa<UndefValue>(Elt))
        ; // Undef values remain unknown.
      else
        LV.markConstant(Elt);      // Constants are constant.
    }

    // All others are underdefined by default.
    return LV;
  }

  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
  /// work list if it is not already executable.
  bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
      return false;  // This edge is already known to be executable!

    if (!MarkBlockExecutable(Dest)) {
      // If the destination is already executable, we just made an *edge*
      // feasible that wasn't before.  Revisit the PHI nodes in the block
      // because they have potentially new operands.
      LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
                        << " -> " << Dest->getName() << '\n');

      for (PHINode &PN : Dest->phis())
        visitPHINode(PN);
    }
    return true;
  }

  // getFeasibleSuccessors - Return a vector of booleans to indicate which
  // successors are reachable from a given terminator instruction.
  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);

  // OperandChangedState - This method is invoked on all of the users of an
  // instruction that was just changed state somehow.  Based on this
  // information, we need to update the specified user of this instruction.
  void OperandChangedState(Instruction *I) {
    if (BBExecutable.count(I->getParent()))   // Inst is executable?
      visit(*I);
  }

  // Add U as additional user of V.
  void addAdditionalUser(Value *V, User *U) {
    auto Iter = AdditionalUsers.insert({V, {}});
    Iter.first->second.insert(U);
  }

  // Mark I's users as changed, including AdditionalUsers.
  void markUsersAsChanged(Value *I) {
    // Functions include their arguments in the use-list. Changed function
    // values mean that the result of the function changed. We only need to
    // update the call sites with the new function result and do not have to
    // propagate the call arguments.
    if (isa<Function>(I)) {
      for (User *U : I->users()) {
        if (auto *CB = dyn_cast<CallBase>(U))
          handleCallResult(*CB);
      }
    } else {
      for (User *U : I->users())
        if (auto *UI = dyn_cast<Instruction>(U))
          OperandChangedState(UI);
    }

    auto Iter = AdditionalUsers.find(I);
    if (Iter != AdditionalUsers.end()) {
      // Copy additional users before notifying them of changes, because new
      // users may be added, potentially invalidating the iterator.
      SmallVector<Instruction *, 2> ToNotify;
      for (User *U : Iter->second)
        if (auto *UI = dyn_cast<Instruction>(U))
          ToNotify.push_back(UI);
      for (Instruction *UI : ToNotify)
        OperandChangedState(UI);
    }
  }
  void handleCallOverdefined(CallBase &CB);
  void handleCallResult(CallBase &CB);
  void handleCallArguments(CallBase &CB);

private:
  friend class InstVisitor<SCCPSolver>;

  // visit implementations - Something changed in this instruction.  Either an
  // operand made a transition, or the instruction is newly executable.  Change
  // the value type of I to reflect these changes if appropriate.
  void visitPHINode(PHINode &I);

  // Terminators

  void visitReturnInst(ReturnInst &I);
  void visitTerminator(Instruction &TI);

  void visitCastInst(CastInst &I);
  void visitSelectInst(SelectInst &I);
  void visitUnaryOperator(Instruction &I);
  void visitBinaryOperator(Instruction &I);
  void visitCmpInst(CmpInst &I);
  void visitExtractValueInst(ExtractValueInst &EVI);
  void visitInsertValueInst(InsertValueInst &IVI);

  void visitCatchSwitchInst(CatchSwitchInst &CPI) {
    markOverdefined(&CPI);
    visitTerminator(CPI);
  }

  // Instructions that cannot be folded away.

  void visitStoreInst     (StoreInst &I);
  void visitLoadInst      (LoadInst &I);
  void visitGetElementPtrInst(GetElementPtrInst &I);

  void visitCallInst      (CallInst &I) {
    visitCallBase(I);
  }

  void visitInvokeInst    (InvokeInst &II) {
    visitCallBase(II);
    visitTerminator(II);
  }

  void visitCallBrInst    (CallBrInst &CBI) {
    visitCallBase(CBI);
    visitTerminator(CBI);
  }

  void visitCallBase      (CallBase &CB);
  void visitResumeInst    (ResumeInst &I) { /*returns void*/ }
  void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
  void visitFenceInst     (FenceInst &I) { /*returns void*/ }

  void visitInstruction(Instruction &I) {
    // All the instructions we don't do any special handling for just
    // go to overdefined.
    LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
    markOverdefined(&I);
  }
};

} // end anonymous namespace

// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
                                       SmallVectorImpl<bool> &Succs) {
  Succs.resize(TI.getNumSuccessors());
  if (auto *BI = dyn_cast<BranchInst>(&TI)) {
    if (BI->isUnconditional()) {
      Succs[0] = true;
      return;
    }

    ValueLatticeElement BCValue = getValueState(BI->getCondition());
    ConstantInt *CI = getConstantInt(BCValue);
    if (!CI) {
      // Overdefined condition variables, and branches on unfoldable constant
      // conditions, mean the branch could go either way.
      if (!BCValue.isUnknownOrUndef())
        Succs[0] = Succs[1] = true;
      return;
    }

    // Constant condition variables mean the branch can only go a single way.
    Succs[CI->isZero()] = true;
    return;
  }

  // Unwinding instructions successors are always executable.
  if (TI.isExceptionalTerminator()) {
    Succs.assign(TI.getNumSuccessors(), true);
    return;
  }

  if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
    if (!SI->getNumCases()) {
      Succs[0] = true;
      return;
    }
    const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
    if (ConstantInt *CI = getConstantInt(SCValue)) {
      Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
      return;
    }

    // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
    // is ready.
    if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
      const ConstantRange &Range = SCValue.getConstantRange();
      for (const auto &Case : SI->cases()) {
        const APInt &CaseValue = Case.getCaseValue()->getValue();
        if (Range.contains(CaseValue))
          Succs[Case.getSuccessorIndex()] = true;
      }

      // TODO: Determine whether default case is reachable.
      Succs[SI->case_default()->getSuccessorIndex()] = true;
      return;
    }

    // Overdefined or unknown condition? All destinations are executable!
    if (!SCValue.isUnknownOrUndef())
      Succs.assign(TI.getNumSuccessors(), true);
    return;
  }

  // In case of indirect branch and its address is a blockaddress, we mark
  // the target as executable.
  if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
    // Casts are folded by visitCastInst.
    ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
    BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
    if (!Addr) {   // Overdefined or unknown condition?
      // All destinations are executable!
      if (!IBRValue.isUnknownOrUndef())
        Succs.assign(TI.getNumSuccessors(), true);
      return;
    }

    BasicBlock* T = Addr->getBasicBlock();
    assert(Addr->getFunction() == T->getParent() &&
           "Block address of a different function ?");
    for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
      // This is the target.
      if (IBR->getDestination(i) == T) {
        Succs[i] = true;
        return;
      }
    }

    // If we didn't find our destination in the IBR successor list, then we
    // have undefined behavior. Its ok to assume no successor is executable.
    return;
  }

  // In case of callbr, we pessimistically assume that all successors are
  // feasible.
  if (isa<CallBrInst>(&TI)) {
    Succs.assign(TI.getNumSuccessors(), true);
    return;
  }

  LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
}

// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible.
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
  // Check if we've called markEdgeExecutable on the edge yet. (We could
  // be more aggressive and try to consider edges which haven't been marked
  // yet, but there isn't any need.)
  return KnownFeasibleEdges.count(Edge(From, To));
}

// visit Implementations - Something changed in this instruction, either an
// operand made a transition, or the instruction is newly executable.  Change
// the value type of I to reflect these changes if appropriate.  This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
//    from different branches, or if the PHI node merges in an overdefined
//    value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
//    PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
//    destination executable
// 7. If a conditional branch has a value that is overdefined, make all
//    successors executable.
void SCCPSolver::visitPHINode(PHINode &PN) {
  // If this PN returns a struct, just mark the result overdefined.
  // TODO: We could do a lot better than this if code actually uses this.
  if (PN.getType()->isStructTy())
    return (void)markOverdefined(&PN);

  if (getValueState(&PN).isOverdefined())
    return; // Quick exit

  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
  // and slow us down a lot.  Just mark them overdefined.
  if (PN.getNumIncomingValues() > 64)
    return (void)markOverdefined(&PN);

  unsigned NumActiveIncoming = 0;

  // Look at all of the executable operands of the PHI node.  If any of them
  // are overdefined, the PHI becomes overdefined as well.  If they are all
  // constant, and they agree with each other, the PHI becomes the identical
  // constant.  If they are constant and don't agree, the PHI is a constant
  // range. If there are no executable operands, the PHI remains unknown.
  ValueLatticeElement PhiState = getValueState(&PN);
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
      continue;

    ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
    PhiState.mergeIn(IV);
    NumActiveIncoming++;
    if (PhiState.isOverdefined())
      break;
  }

  // We allow up to 1 range extension per active incoming value and one
  // additional extension. Note that we manually adjust the number of range
  // extensions to match the number of active incoming values. This helps to
  // limit multiple extensions caused by the same incoming value, if other
  // incoming values are equal.
  mergeInValue(&PN, PhiState,
               ValueLatticeElement::MergeOptions().setMaxWidenSteps(
                   NumActiveIncoming + 1));
  ValueLatticeElement &PhiStateRef = getValueState(&PN);
  PhiStateRef.setNumRangeExtensions(
      std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
}

void SCCPSolver::visitReturnInst(ReturnInst &I) {
  if (I.getNumOperands() == 0) return;  // ret void

  Function *F = I.getParent()->getParent();
  Value *ResultOp = I.getOperand(0);

  // If we are tracking the return value of this function, merge it in.
  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    auto TFRVI = TrackedRetVals.find(F);
    if (TFRVI != TrackedRetVals.end()) {
      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
      return;
    }
  }

  // Handle functions that return multiple values.
  if (!TrackedMultipleRetVals.empty()) {
    if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
      if (MRVFunctionsTracked.count(F))
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
                       getStructValueState(ResultOp, i));
  }
}

void SCCPSolver::visitTerminator(Instruction &TI) {
  SmallVector<bool, 16> SuccFeasible;
  getFeasibleSuccessors(TI, SuccFeasible);

  BasicBlock *BB = TI.getParent();

  // Mark all feasible successors executable.
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    if (SuccFeasible[i])
      markEdgeExecutable(BB, TI.getSuccessor(i));
}

void SCCPSolver::visitCastInst(CastInst &I) {
  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (ValueState[&I].isOverdefined())
    return;

  ValueLatticeElement OpSt = getValueState(I.getOperand(0));
  if (Constant *OpC = getConstant(OpSt)) {
    // Fold the constant as we build.
    Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
    if (isa<UndefValue>(C))
      return;
    // Propagate constant value
    markConstant(&I, C);
  } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) {
    auto &LV = getValueState(&I);
    ConstantRange OpRange = OpSt.getConstantRange();
    Type *DestTy = I.getDestTy();
    // Vectors where all elements have the same known constant range are treated
    // as a single constant range in the lattice. When bitcasting such vectors,
    // there is a mis-match between the width of the lattice value (single
    // constant range) and the original operands (vector). Go to overdefined in
    // that case.
    if (I.getOpcode() == Instruction::BitCast &&
        I.getOperand(0)->getType()->isVectorTy() &&
        OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
      return (void)markOverdefined(&I);

    ConstantRange Res =
        OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
    mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
  } else if (!OpSt.isUnknownOrUndef())
    markOverdefined(&I);
}

void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
  // If this returns a struct, mark all elements over defined, we don't track
  // structs in structs.
  if (EVI.getType()->isStructTy())
    return (void)markOverdefined(&EVI);

  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (ValueState[&EVI].isOverdefined())
    return (void)markOverdefined(&EVI);

  // If this is extracting from more than one level of struct, we don't know.
  if (EVI.getNumIndices() != 1)
    return (void)markOverdefined(&EVI);

  Value *AggVal = EVI.getAggregateOperand();
  if (AggVal->getType()->isStructTy()) {
    unsigned i = *EVI.idx_begin();
    ValueLatticeElement EltVal = getStructValueState(AggVal, i);
    mergeInValue(getValueState(&EVI), &EVI, EltVal);
  } else {
    // Otherwise, must be extracting from an array.
    return (void)markOverdefined(&EVI);
  }
}

void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
  auto *STy = dyn_cast<StructType>(IVI.getType());
  if (!STy)
    return (void)markOverdefined(&IVI);

  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (isOverdefined(ValueState[&IVI]))
    return (void)markOverdefined(&IVI);

  // If this has more than one index, we can't handle it, drive all results to
  // undef.
  if (IVI.getNumIndices() != 1)
    return (void)markOverdefined(&IVI);

  Value *Aggr = IVI.getAggregateOperand();
  unsigned Idx = *IVI.idx_begin();

  // Compute the result based on what we're inserting.
  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    // This passes through all values that aren't the inserted element.
    if (i != Idx) {
      ValueLatticeElement EltVal = getStructValueState(Aggr, i);
      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
      continue;
    }

    Value *Val = IVI.getInsertedValueOperand();
    if (Val->getType()->isStructTy())
      // We don't track structs in structs.
      markOverdefined(getStructValueState(&IVI, i), &IVI);
    else {
      ValueLatticeElement InVal = getValueState(Val);
      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    }
  }
}

void SCCPSolver::visitSelectInst(SelectInst &I) {
  // If this select returns a struct, just mark the result overdefined.
  // TODO: We could do a lot better than this if code actually uses this.
  if (I.getType()->isStructTy())
    return (void)markOverdefined(&I);

  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (ValueState[&I].isOverdefined())
    return (void)markOverdefined(&I);

  ValueLatticeElement CondValue = getValueState(I.getCondition());
  if (CondValue.isUnknownOrUndef())
    return;

  if (ConstantInt *CondCB = getConstantInt(CondValue)) {
    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    mergeInValue(&I, getValueState(OpVal));
    return;
  }

  // Otherwise, the condition is overdefined or a constant we can't evaluate.
  // See if we can produce something better than overdefined based on the T/F
  // value.
  ValueLatticeElement TVal = getValueState(I.getTrueValue());
  ValueLatticeElement FVal = getValueState(I.getFalseValue());

  bool Changed = ValueState[&I].mergeIn(TVal);
  Changed |= ValueState[&I].mergeIn(FVal);
  if (Changed)
    pushToWorkListMsg(ValueState[&I], &I);
}

// Handle Unary Operators.
void SCCPSolver::visitUnaryOperator(Instruction &I) {
  ValueLatticeElement V0State = getValueState(I.getOperand(0));

  ValueLatticeElement &IV = ValueState[&I];
  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (isOverdefined(IV))
    return (void)markOverdefined(&I);

  if (isConstant(V0State)) {
    Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));

    // op Y -> undef.
    if (isa<UndefValue>(C))
      return;
    return (void)markConstant(IV, &I, C);
  }

  // If something is undef, wait for it to resolve.
  if (!isOverdefined(V0State))
    return;

  markOverdefined(&I);
}

// Handle Binary Operators.
void SCCPSolver::visitBinaryOperator(Instruction &I) {
  ValueLatticeElement V1State = getValueState(I.getOperand(0));
  ValueLatticeElement V2State = getValueState(I.getOperand(1));

  ValueLatticeElement &IV = ValueState[&I];
  if (IV.isOverdefined())
    return;

  // If something is undef, wait for it to resolve.
  if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
    return;

  if (V1State.isOverdefined() && V2State.isOverdefined())
    return (void)markOverdefined(&I);

  // If either of the operands is a constant, try to fold it to a constant.
  // TODO: Use information from notconstant better.
  if ((V1State.isConstant() || V2State.isConstant())) {
    Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
    Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
    Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
    auto *C = dyn_cast_or_null<Constant>(R);
    if (C) {
      // X op Y -> undef.
      if (isa<UndefValue>(C))
        return;
      // Conservatively assume that the result may be based on operands that may
      // be undef. Note that we use mergeInValue to combine the constant with
      // the existing lattice value for I, as different constants might be found
      // after one of the operands go to overdefined, e.g. due to one operand
      // being a special floating value.
      ValueLatticeElement NewV;
      NewV.markConstant(C, /*MayIncludeUndef=*/true);
      return (void)mergeInValue(&I, NewV);
    }
  }

  // Only use ranges for binary operators on integers.
  if (!I.getType()->isIntegerTy())
    return markOverdefined(&I);

  // Try to simplify to a constant range.
  ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
  ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
  if (V1State.isConstantRange())
    A = V1State.getConstantRange();
  if (V2State.isConstantRange())
    B = V2State.getConstantRange();

  ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
  mergeInValue(&I, ValueLatticeElement::getRange(R));

  // TODO: Currently we do not exploit special values that produce something
  // better than overdefined with an overdefined operand for vector or floating
  // point types, like and <4 x i32> overdefined, zeroinitializer.
}

// Handle ICmpInst instruction.
void SCCPSolver::visitCmpInst(CmpInst &I) {
  // Do not cache this lookup, getValueState calls later in the function might
  // invalidate the reference.
  if (isOverdefined(ValueState[&I]))
    return (void)markOverdefined(&I);

  Value *Op1 = I.getOperand(0);
  Value *Op2 = I.getOperand(1);

  // For parameters, use ParamState which includes constant range info if
  // available.
  auto V1State = getValueState(Op1);
  auto V2State = getValueState(Op2);

  Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
  if (C) {
    if (isa<UndefValue>(C))
      return;
    ValueLatticeElement CV;
    CV.markConstant(C);
    mergeInValue(&I, CV);
    return;
  }

  // If operands are still unknown, wait for it to resolve.
  if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
      !isConstant(ValueState[&I]))
    return;

  markOverdefined(&I);
}

// Handle getelementptr instructions.  If all operands are constants then we
// can turn this into a getelementptr ConstantExpr.
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
  if (isOverdefined(ValueState[&I]))
    return (void)markOverdefined(&I);

  SmallVector<Constant*, 8> Operands;
  Operands.reserve(I.getNumOperands());

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    ValueLatticeElement State = getValueState(I.getOperand(i));
    if (State.isUnknownOrUndef())
      return;  // Operands are not resolved yet.

    if (isOverdefined(State))
      return (void)markOverdefined(&I);

    if (Constant *C = getConstant(State)) {
      Operands.push_back(C);
      continue;
    }

    return (void)markOverdefined(&I);
  }

  Constant *Ptr = Operands[0];
  auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
  Constant *C =
      ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
  if (isa<UndefValue>(C))
      return;
  markConstant(&I, C);
}

void SCCPSolver::visitStoreInst(StoreInst &SI) {
  // If this store is of a struct, ignore it.
  if (SI.getOperand(0)->getType()->isStructTy())
    return;

  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
    return;

  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
  auto I = TrackedGlobals.find(GV);
  if (I == TrackedGlobals.end())
    return;

  // Get the value we are storing into the global, then merge it.
  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
               ValueLatticeElement::MergeOptions().setCheckWiden(false));
  if (I->second.isOverdefined())
    TrackedGlobals.erase(I);      // No need to keep tracking this!
}

static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
  if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
    if (I->getType()->isIntegerTy())
      return ValueLatticeElement::getRange(
          getConstantRangeFromMetadata(*Ranges));
  if (I->hasMetadata(LLVMContext::MD_nonnull))
    return ValueLatticeElement::getNot(
        ConstantPointerNull::get(cast<PointerType>(I->getType())));
  return ValueLatticeElement::getOverdefined();
}

// Handle load instructions.  If the operand is a constant pointer to a constant
// global, we can replace the load with the loaded constant value!
void SCCPSolver::visitLoadInst(LoadInst &I) {
  // If this load is of a struct or the load is volatile, just mark the result
  // as overdefined.
  if (I.getType()->isStructTy() || I.isVolatile())
    return (void)markOverdefined(&I);

  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (ValueState[&I].isOverdefined())
    return (void)markOverdefined(&I);

  ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
  if (PtrVal.isUnknownOrUndef())
    return; // The pointer is not resolved yet!

  ValueLatticeElement &IV = ValueState[&I];

  if (isConstant(PtrVal)) {
    Constant *Ptr = getConstant(PtrVal);

    // load null is undefined.
    if (isa<ConstantPointerNull>(Ptr)) {
      if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
        return (void)markOverdefined(IV, &I);
      else
        return;
    }

    // Transform load (constant global) into the value loaded.
    if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
      if (!TrackedGlobals.empty()) {
        // If we are tracking this global, merge in the known value for it.
        auto It = TrackedGlobals.find(GV);
        if (It != TrackedGlobals.end()) {
          mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
          return;
        }
      }
    }

    // Transform load from a constant into a constant if possible.
    if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
      if (isa<UndefValue>(C))
        return;
      return (void)markConstant(IV, &I, C);
    }
  }

  // Fall back to metadata.
  mergeInValue(&I, getValueFromMetadata(&I));
}

void SCCPSolver::visitCallBase(CallBase &CB) {
  handleCallResult(CB);
  handleCallArguments(CB);
}

void SCCPSolver::handleCallOverdefined(CallBase &CB) {
  Function *F = CB.getCalledFunction();

  // Void return and not tracking callee, just bail.
  if (CB.getType()->isVoidTy())
    return;

  // Always mark struct return as overdefined.
  if (CB.getType()->isStructTy())
    return (void)markOverdefined(&CB);

  // Otherwise, if we have a single return value case, and if the function is
  // a declaration, maybe we can constant fold it.
  if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
    SmallVector<Constant *, 8> Operands;
    for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) {
      if (AI->get()->getType()->isStructTy())
        return markOverdefined(&CB); // Can't handle struct args.
      ValueLatticeElement State = getValueState(*AI);

      if (State.isUnknownOrUndef())
        return; // Operands are not resolved yet.
      if (isOverdefined(State))
        return (void)markOverdefined(&CB);
      assert(isConstant(State) && "Unknown state!");
      Operands.push_back(getConstant(State));
    }

    if (isOverdefined(getValueState(&CB)))
      return (void)markOverdefined(&CB);

    // If we can constant fold this, mark the result of the call as a
    // constant.
    if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
      // call -> undef.
      if (isa<UndefValue>(C))
        return;
      return (void)markConstant(&CB, C);
    }
  }

  // Fall back to metadata.
  mergeInValue(&CB, getValueFromMetadata(&CB));
}

void SCCPSolver::handleCallArguments(CallBase &CB) {
  Function *F = CB.getCalledFunction();
  // If this is a local function that doesn't have its address taken, mark its
  // entry block executable and merge in the actual arguments to the call into
  // the formal arguments of the function.
  if (!TrackingIncomingArguments.empty() &&
      TrackingIncomingArguments.count(F)) {
    MarkBlockExecutable(&F->front());

    // Propagate information from this call site into the callee.
    auto CAI = CB.arg_begin();
    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
         ++AI, ++CAI) {
      // If this argument is byval, and if the function is not readonly, there
      // will be an implicit copy formed of the input aggregate.
      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
        markOverdefined(&*AI);
        continue;
      }

      if (auto *STy = dyn_cast<StructType>(AI->getType())) {
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          ValueLatticeElement CallArg = getStructValueState(*CAI, i);
          mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
                       getMaxWidenStepsOpts());
        }
      } else
        mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
    }
  }
}

void SCCPSolver::handleCallResult(CallBase &CB) {
  Function *F = CB.getCalledFunction();

  if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
    if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
      if (ValueState[&CB].isOverdefined())
        return;

      Value *CopyOf = CB.getOperand(0);
      ValueLatticeElement CopyOfVal = getValueState(CopyOf);
      auto *PI = getPredicateInfoFor(&CB);
      assert(PI && "Missing predicate info for ssa.copy");

      const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
      if (!Constraint) {
        mergeInValue(ValueState[&CB], &CB, CopyOfVal);
        return;
      }

      CmpInst::Predicate Pred = Constraint->Predicate;
      Value *OtherOp = Constraint->OtherOp;

      // Wait until OtherOp is resolved.
      if (getValueState(OtherOp).isUnknown()) {
        addAdditionalUser(OtherOp, &CB);
        return;
      }

      // TODO: Actually filp MayIncludeUndef for the created range to false,
      // once most places in the optimizer respect the branches on
      // undef/poison are UB rule. The reason why the new range cannot be
      // undef is as follows below:
      // The new range is based on a branch condition. That guarantees that
      // neither of the compare operands can be undef in the branch targets,
      // unless we have conditions that are always true/false (e.g. icmp ule
      // i32, %a, i32_max). For the latter overdefined/empty range will be
      // inferred, but the branch will get folded accordingly anyways.
      bool MayIncludeUndef = !isa<PredicateAssume>(PI);

      ValueLatticeElement CondVal = getValueState(OtherOp);
      ValueLatticeElement &IV = ValueState[&CB];
      if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
        auto ImposedCR =
            ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));

        // Get the range imposed by the condition.
        if (CondVal.isConstantRange())
          ImposedCR = ConstantRange::makeAllowedICmpRegion(
              Pred, CondVal.getConstantRange());

        // Combine range info for the original value with the new range from the
        // condition.
        auto CopyOfCR = CopyOfVal.isConstantRange()
                            ? CopyOfVal.getConstantRange()
                            : ConstantRange::getFull(
                                  DL.getTypeSizeInBits(CopyOf->getType()));
        auto NewCR = ImposedCR.intersectWith(CopyOfCR);
        // If the existing information is != x, do not use the information from
        // a chained predicate, as the != x information is more likely to be
        // helpful in practice.
        if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
          NewCR = CopyOfCR;

        addAdditionalUser(OtherOp, &CB);
        mergeInValue(
            IV, &CB,
            ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
        return;
      } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
        // For non-integer values or integer constant expressions, only
        // propagate equal constants.
        addAdditionalUser(OtherOp, &CB);
        mergeInValue(IV, &CB, CondVal);
        return;
      } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
                 !MayIncludeUndef) {
        // Propagate inequalities.
        addAdditionalUser(OtherOp, &CB);
        mergeInValue(IV, &CB,
                     ValueLatticeElement::getNot(CondVal.getConstant()));
        return;
      }

      return (void)mergeInValue(IV, &CB, CopyOfVal);
    }

    if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
      // Compute result range for intrinsics supported by ConstantRange.
      // Do this even if we don't know a range for all operands, as we may
      // still know something about the result range, e.g. of abs(x).
      SmallVector<ConstantRange, 2> OpRanges;
      for (Value *Op : II->args()) {
        const ValueLatticeElement &State = getValueState(Op);
        if (State.isConstantRange())
          OpRanges.push_back(State.getConstantRange());
        else
          OpRanges.push_back(
              ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
      }

      ConstantRange Result =
          ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
      return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
    }
  }

  // The common case is that we aren't tracking the callee, either because we
  // are not doing interprocedural analysis or the callee is indirect, or is
  // external.  Handle these cases first.
  if (!F || F->isDeclaration())
    return handleCallOverdefined(CB);

  // If this is a single/zero retval case, see if we're tracking the function.
  if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
    if (!MRVFunctionsTracked.count(F))
      return handleCallOverdefined(CB); // Not tracking this callee.

    // If we are tracking this callee, propagate the result of the function
    // into this call site.
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
      mergeInValue(getStructValueState(&CB, i), &CB,
                   TrackedMultipleRetVals[std::make_pair(F, i)],
                   getMaxWidenStepsOpts());
  } else {
    auto TFRVI = TrackedRetVals.find(F);
    if (TFRVI == TrackedRetVals.end())
      return handleCallOverdefined(CB); // Not tracking this callee.

    // If so, propagate the return value of the callee into this call result.
    mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
  }
}

void SCCPSolver::Solve() {
  // Process the work lists until they are empty!
  while (!BBWorkList.empty() || !InstWorkList.empty() ||
         !OverdefinedInstWorkList.empty()) {
    // Process the overdefined instruction's work list first, which drives other
    // things to overdefined more quickly.
    while (!OverdefinedInstWorkList.empty()) {
      Value *I = OverdefinedInstWorkList.pop_back_val();

      LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');

      // "I" got into the work list because it either made the transition from
      // bottom to constant, or to overdefined.
      //
      // Anything on this worklist that is overdefined need not be visited
      // since all of its users will have already been marked as overdefined
      // Update all of the users of this instruction's value.
      //
      markUsersAsChanged(I);
    }

    // Process the instruction work list.
    while (!InstWorkList.empty()) {
      Value *I = InstWorkList.pop_back_val();

      LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');

      // "I" got into the work list because it made the transition from undef to
      // constant.
      //
      // Anything on this worklist that is overdefined need not be visited
      // since all of its users will have already been marked as overdefined.
      // Update all of the users of this instruction's value.
      //
      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
        markUsersAsChanged(I);
    }

    // Process the basic block work list.
    while (!BBWorkList.empty()) {
      BasicBlock *BB = BBWorkList.pop_back_val();

      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');

      // Notify all instructions in this basic block that they are newly
      // executable.
      visit(BB);
    }
  }
}

/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
/// that branches on undef values cannot reach any of their successors.
/// However, this is not a safe assumption.  After we solve dataflow, this
/// method should be use to handle this.  If this returns true, the solver
/// should be rerun.
///
/// This method handles this by finding an unresolved branch and marking it one
/// of the edges from the block as being feasible, even though the condition
/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
/// CFG and only slightly pessimizes the analysis results (by marking one,
/// potentially infeasible, edge feasible).  This cannot usefully modify the
/// constraints on the condition of the branch, as that would impact other users
/// of the value.
///
/// This scan also checks for values that use undefs. It conservatively marks
/// them as overdefined.
bool SCCPSolver::ResolvedUndefsIn(Function &F) {
  bool MadeChange = false;
  for (BasicBlock &BB : F) {
    if (!BBExecutable.count(&BB))
      continue;

    for (Instruction &I : BB) {
      // Look for instructions which produce undef values.
      if (I.getType()->isVoidTy()) continue;

      if (auto *STy = dyn_cast<StructType>(I.getType())) {
        // Only a few things that can be structs matter for undef.

        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
        if (auto *CB = dyn_cast<CallBase>(&I))
          if (Function *F = CB->getCalledFunction())
            if (MRVFunctionsTracked.count(F))
              continue;

        // extractvalue and insertvalue don't need to be marked; they are
        // tracked as precisely as their operands.
        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
          continue;
        // Send the results of everything else to overdefined.  We could be
        // more precise than this but it isn't worth bothering.
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          ValueLatticeElement &LV = getStructValueState(&I, i);
          if (LV.isUnknownOrUndef()) {
            markOverdefined(LV, &I);
            MadeChange = true;
          }
        }
        continue;
      }

      ValueLatticeElement &LV = getValueState(&I);
      if (!LV.isUnknownOrUndef())
        continue;

      // There are two reasons a call can have an undef result
      // 1. It could be tracked.
      // 2. It could be constant-foldable.
      // Because of the way we solve return values, tracked calls must
      // never be marked overdefined in ResolvedUndefsIn.
      if (auto *CB = dyn_cast<CallBase>(&I))
        if (Function *F = CB->getCalledFunction())
          if (TrackedRetVals.count(F))
            continue;

      if (isa<LoadInst>(I)) {
        // A load here means one of two things: a load of undef from a global,
        // a load from an unknown pointer.  Either way, having it return undef
        // is okay.
        continue;
      }

      markOverdefined(&I);
      MadeChange = true;
    }

    // Check to see if we have a branch or switch on an undefined value.  If so
    // we force the branch to go one way or the other to make the successor
    // values live.  It doesn't really matter which way we force it.
    Instruction *TI = BB.getTerminator();
    if (auto *BI = dyn_cast<BranchInst>(TI)) {
      if (!BI->isConditional()) continue;
      if (!getValueState(BI->getCondition()).isUnknownOrUndef())
        continue;

      // If the input to SCCP is actually branch on undef, fix the undef to
      // false.
      if (isa<UndefValue>(BI->getCondition())) {
        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
        markEdgeExecutable(&BB, TI->getSuccessor(1));
        MadeChange = true;
        continue;
      }

      // Otherwise, it is a branch on a symbolic value which is currently
      // considered to be undef.  Make sure some edge is executable, so a
      // branch on "undef" always flows somewhere.
      // FIXME: Distinguish between dead code and an LLVM "undef" value.
      BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
      if (markEdgeExecutable(&BB, DefaultSuccessor))
        MadeChange = true;

      continue;
    }

   if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
      // Indirect branch with no successor ?. Its ok to assume it branches
      // to no target.
      if (IBR->getNumSuccessors() < 1)
        continue;

      if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
        continue;

      // If the input to SCCP is actually branch on undef, fix the undef to
      // the first successor of the indirect branch.
      if (isa<UndefValue>(IBR->getAddress())) {
        IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
        markEdgeExecutable(&BB, IBR->getSuccessor(0));
        MadeChange = true;
        continue;
      }

      // Otherwise, it is a branch on a symbolic value which is currently
      // considered to be undef.  Make sure some edge is executable, so a
      // branch on "undef" always flows somewhere.
      // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
      // we can assume the branch has undefined behavior instead.
      BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
      if (markEdgeExecutable(&BB, DefaultSuccessor))
        MadeChange = true;

      continue;
    }

    if (auto *SI = dyn_cast<SwitchInst>(TI)) {
      if (!SI->getNumCases() ||
          !getValueState(SI->getCondition()).isUnknownOrUndef())
        continue;

      // If the input to SCCP is actually switch on undef, fix the undef to
      // the first constant.
      if (isa<UndefValue>(SI->getCondition())) {
        SI->setCondition(SI->case_begin()->getCaseValue());
        markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
        MadeChange = true;
        continue;
      }

      // Otherwise, it is a branch on a symbolic value which is currently
      // considered to be undef.  Make sure some edge is executable, so a
      // branch on "undef" always flows somewhere.
      // FIXME: Distinguish between dead code and an LLVM "undef" value.
      BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
      if (markEdgeExecutable(&BB, DefaultSuccessor))
        MadeChange = true;

      continue;
    }
  }

  return MadeChange;
}

static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
  Constant *Const = nullptr;
  if (V->getType()->isStructTy()) {
    std::vector<ValueLatticeElement> IVs = Solver.getStructLatticeValueFor(V);
    if (any_of(IVs,
               [](const ValueLatticeElement &LV) { return isOverdefined(LV); }))
      return false;
    std::vector<Constant *> ConstVals;
    auto *ST = cast<StructType>(V->getType());
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
      ValueLatticeElement V = IVs[i];
      ConstVals.push_back(isConstant(V)
                              ? Solver.getConstant(V)
                              : UndefValue::get(ST->getElementType(i)));
    }
    Const = ConstantStruct::get(ST, ConstVals);
  } else {
    const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
    if (isOverdefined(IV))
      return false;

    Const =
        isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
  }
  assert(Const && "Constant is nullptr here!");

  // Replacing `musttail` instructions with constant breaks `musttail` invariant
  // unless the call itself can be removed
  CallInst *CI = dyn_cast<CallInst>(V);
  if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
    Function *F = CI->getCalledFunction();

    // Don't zap returns of the callee
    if (F)
      Solver.AddMustTailCallee(F);

    LLVM_DEBUG(dbgs() << "  Can\'t treat the result of musttail call : " << *CI
                      << " as a constant\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');

  // Replaces all of the uses of a variable with uses of the constant.
  V->replaceAllUsesWith(Const);
  return true;
}

static bool simplifyInstsInBlock(SCCPSolver &Solver, BasicBlock &BB,
                                 SmallPtrSetImpl<Value *> &InsertedValues,
                                 Statistic &InstRemovedStat,
                                 Statistic &InstReplacedStat) {
  bool MadeChanges = false;
  for (Instruction &Inst : make_early_inc_range(BB)) {
    if (Inst.getType()->isVoidTy())
      continue;
    if (tryToReplaceWithConstant(Solver, &Inst)) {
      if (Inst.isSafeToRemove())
        Inst.eraseFromParent();
      // Hey, we just changed something!
      MadeChanges = true;
      ++InstRemovedStat;
    } else if (isa<SExtInst>(&Inst)) {
      Value *ExtOp = Inst.getOperand(0);
      if (isa<Constant>(ExtOp) || InsertedValues.count(ExtOp))
        continue;
      const ValueLatticeElement &IV = Solver.getLatticeValueFor(ExtOp);
      if (!IV.isConstantRange(/*UndefAllowed=*/false))
        continue;
      if (IV.getConstantRange().isAllNonNegative()) {
        auto *ZExt = new ZExtInst(ExtOp, Inst.getType(), "", &Inst);
        InsertedValues.insert(ZExt);
        Inst.replaceAllUsesWith(ZExt);
        Solver.removeLatticeValueFor(&Inst);
        Inst.eraseFromParent();
        InstReplacedStat++;
        MadeChanges = true;
      }
    }
  }
  return MadeChanges;
}

// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
// and return true if the function was modified.
static bool runSCCP(Function &F, const DataLayout &DL,
                    const TargetLibraryInfo *TLI) {
  LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
  SCCPSolver Solver(
      DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; },
      F.getContext());

  // Mark the first block of the function as being executable.
  Solver.MarkBlockExecutable(&F.front());

  // Mark all arguments to the function as being overdefined.
  for (Argument &AI : F.args())
    Solver.markOverdefined(&AI);

  // Solve for constants.
  bool ResolvedUndefs = true;
  while (ResolvedUndefs) {
    Solver.Solve();
    LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
  }

  bool MadeChanges = false;

  // If we decided that there are basic blocks that are dead in this function,
  // delete their contents now.  Note that we cannot actually delete the blocks,
  // as we cannot modify the CFG of the function.

  SmallPtrSet<Value *, 32> InsertedValues;
  for (BasicBlock &BB : F) {
    if (!Solver.isBlockExecutable(&BB)) {
      LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);

      ++NumDeadBlocks;
      NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB).first;

      MadeChanges = true;
      continue;
    }

    MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
                                        NumInstRemoved, NumInstReplaced);
  }

  return MadeChanges;
}

PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
  const DataLayout &DL = F.getParent()->getDataLayout();
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  if (!runSCCP(F, DL, &TLI))
    return PreservedAnalyses::all();

  auto PA = PreservedAnalyses();
  PA.preserve<GlobalsAA>();
  PA.preserveSet<CFGAnalyses>();
  return PA;
}

namespace {

//===--------------------------------------------------------------------===//
//
/// SCCP Class - This class uses the SCCPSolver to implement a per-function
/// Sparse Conditional Constant Propagator.
///
class SCCPLegacyPass : public FunctionPass {
public:
  // Pass identification, replacement for typeid
  static char ID;

  SCCPLegacyPass() : FunctionPass(ID) {
    initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.setPreservesCFG();
  }

  // runOnFunction - Run the Sparse Conditional Constant Propagation
  // algorithm, and return true if the function was modified.
  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    const DataLayout &DL = F.getParent()->getDataLayout();
    const TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    return runSCCP(F, DL, TLI);
  }
};

} // end anonymous namespace

char SCCPLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
                      "Sparse Conditional Constant Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
                    "Sparse Conditional Constant Propagation", false, false)

// createSCCPPass - This is the public interface to this file.
FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }

static void findReturnsToZap(Function &F,
                             SmallVector<ReturnInst *, 8> &ReturnsToZap,
                             SCCPSolver &Solver) {
  // We can only do this if we know that nothing else can call the function.
  if (!Solver.isArgumentTrackedFunction(&F))
    return;

  // There is a non-removable musttail call site of this function. Zapping
  // returns is not allowed.
  if (Solver.isMustTailCallee(&F)) {
    LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
                      << " due to present musttail call of it\n");
    return;
  }

  assert(
      all_of(F.users(),
             [&Solver](User *U) {
               if (isa<Instruction>(U) &&
                   !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
                 return true;
               // Non-callsite uses are not impacted by zapping. Also, constant
               // uses (like blockaddresses) could stuck around, without being
               // used in the underlying IR, meaning we do not have lattice
               // values for them.
               if (!isa<CallBase>(U))
                 return true;
               if (U->getType()->isStructTy()) {
                 return all_of(Solver.getStructLatticeValueFor(U),
                               [](const ValueLatticeElement &LV) {
                                 return !isOverdefined(LV);
                               });
               }
               return !isOverdefined(Solver.getLatticeValueFor(U));
             }) &&
      "We can only zap functions where all live users have a concrete value");

  for (BasicBlock &BB : F) {
    if (CallInst *CI = BB.getTerminatingMustTailCall()) {
      LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
                        << "musttail call : " << *CI << "\n");
      (void)CI;
      return;
    }

    if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
      if (!isa<UndefValue>(RI->getOperand(0)))
        ReturnsToZap.push_back(RI);
  }
}

static bool removeNonFeasibleEdges(const SCCPSolver &Solver, BasicBlock *BB,
                                   DomTreeUpdater &DTU) {
  SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
  bool HasNonFeasibleEdges = false;
  for (BasicBlock *Succ : successors(BB)) {
    if (Solver.isEdgeFeasible(BB, Succ))
      FeasibleSuccessors.insert(Succ);
    else
      HasNonFeasibleEdges = true;
  }

  // All edges feasible, nothing to do.
  if (!HasNonFeasibleEdges)
    return false;

  // SCCP can only determine non-feasible edges for br, switch and indirectbr.
  Instruction *TI = BB->getTerminator();
  assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
          isa<IndirectBrInst>(TI)) &&
         "Terminator must be a br, switch or indirectbr");

  if (FeasibleSuccessors.size() == 1) {
    // Replace with an unconditional branch to the only feasible successor.
    BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
    SmallVector<DominatorTree::UpdateType, 8> Updates;
    bool HaveSeenOnlyFeasibleSuccessor = false;
    for (BasicBlock *Succ : successors(BB)) {
      if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
        // Don't remove the edge to the only feasible successor the first time
        // we see it. We still do need to remove any multi-edges to it though.
        HaveSeenOnlyFeasibleSuccessor = true;
        continue;
      }

      Succ->removePredecessor(BB);
      Updates.push_back({DominatorTree::Delete, BB, Succ});
    }

    BranchInst::Create(OnlyFeasibleSuccessor, BB);
    TI->eraseFromParent();
    DTU.applyUpdatesPermissive(Updates);
  } else if (FeasibleSuccessors.size() > 1) {
    SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
    SmallVector<DominatorTree::UpdateType, 8> Updates;
    for (auto CI = SI->case_begin(); CI != SI->case_end();) {
      if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
        ++CI;
        continue;
      }

      BasicBlock *Succ = CI->getCaseSuccessor();
      Succ->removePredecessor(BB);
      Updates.push_back({DominatorTree::Delete, BB, Succ});
      SI.removeCase(CI);
      // Don't increment CI, as we removed a case.
    }

    DTU.applyUpdatesPermissive(Updates);
  } else {
    llvm_unreachable("Must have at least one feasible successor");
  }
  return true;
}

bool llvm::runIPSCCP(
    Module &M, const DataLayout &DL,
    std::function<const TargetLibraryInfo &(Function &)> GetTLI,
    function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
  SCCPSolver Solver(DL, GetTLI, M.getContext());

  // Loop over all functions, marking arguments to those with their addresses
  // taken or that are external as overdefined.
  for (Function &F : M) {
    if (F.isDeclaration())
      continue;

    Solver.addAnalysis(F, getAnalysis(F));

    // Determine if we can track the function's return values. If so, add the
    // function to the solver's set of return-tracked functions.
    if (canTrackReturnsInterprocedurally(&F))
      Solver.AddTrackedFunction(&F);

    // Determine if we can track the function's arguments. If so, add the
    // function to the solver's set of argument-tracked functions.
    if (canTrackArgumentsInterprocedurally(&F)) {
      Solver.AddArgumentTrackedFunction(&F);
      continue;
    }

    // Assume the function is called.
    Solver.MarkBlockExecutable(&F.front());

    // Assume nothing about the incoming arguments.
    for (Argument &AI : F.args())
      Solver.markOverdefined(&AI);
  }

  // Determine if we can track any of the module's global variables. If so, add
  // the global variables we can track to the solver's set of tracked global
  // variables.
  for (GlobalVariable &G : M.globals()) {
    G.removeDeadConstantUsers();
    if (canTrackGlobalVariableInterprocedurally(&G))
      Solver.TrackValueOfGlobalVariable(&G);
  }

  // Solve for constants.
  bool ResolvedUndefs = true;
  Solver.Solve();
  while (ResolvedUndefs) {
    LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
    ResolvedUndefs = false;
    for (Function &F : M) {
      if (Solver.ResolvedUndefsIn(F))
        ResolvedUndefs = true;
    }
    if (ResolvedUndefs)
      Solver.Solve();
  }

  bool MadeChanges = false;

  // Iterate over all of the instructions in the module, replacing them with
  // constants if we have found them to be of constant values.

  for (Function &F : M) {
    if (F.isDeclaration())
      continue;

    SmallVector<BasicBlock *, 512> BlocksToErase;

    if (Solver.isBlockExecutable(&F.front())) {
      bool ReplacedPointerArg = false;
      for (Argument &Arg : F.args()) {
        if (!Arg.use_empty() && tryToReplaceWithConstant(Solver, &Arg)) {
          ReplacedPointerArg |= Arg.getType()->isPointerTy();
          ++IPNumArgsElimed;
        }
      }

      // If we replaced an argument, the argmemonly and
      // inaccessiblemem_or_argmemonly attributes do not hold any longer. Remove
      // them from both the function and callsites.
      if (ReplacedPointerArg) {
        AttrBuilder AttributesToRemove;
        AttributesToRemove.addAttribute(Attribute::ArgMemOnly);
        AttributesToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
        F.removeAttributes(AttributeList::FunctionIndex, AttributesToRemove);

        for (User *U : F.users()) {
          auto *CB = dyn_cast<CallBase>(U);
          if (!CB || CB->getCalledFunction() != &F)
            continue;

          CB->removeAttributes(AttributeList::FunctionIndex,
                               AttributesToRemove);
        }
      }
    }

    SmallPtrSet<Value *, 32> InsertedValues;
    for (BasicBlock &BB : F) {
      if (!Solver.isBlockExecutable(&BB)) {
        LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
        ++NumDeadBlocks;

        MadeChanges = true;

        if (&BB != &F.front())
          BlocksToErase.push_back(&BB);
        continue;
      }

      MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
                                          IPNumInstRemoved, IPNumInstReplaced);
    }

    DomTreeUpdater DTU = Solver.getDTU(F);
    // Change dead blocks to unreachable. We do it after replacing constants
    // in all executable blocks, because changeToUnreachable may remove PHI
    // nodes in executable blocks we found values for. The function's entry
    // block is not part of BlocksToErase, so we have to handle it separately.
    for (BasicBlock *BB : BlocksToErase) {
      NumInstRemoved +=
          changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
                              /*PreserveLCSSA=*/false, &DTU);
    }
    if (!Solver.isBlockExecutable(&F.front()))
      NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
                                            /*UseLLVMTrap=*/false,
                                            /*PreserveLCSSA=*/false, &DTU);

    for (BasicBlock &BB : F)
      MadeChanges |= removeNonFeasibleEdges(Solver, &BB, DTU);

    for (BasicBlock *DeadBB : BlocksToErase)
      DTU.deleteBB(DeadBB);

    for (BasicBlock &BB : F) {
      for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
        Instruction *Inst = &*BI++;
        if (Solver.getPredicateInfoFor(Inst)) {
          if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
            if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
              Value *Op = II->getOperand(0);
              Inst->replaceAllUsesWith(Op);
              Inst->eraseFromParent();
            }
          }
        }
      }
    }
  }

  // If we inferred constant or undef return values for a function, we replaced
  // all call uses with the inferred value.  This means we don't need to bother
  // actually returning anything from the function.  Replace all return
  // instructions with return undef.
  //
  // Do this in two stages: first identify the functions we should process, then
  // actually zap their returns.  This is important because we can only do this
  // if the address of the function isn't taken.  In cases where a return is the
  // last use of a function, the order of processing functions would affect
  // whether other functions are optimizable.
  SmallVector<ReturnInst*, 8> ReturnsToZap;

  for (const auto &I : Solver.getTrackedRetVals()) {
    Function *F = I.first;
    const ValueLatticeElement &ReturnValue = I.second;

    // If there is a known constant range for the return value, add !range
    // metadata to the function's call sites.
    if (ReturnValue.isConstantRange() &&
        !ReturnValue.getConstantRange().isSingleElement()) {
      // Do not add range metadata if the return value may include undef.
      if (ReturnValue.isConstantRangeIncludingUndef())
        continue;

      auto &CR = ReturnValue.getConstantRange();
      for (User *User : F->users()) {
        auto *CB = dyn_cast<CallBase>(User);
        if (!CB || CB->getCalledFunction() != F)
          continue;

        // Limit to cases where the return value is guaranteed to be neither
        // poison nor undef. Poison will be outside any range and currently
        // values outside of the specified range cause immediate undefined
        // behavior.
        if (!isGuaranteedNotToBeUndefOrPoison(CB, nullptr, CB))
          continue;

        // Do not touch existing metadata for now.
        // TODO: We should be able to take the intersection of the existing
        // metadata and the inferred range.
        if (CB->getMetadata(LLVMContext::MD_range))
          continue;

        LLVMContext &Context = CB->getParent()->getContext();
        Metadata *RangeMD[] = {
            ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())),
            ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))};
        CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD));
      }
      continue;
    }
    if (F->getReturnType()->isVoidTy())
      continue;
    if (isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
      findReturnsToZap(*F, ReturnsToZap, Solver);
  }

  for (auto F : Solver.getMRVFunctionsTracked()) {
    assert(F->getReturnType()->isStructTy() &&
           "The return type should be a struct");
    StructType *STy = cast<StructType>(F->getReturnType());
    if (Solver.isStructLatticeConstant(F, STy))
      findReturnsToZap(*F, ReturnsToZap, Solver);
  }

  // Zap all returns which we've identified as zap to change.
  SmallSetVector<Function *, 8> FuncZappedReturn;
  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
    Function *F = ReturnsToZap[i]->getParent()->getParent();
    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
    // Record all functions that are zapped.
    FuncZappedReturn.insert(F);
  }

  // Remove the returned attribute for zapped functions and the
  // corresponding call sites.
  for (Function *F : FuncZappedReturn) {
    for (Argument &A : F->args())
      F->removeParamAttr(A.getArgNo(), Attribute::Returned);
    for (Use &U : F->uses()) {
      // Skip over blockaddr users.
      if (isa<BlockAddress>(U.getUser()))
        continue;
      CallBase *CB = cast<CallBase>(U.getUser());
      for (Use &Arg : CB->args())
        CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
    }
  }

  // If we inferred constant or undef values for globals variables, we can
  // delete the global and any stores that remain to it.
  for (auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
    GlobalVariable *GV = I.first;
    if (isOverdefined(I.second))
      continue;
    LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
                      << "' is constant!\n");
    while (!GV->use_empty()) {
      StoreInst *SI = cast<StoreInst>(GV->user_back());
      SI->eraseFromParent();
      MadeChanges = true;
    }
    M.getGlobalList().erase(GV);
    ++IPNumGlobalConst;
  }

  return MadeChanges;
}