aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
blob: 0ed3324a27b6c991502edf84f98402c5e129e92f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements induction variable simplification. It does
// not define any actual pass or policy, but provides a single function to
// simplify a loop's induction variables based on ScalarEvolution.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "indvars"

STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
STATISTIC(
    NumSimplifiedSDiv,
    "Number of IV signed division operations converted to unsigned division");
STATISTIC(
    NumSimplifiedSRem,
    "Number of IV signed remainder operations converted to unsigned remainder");
STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");

namespace {
  /// This is a utility for simplifying induction variables
  /// based on ScalarEvolution. It is the primary instrument of the
  /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
  /// other loop passes that preserve SCEV.
  class SimplifyIndvar {
    Loop             *L;
    LoopInfo         *LI;
    ScalarEvolution  *SE;
    DominatorTree    *DT;
    const TargetTransformInfo *TTI;
    SCEVExpander     &Rewriter;
    SmallVectorImpl<WeakTrackingVH> &DeadInsts;

    bool Changed = false;

  public:
    SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
                   LoopInfo *LI, const TargetTransformInfo *TTI,
                   SCEVExpander &Rewriter,
                   SmallVectorImpl<WeakTrackingVH> &Dead)
        : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
          DeadInsts(Dead) {
      assert(LI && "IV simplification requires LoopInfo");
    }

    bool hasChanged() const { return Changed; }

    /// Iteratively perform simplification on a worklist of users of the
    /// specified induction variable. This is the top-level driver that applies
    /// all simplifications to users of an IV.
    void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);

    Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);

    bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
    bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
    bool replaceFloatIVWithIntegerIV(Instruction *UseInst);

    bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
    bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
    bool eliminateTrunc(TruncInst *TI);
    bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
    bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand);
    void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand);
    void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand,
                             bool IsSigned);
    void replaceRemWithNumerator(BinaryOperator *Rem);
    void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
    void replaceSRemWithURem(BinaryOperator *Rem);
    bool eliminateSDiv(BinaryOperator *SDiv);
    bool strengthenBinaryOp(BinaryOperator *BO, Instruction *IVOperand);
    bool strengthenOverflowingOperation(BinaryOperator *OBO,
                                        Instruction *IVOperand);
    bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand);
  };
}

/// Find a point in code which dominates all given instructions. We can safely
/// assume that, whatever fact we can prove at the found point, this fact is
/// also true for each of the given instructions.
static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
                                        DominatorTree &DT) {
  Instruction *CommonDom = nullptr;
  for (auto *Insn : Instructions)
    CommonDom =
        CommonDom ? DT.findNearestCommonDominator(CommonDom, Insn) : Insn;
  assert(CommonDom && "Common dominator not found?");
  return CommonDom;
}

/// Fold an IV operand into its use.  This removes increments of an
/// aligned IV when used by a instruction that ignores the low bits.
///
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
///
/// Return the operand of IVOperand for this induction variable if IVOperand can
/// be folded (in case more folding opportunities have been exposed).
/// Otherwise return null.
Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
  Value *IVSrc = nullptr;
  const unsigned OperIdx = 0;
  const SCEV *FoldedExpr = nullptr;
  bool MustDropExactFlag = false;
  switch (UseInst->getOpcode()) {
  default:
    return nullptr;
  case Instruction::UDiv:
  case Instruction::LShr:
    // We're only interested in the case where we know something about
    // the numerator and have a constant denominator.
    if (IVOperand != UseInst->getOperand(OperIdx) ||
        !isa<ConstantInt>(UseInst->getOperand(1)))
      return nullptr;

    // Attempt to fold a binary operator with constant operand.
    // e.g. ((I + 1) >> 2) => I >> 2
    if (!isa<BinaryOperator>(IVOperand)
        || !isa<ConstantInt>(IVOperand->getOperand(1)))
      return nullptr;

    IVSrc = IVOperand->getOperand(0);
    // IVSrc must be the (SCEVable) IV, since the other operand is const.
    assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");

    ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
    if (UseInst->getOpcode() == Instruction::LShr) {
      // Get a constant for the divisor. See createSCEV.
      uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
      if (D->getValue().uge(BitWidth))
        return nullptr;

      D = ConstantInt::get(UseInst->getContext(),
                           APInt::getOneBitSet(BitWidth, D->getZExtValue()));
    }
    const auto *LHS = SE->getSCEV(IVSrc);
    const auto *RHS = SE->getSCEV(D);
    FoldedExpr = SE->getUDivExpr(LHS, RHS);
    // We might have 'exact' flag set at this point which will no longer be
    // correct after we make the replacement.
    if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
      MustDropExactFlag = true;
  }
  // We have something that might fold it's operand. Compare SCEVs.
  if (!SE->isSCEVable(UseInst->getType()))
    return nullptr;

  // Bypass the operand if SCEV can prove it has no effect.
  if (SE->getSCEV(UseInst) != FoldedExpr)
    return nullptr;

  LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
                    << " -> " << *UseInst << '\n');

  UseInst->setOperand(OperIdx, IVSrc);
  assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");

  if (MustDropExactFlag)
    UseInst->dropPoisonGeneratingFlags();

  ++NumElimOperand;
  Changed = true;
  if (IVOperand->use_empty())
    DeadInsts.emplace_back(IVOperand);
  return IVSrc;
}

bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
                                               Instruction *IVOperand) {
  auto *Preheader = L->getLoopPreheader();
  if (!Preheader)
    return false;
  unsigned IVOperIdx = 0;
  ICmpInst::Predicate Pred = ICmp->getPredicate();
  if (IVOperand != ICmp->getOperand(0)) {
    // Swapped
    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
    IVOperIdx = 1;
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  // Get the SCEVs for the ICmp operands (in the specific context of the
  // current loop)
  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
  const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
  const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
  auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L, ICmp);
  if (!LIP)
    return false;
  ICmpInst::Predicate InvariantPredicate = LIP->Pred;
  const SCEV *InvariantLHS = LIP->LHS;
  const SCEV *InvariantRHS = LIP->RHS;

  // Do not generate something ridiculous.
  auto *PHTerm = Preheader->getTerminator();
  if (Rewriter.isHighCostExpansion({InvariantLHS, InvariantRHS}, L,
                                   2 * SCEVCheapExpansionBudget, TTI, PHTerm) ||
      !Rewriter.isSafeToExpandAt(InvariantLHS, PHTerm) ||
      !Rewriter.isSafeToExpandAt(InvariantRHS, PHTerm))
    return false;
  auto *NewLHS =
      Rewriter.expandCodeFor(InvariantLHS, IVOperand->getType(), PHTerm);
  auto *NewRHS =
      Rewriter.expandCodeFor(InvariantRHS, IVOperand->getType(), PHTerm);
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
  ICmp->setPredicate(InvariantPredicate);
  ICmp->setOperand(0, NewLHS);
  ICmp->setOperand(1, NewRHS);
  return true;
}

/// SimplifyIVUsers helper for eliminating useless
/// comparisons against an induction variable.
void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp,
                                           Instruction *IVOperand) {
  unsigned IVOperIdx = 0;
  ICmpInst::Predicate Pred = ICmp->getPredicate();
  ICmpInst::Predicate OriginalPred = Pred;
  if (IVOperand != ICmp->getOperand(0)) {
    // Swapped
    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
    IVOperIdx = 1;
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  // Get the SCEVs for the ICmp operands (in the specific context of the
  // current loop)
  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
  const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
  const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);

  // If the condition is always true or always false in the given context,
  // replace it with a constant value.
  SmallVector<Instruction *, 4> Users;
  for (auto *U : ICmp->users())
    Users.push_back(cast<Instruction>(U));
  const Instruction *CtxI = findCommonDominator(Users, *DT);
  if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
    SE->forgetValue(ICmp);
    ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
    DeadInsts.emplace_back(ICmp);
    LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
  } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
    // fallthrough to end of function
  } else if (ICmpInst::isSigned(OriginalPred) &&
             SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
    // If we were unable to make anything above, all we can is to canonicalize
    // the comparison hoping that it will open the doors for other
    // optimizations. If we find out that we compare two non-negative values,
    // we turn the instruction's predicate to its unsigned version. Note that
    // we cannot rely on Pred here unless we check if we have swapped it.
    assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
    LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
                      << '\n');
    ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
  } else
    return;

  ++NumElimCmp;
  Changed = true;
}

bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
  // Get the SCEVs for the ICmp operands.
  auto *N = SE->getSCEV(SDiv->getOperand(0));
  auto *D = SE->getSCEV(SDiv->getOperand(1));

  // Simplify unnecessary loops away.
  const Loop *L = LI->getLoopFor(SDiv->getParent());
  N = SE->getSCEVAtScope(N, L);
  D = SE->getSCEVAtScope(D, L);

  // Replace sdiv by udiv if both of the operands are non-negative
  if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
    auto *UDiv = BinaryOperator::Create(
        BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
        SDiv->getName() + ".udiv", SDiv);
    UDiv->setIsExact(SDiv->isExact());
    SDiv->replaceAllUsesWith(UDiv);
    LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
    ++NumSimplifiedSDiv;
    Changed = true;
    DeadInsts.push_back(SDiv);
    return true;
  }

  return false;
}

// i %s n -> i %u n if i >= 0 and n >= 0
void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
  auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
  auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
                                      Rem->getName() + ".urem", Rem);
  Rem->replaceAllUsesWith(URem);
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
  ++NumSimplifiedSRem;
  Changed = true;
  DeadInsts.emplace_back(Rem);
}

// i % n  -->  i  if i is in [0,n).
void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
  Rem->replaceAllUsesWith(Rem->getOperand(0));
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
  ++NumElimRem;
  Changed = true;
  DeadInsts.emplace_back(Rem);
}

// (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
  auto *T = Rem->getType();
  auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
  ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
  SelectInst *Sel =
      SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
  Rem->replaceAllUsesWith(Sel);
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
  ++NumElimRem;
  Changed = true;
  DeadInsts.emplace_back(Rem);
}

/// SimplifyIVUsers helper for eliminating useless remainder operations
/// operating on an induction variable or replacing srem by urem.
void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem,
                                         Instruction *IVOperand,
                                         bool IsSigned) {
  auto *NValue = Rem->getOperand(0);
  auto *DValue = Rem->getOperand(1);
  // We're only interested in the case where we know something about
  // the numerator, unless it is a srem, because we want to replace srem by urem
  // in general.
  bool UsedAsNumerator = IVOperand == NValue;
  if (!UsedAsNumerator && !IsSigned)
    return;

  const SCEV *N = SE->getSCEV(NValue);

  // Simplify unnecessary loops away.
  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
  N = SE->getSCEVAtScope(N, ICmpLoop);

  bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);

  // Do not proceed if the Numerator may be negative
  if (!IsNumeratorNonNegative)
    return;

  const SCEV *D = SE->getSCEV(DValue);
  D = SE->getSCEVAtScope(D, ICmpLoop);

  if (UsedAsNumerator) {
    auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
    if (SE->isKnownPredicate(LT, N, D)) {
      replaceRemWithNumerator(Rem);
      return;
    }

    auto *T = Rem->getType();
    const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
    if (SE->isKnownPredicate(LT, NLessOne, D)) {
      replaceRemWithNumeratorOrZero(Rem);
      return;
    }
  }

  // Try to replace SRem with URem, if both N and D are known non-negative.
  // Since we had already check N, we only need to check D now
  if (!IsSigned || !SE->isKnownNonNegative(D))
    return;

  replaceSRemWithURem(Rem);
}

bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
  const SCEV *LHS = SE->getSCEV(WO->getLHS());
  const SCEV *RHS = SE->getSCEV(WO->getRHS());
  if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
    return false;

  // Proved no overflow, nuke the overflow check and, if possible, the overflow
  // intrinsic as well.

  BinaryOperator *NewResult = BinaryOperator::Create(
      WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);

  if (WO->isSigned())
    NewResult->setHasNoSignedWrap(true);
  else
    NewResult->setHasNoUnsignedWrap(true);

  SmallVector<ExtractValueInst *, 4> ToDelete;

  for (auto *U : WO->users()) {
    if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
      if (EVI->getIndices()[0] == 1)
        EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
      else {
        assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
        EVI->replaceAllUsesWith(NewResult);
      }
      ToDelete.push_back(EVI);
    }
  }

  for (auto *EVI : ToDelete)
    EVI->eraseFromParent();

  if (WO->use_empty())
    WO->eraseFromParent();

  Changed = true;
  return true;
}

bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
  const SCEV *LHS = SE->getSCEV(SI->getLHS());
  const SCEV *RHS = SE->getSCEV(SI->getRHS());
  if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
    return false;

  BinaryOperator *BO = BinaryOperator::Create(
      SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
  if (SI->isSigned())
    BO->setHasNoSignedWrap();
  else
    BO->setHasNoUnsignedWrap();

  SI->replaceAllUsesWith(BO);
  DeadInsts.emplace_back(SI);
  Changed = true;
  return true;
}

bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
  // It is always legal to replace
  //   icmp <pred> i32 trunc(iv), n
  // with
  //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
  // Or with
  //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
  // Or with either of these if pred is an equality predicate.
  //
  // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
  // every comparison which uses trunc, it means that we can replace each of
  // them with comparison of iv against sext/zext(n). We no longer need trunc
  // after that.
  //
  // TODO: Should we do this if we can widen *some* comparisons, but not all
  // of them? Sometimes it is enough to enable other optimizations, but the
  // trunc instruction will stay in the loop.
  Value *IV = TI->getOperand(0);
  Type *IVTy = IV->getType();
  const SCEV *IVSCEV = SE->getSCEV(IV);
  const SCEV *TISCEV = SE->getSCEV(TI);

  // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
  // get rid of trunc
  bool DoesSExtCollapse = false;
  bool DoesZExtCollapse = false;
  if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
    DoesSExtCollapse = true;
  if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
    DoesZExtCollapse = true;

  // If neither sext nor zext does collapse, it is not profitable to do any
  // transform. Bail.
  if (!DoesSExtCollapse && !DoesZExtCollapse)
    return false;

  // Collect users of the trunc that look like comparisons against invariants.
  // Bail if we find something different.
  SmallVector<ICmpInst *, 4> ICmpUsers;
  for (auto *U : TI->users()) {
    // We don't care about users in unreachable blocks.
    if (isa<Instruction>(U) &&
        !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
      continue;
    ICmpInst *ICI = dyn_cast<ICmpInst>(U);
    if (!ICI) return false;
    assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
    if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
        !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
      return false;
    // If we cannot get rid of trunc, bail.
    if (ICI->isSigned() && !DoesSExtCollapse)
      return false;
    if (ICI->isUnsigned() && !DoesZExtCollapse)
      return false;
    // For equality, either signed or unsigned works.
    ICmpUsers.push_back(ICI);
  }

  auto CanUseZExt = [&](ICmpInst *ICI) {
    // Unsigned comparison can be widened as unsigned.
    if (ICI->isUnsigned())
      return true;
    // Is it profitable to do zext?
    if (!DoesZExtCollapse)
      return false;
    // For equality, we can safely zext both parts.
    if (ICI->isEquality())
      return true;
    // Otherwise we can only use zext when comparing two non-negative or two
    // negative values. But in practice, we will never pass DoesZExtCollapse
    // check for a negative value, because zext(trunc(x)) is non-negative. So
    // it only make sense to check for non-negativity here.
    const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
    const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
    return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
  };
  // Replace all comparisons against trunc with comparisons against IV.
  for (auto *ICI : ICmpUsers) {
    bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
    auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
    IRBuilder<> Builder(ICI);
    Value *Ext = nullptr;
    // For signed/unsigned predicate, replace the old comparison with comparison
    // of immediate IV against sext/zext of the invariant argument. If we can
    // use either sext or zext (i.e. we are dealing with equality predicate),
    // then prefer zext as a more canonical form.
    // TODO: If we see a signed comparison which can be turned into unsigned,
    // we can do it here for canonicalization purposes.
    ICmpInst::Predicate Pred = ICI->getPredicate();
    if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
    if (CanUseZExt(ICI)) {
      assert(DoesZExtCollapse && "Unprofitable zext?");
      Ext = Builder.CreateZExt(Op1, IVTy, "zext");
      Pred = ICmpInst::getUnsignedPredicate(Pred);
    } else {
      assert(DoesSExtCollapse && "Unprofitable sext?");
      Ext = Builder.CreateSExt(Op1, IVTy, "sext");
      assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
    }
    bool Changed;
    L->makeLoopInvariant(Ext, Changed);
    (void)Changed;
    auto *NewCmp = Builder.CreateICmp(Pred, IV, Ext);
    ICI->replaceAllUsesWith(NewCmp);
    DeadInsts.emplace_back(ICI);
  }

  // Trunc no longer needed.
  TI->replaceAllUsesWith(PoisonValue::get(TI->getType()));
  DeadInsts.emplace_back(TI);
  return true;
}

/// Eliminate an operation that consumes a simple IV and has no observable
/// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
/// but UseInst may not be.
bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
                                     Instruction *IVOperand) {
  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
    eliminateIVComparison(ICmp, IVOperand);
    return true;
  }
  if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
    bool IsSRem = Bin->getOpcode() == Instruction::SRem;
    if (IsSRem || Bin->getOpcode() == Instruction::URem) {
      simplifyIVRemainder(Bin, IVOperand, IsSRem);
      return true;
    }

    if (Bin->getOpcode() == Instruction::SDiv)
      return eliminateSDiv(Bin);
  }

  if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
    if (eliminateOverflowIntrinsic(WO))
      return true;

  if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
    if (eliminateSaturatingIntrinsic(SI))
      return true;

  if (auto *TI = dyn_cast<TruncInst>(UseInst))
    if (eliminateTrunc(TI))
      return true;

  if (eliminateIdentitySCEV(UseInst, IVOperand))
    return true;

  return false;
}

static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
  if (auto *BB = L->getLoopPreheader())
    return BB->getTerminator();

  return Hint;
}

/// Replace the UseInst with a loop invariant expression if it is safe.
bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
  if (!SE->isSCEVable(I->getType()))
    return false;

  // Get the symbolic expression for this instruction.
  const SCEV *S = SE->getSCEV(I);

  if (!SE->isLoopInvariant(S, L))
    return false;

  // Do not generate something ridiculous even if S is loop invariant.
  if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
    return false;

  auto *IP = GetLoopInvariantInsertPosition(L, I);

  if (!Rewriter.isSafeToExpandAt(S, IP)) {
    LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
                      << " with non-speculable loop invariant: " << *S << '\n');
    return false;
  }

  auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);

  I->replaceAllUsesWith(Invariant);
  LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
                    << " with loop invariant: " << *S << '\n');
  ++NumFoldedUser;
  Changed = true;
  DeadInsts.emplace_back(I);
  return true;
}

/// Eliminate redundant type cast between integer and float.
bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
  if (UseInst->getOpcode() != CastInst::SIToFP &&
      UseInst->getOpcode() != CastInst::UIToFP)
    return false;

  Instruction *IVOperand = cast<Instruction>(UseInst->getOperand(0));
  // Get the symbolic expression for this instruction.
  const SCEV *IV = SE->getSCEV(IVOperand);
  int MaskBits;
  if (UseInst->getOpcode() == CastInst::SIToFP)
    MaskBits = (int)SE->getSignedRange(IV).getMinSignedBits();
  else
    MaskBits = (int)SE->getUnsignedRange(IV).getActiveBits();
  int DestNumSigBits = UseInst->getType()->getFPMantissaWidth();
  if (MaskBits <= DestNumSigBits) {
    for (User *U : UseInst->users()) {
      // Match for fptosi/fptoui of sitofp and with same type.
      auto *CI = dyn_cast<CastInst>(U);
      if (!CI)
        continue;

      CastInst::CastOps Opcode = CI->getOpcode();
      if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI)
        continue;

      Value *Conv = nullptr;
      if (IVOperand->getType() != CI->getType()) {
        IRBuilder<> Builder(CI);
        StringRef Name = IVOperand->getName();
        // To match InstCombine logic, we only need sext if both fptosi and
        // sitofp are used. If one of them is unsigned, then we can use zext.
        if (SE->getTypeSizeInBits(IVOperand->getType()) >
            SE->getTypeSizeInBits(CI->getType())) {
          Conv = Builder.CreateTrunc(IVOperand, CI->getType(), Name + ".trunc");
        } else if (Opcode == CastInst::FPToUI ||
                   UseInst->getOpcode() == CastInst::UIToFP) {
          Conv = Builder.CreateZExt(IVOperand, CI->getType(), Name + ".zext");
        } else {
          Conv = Builder.CreateSExt(IVOperand, CI->getType(), Name + ".sext");
        }
      } else
        Conv = IVOperand;

      CI->replaceAllUsesWith(Conv);
      DeadInsts.push_back(CI);
      LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI
                        << " with: " << *Conv << '\n');

      ++NumFoldedUser;
      Changed = true;
    }
  }

  return Changed;
}

/// Eliminate any operation that SCEV can prove is an identity function.
bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
                                           Instruction *IVOperand) {
  if (!SE->isSCEVable(UseInst->getType()) ||
      (UseInst->getType() != IVOperand->getType()) ||
      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
    return false;

  // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
  // dominator tree, even if X is an operand to Y.  For instance, in
  //
  //     %iv = phi i32 {0,+,1}
  //     br %cond, label %left, label %merge
  //
  //   left:
  //     %X = add i32 %iv, 0
  //     br label %merge
  //
  //   merge:
  //     %M = phi (%X, %iv)
  //
  // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
  // %M.replaceAllUsesWith(%X) would be incorrect.

  if (isa<PHINode>(UseInst))
    // If UseInst is not a PHI node then we know that IVOperand dominates
    // UseInst directly from the legality of SSA.
    if (!DT || !DT->dominates(IVOperand, UseInst))
      return false;

  if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
    return false;

  LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');

  SE->forgetValue(UseInst);
  UseInst->replaceAllUsesWith(IVOperand);
  ++NumElimIdentity;
  Changed = true;
  DeadInsts.emplace_back(UseInst);
  return true;
}

bool SimplifyIndvar::strengthenBinaryOp(BinaryOperator *BO,
                                        Instruction *IVOperand) {
  return (isa<OverflowingBinaryOperator>(BO) &&
          strengthenOverflowingOperation(BO, IVOperand)) ||
         (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand));
}

/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
/// unsigned-overflow.  Returns true if anything changed, false otherwise.
bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
                                                    Instruction *IVOperand) {
  auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp(
      cast<OverflowingBinaryOperator>(BO));

  if (!Flags)
    return false;

  BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) ==
                           SCEV::FlagNUW);
  BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) ==
                         SCEV::FlagNSW);

  // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
  // flags on addrecs while performing zero/sign extensions. We could call
  // forgetValue() here to make sure those flags also propagate to any other
  // SCEV expressions based on the addrec. However, this can have pathological
  // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
  return true;
}

/// Annotate the Shr in (X << IVOperand) >> C as exact using the
/// information from the IV's range. Returns true if anything changed, false
/// otherwise.
bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
                                          Instruction *IVOperand) {
  if (BO->getOpcode() == Instruction::Shl) {
    bool Changed = false;
    ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
    for (auto *U : BO->users()) {
      const APInt *C;
      if (match(U,
                m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
          match(U,
                m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
        BinaryOperator *Shr = cast<BinaryOperator>(U);
        if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
          Shr->setIsExact(true);
          Changed = true;
        }
      }
    }
    return Changed;
  }

  return false;
}

/// Add all uses of Def to the current IV's worklist.
static void pushIVUsers(
  Instruction *Def, Loop *L,
  SmallPtrSet<Instruction*,16> &Simplified,
  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {

  for (User *U : Def->users()) {
    Instruction *UI = cast<Instruction>(U);

    // Avoid infinite or exponential worklist processing.
    // Also ensure unique worklist users.
    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
    // self edges first.
    if (UI == Def)
      continue;

    // Only change the current Loop, do not change the other parts (e.g. other
    // Loops).
    if (!L->contains(UI))
      continue;

    // Do not push the same instruction more than once.
    if (!Simplified.insert(UI).second)
      continue;

    SimpleIVUsers.push_back(std::make_pair(UI, Def));
  }
}

/// Return true if this instruction generates a simple SCEV
/// expression in terms of that IV.
///
/// This is similar to IVUsers' isInteresting() but processes each instruction
/// non-recursively when the operand is already known to be a simpleIVUser.
///
static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
  if (!SE->isSCEVable(I->getType()))
    return false;

  // Get the symbolic expression for this instruction.
  const SCEV *S = SE->getSCEV(I);

  // Only consider affine recurrences.
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
  if (AR && AR->getLoop() == L)
    return true;

  return false;
}

/// Iteratively perform simplification on a worklist of users
/// of the specified induction variable. Each successive simplification may push
/// more users which may themselves be candidates for simplification.
///
/// This algorithm does not require IVUsers analysis. Instead, it simplifies
/// instructions in-place during analysis. Rather than rewriting induction
/// variables bottom-up from their users, it transforms a chain of IVUsers
/// top-down, updating the IR only when it encounters a clear optimization
/// opportunity.
///
/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
///
void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
  if (!SE->isSCEVable(CurrIV->getType()))
    return;

  // Instructions processed by SimplifyIndvar for CurrIV.
  SmallPtrSet<Instruction*,16> Simplified;

  // Use-def pairs if IV users waiting to be processed for CurrIV.
  SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;

  // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
  // called multiple times for the same LoopPhi. This is the proper thing to
  // do for loop header phis that use each other.
  pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);

  while (!SimpleIVUsers.empty()) {
    std::pair<Instruction*, Instruction*> UseOper =
      SimpleIVUsers.pop_back_val();
    Instruction *UseInst = UseOper.first;

    // If a user of the IndVar is trivially dead, we prefer just to mark it dead
    // rather than try to do some complex analysis or transformation (such as
    // widening) basing on it.
    // TODO: Propagate TLI and pass it here to handle more cases.
    if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
      DeadInsts.emplace_back(UseInst);
      continue;
    }

    // Bypass back edges to avoid extra work.
    if (UseInst == CurrIV) continue;

    // Try to replace UseInst with a loop invariant before any other
    // simplifications.
    if (replaceIVUserWithLoopInvariant(UseInst))
      continue;

    // Go further for the bitcast 'prtoint ptr to i64' or if the cast is done
    // by truncation
    if ((isa<PtrToIntInst>(UseInst)) || (isa<TruncInst>(UseInst)))
      for (Use &U : UseInst->uses()) {
        Instruction *User = cast<Instruction>(U.getUser());
        if (replaceIVUserWithLoopInvariant(User))
          break; // done replacing
      }

    Instruction *IVOperand = UseOper.second;
    for (unsigned N = 0; IVOperand; ++N) {
      assert(N <= Simplified.size() && "runaway iteration");
      (void) N;

      Value *NewOper = foldIVUser(UseInst, IVOperand);
      if (!NewOper)
        break; // done folding
      IVOperand = dyn_cast<Instruction>(NewOper);
    }
    if (!IVOperand)
      continue;

    if (eliminateIVUser(UseInst, IVOperand)) {
      pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
      continue;
    }

    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
      if (strengthenBinaryOp(BO, IVOperand)) {
        // re-queue uses of the now modified binary operator and fall
        // through to the checks that remain.
        pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
      }
    }

    // Try to use integer induction for FPToSI of float induction directly.
    if (replaceFloatIVWithIntegerIV(UseInst)) {
      // Re-queue the potentially new direct uses of IVOperand.
      pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
      continue;
    }

    CastInst *Cast = dyn_cast<CastInst>(UseInst);
    if (V && Cast) {
      V->visitCast(Cast);
      continue;
    }
    if (isSimpleIVUser(UseInst, L, SE)) {
      pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
    }
  }
}

namespace llvm {

void IVVisitor::anchor() { }

/// Simplify instructions that use this induction variable
/// by using ScalarEvolution to analyze the IV's recurrence.
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
                       LoopInfo *LI, const TargetTransformInfo *TTI,
                       SmallVectorImpl<WeakTrackingVH> &Dead,
                       SCEVExpander &Rewriter, IVVisitor *V) {
  SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
                     Rewriter, Dead);
  SIV.simplifyUsers(CurrIV, V);
  return SIV.hasChanged();
}

/// Simplify users of induction variables within this
/// loop. This does not actually change or add IVs.
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
                     LoopInfo *LI, const TargetTransformInfo *TTI,
                     SmallVectorImpl<WeakTrackingVH> &Dead) {
  SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
#ifndef NDEBUG
  Rewriter.setDebugType(DEBUG_TYPE);
#endif
  bool Changed = false;
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
    Changed |=
        simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
  }
  return Changed;
}

} // namespace llvm

namespace {
//===----------------------------------------------------------------------===//
// Widen Induction Variables - Extend the width of an IV to cover its
// widest uses.
//===----------------------------------------------------------------------===//

class WidenIV {
  // Parameters
  PHINode *OrigPhi;
  Type *WideType;

  // Context
  LoopInfo        *LI;
  Loop            *L;
  ScalarEvolution *SE;
  DominatorTree   *DT;

  // Does the module have any calls to the llvm.experimental.guard intrinsic
  // at all? If not we can avoid scanning instructions looking for guards.
  bool HasGuards;

  bool UsePostIncrementRanges;

  // Statistics
  unsigned NumElimExt = 0;
  unsigned NumWidened = 0;

  // Result
  PHINode *WidePhi = nullptr;
  Instruction *WideInc = nullptr;
  const SCEV *WideIncExpr = nullptr;
  SmallVectorImpl<WeakTrackingVH> &DeadInsts;

  SmallPtrSet<Instruction *,16> Widened;

  enum class ExtendKind { Zero, Sign, Unknown };

  // A map tracking the kind of extension used to widen each narrow IV
  // and narrow IV user.
  // Key: pointer to a narrow IV or IV user.
  // Value: the kind of extension used to widen this Instruction.
  DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;

  using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;

  // A map with control-dependent ranges for post increment IV uses. The key is
  // a pair of IV def and a use of this def denoting the context. The value is
  // a ConstantRange representing possible values of the def at the given
  // context.
  DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;

  std::optional<ConstantRange> getPostIncRangeInfo(Value *Def,
                                                   Instruction *UseI) {
    DefUserPair Key(Def, UseI);
    auto It = PostIncRangeInfos.find(Key);
    return It == PostIncRangeInfos.end()
               ? std::optional<ConstantRange>(std::nullopt)
               : std::optional<ConstantRange>(It->second);
  }

  void calculatePostIncRanges(PHINode *OrigPhi);
  void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);

  void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
    DefUserPair Key(Def, UseI);
    auto It = PostIncRangeInfos.find(Key);
    if (It == PostIncRangeInfos.end())
      PostIncRangeInfos.insert({Key, R});
    else
      It->second = R.intersectWith(It->second);
  }

public:
  /// Record a link in the Narrow IV def-use chain along with the WideIV that
  /// computes the same value as the Narrow IV def.  This avoids caching Use*
  /// pointers.
  struct NarrowIVDefUse {
    Instruction *NarrowDef = nullptr;
    Instruction *NarrowUse = nullptr;
    Instruction *WideDef = nullptr;

    // True if the narrow def is never negative.  Tracking this information lets
    // us use a sign extension instead of a zero extension or vice versa, when
    // profitable and legal.
    bool NeverNegative = false;

    NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
                   bool NeverNegative)
        : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
          NeverNegative(NeverNegative) {}
  };

  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
          DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
          bool HasGuards, bool UsePostIncrementRanges = true);

  PHINode *createWideIV(SCEVExpander &Rewriter);

  unsigned getNumElimExt() { return NumElimExt; };
  unsigned getNumWidened() { return NumWidened; };

protected:
  Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
                          Instruction *Use);

  Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
  Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
                                     const SCEVAddRecExpr *WideAR);
  Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);

  ExtendKind getExtendKind(Instruction *I);

  using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;

  WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);

  WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);

  const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
                              unsigned OpCode) const;

  Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);

  bool widenLoopCompare(NarrowIVDefUse DU);
  bool widenWithVariantUse(NarrowIVDefUse DU);

  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);

private:
  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
};
} // namespace

/// Determine the insertion point for this user. By default, insert immediately
/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
/// common dominator for the incoming blocks. A nullptr can be returned if no
/// viable location is found: it may happen if User is a PHI and Def only comes
/// to this PHI from unreachable blocks.
static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
                                          DominatorTree *DT, LoopInfo *LI) {
  PHINode *PHI = dyn_cast<PHINode>(User);
  if (!PHI)
    return User;

  Instruction *InsertPt = nullptr;
  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
    if (PHI->getIncomingValue(i) != Def)
      continue;

    BasicBlock *InsertBB = PHI->getIncomingBlock(i);

    if (!DT->isReachableFromEntry(InsertBB))
      continue;

    if (!InsertPt) {
      InsertPt = InsertBB->getTerminator();
      continue;
    }
    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
    InsertPt = InsertBB->getTerminator();
  }

  // If we have skipped all inputs, it means that Def only comes to Phi from
  // unreachable blocks.
  if (!InsertPt)
    return nullptr;

  auto *DefI = dyn_cast<Instruction>(Def);
  if (!DefI)
    return InsertPt;

  assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");

  auto *L = LI->getLoopFor(DefI->getParent());
  assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));

  for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
    if (LI->getLoopFor(DTN->getBlock()) == L)
      return DTN->getBlock()->getTerminator();

  llvm_unreachable("DefI dominates InsertPt!");
}

WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
          DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
          bool HasGuards, bool UsePostIncrementRanges)
      : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
        L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
        HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
        DeadInsts(DI) {
    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
    ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero;
}

Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
                                 bool IsSigned, Instruction *Use) {
  // Set the debug location and conservative insertion point.
  IRBuilder<> Builder(Use);
  // Hoist the insertion point into loop preheaders as far as possible.
  for (const Loop *L = LI->getLoopFor(Use->getParent());
       L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
       L = L->getParentLoop())
    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());

  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
                    Builder.CreateZExt(NarrowOper, WideType);
}

/// Instantiate a wide operation to replace a narrow operation. This only needs
/// to handle operations that can evaluation to SCEVAddRec. It can safely return
/// 0 for any operation we decide not to clone.
Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
                                  const SCEVAddRecExpr *WideAR) {
  unsigned Opcode = DU.NarrowUse->getOpcode();
  switch (Opcode) {
  default:
    return nullptr;
  case Instruction::Add:
  case Instruction::Mul:
  case Instruction::UDiv:
  case Instruction::Sub:
    return cloneArithmeticIVUser(DU, WideAR);

  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    return cloneBitwiseIVUser(DU);
  }
}

Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
  Instruction *NarrowUse = DU.NarrowUse;
  Instruction *NarrowDef = DU.NarrowDef;
  Instruction *WideDef = DU.WideDef;

  LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");

  // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
  // about the narrow operand yet so must insert a [sz]ext. It is probably loop
  // invariant and will be folded or hoisted. If it actually comes from a
  // widened IV, it should be removed during a future call to widenIVUse.
  bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign;
  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
                   ? WideDef
                   : createExtendInst(NarrowUse->getOperand(0), WideType,
                                      IsSigned, NarrowUse);
  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
                   ? WideDef
                   : createExtendInst(NarrowUse->getOperand(1), WideType,
                                      IsSigned, NarrowUse);

  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
                                        NarrowBO->getName());
  IRBuilder<> Builder(NarrowUse);
  Builder.Insert(WideBO);
  WideBO->copyIRFlags(NarrowBO);
  return WideBO;
}

Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
                                            const SCEVAddRecExpr *WideAR) {
  Instruction *NarrowUse = DU.NarrowUse;
  Instruction *NarrowDef = DU.NarrowDef;
  Instruction *WideDef = DU.WideDef;

  LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");

  unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;

  // We're trying to find X such that
  //
  //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
  //
  // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
  // and check using SCEV if any of them are correct.

  // Returns true if extending NonIVNarrowDef according to `SignExt` is a
  // correct solution to X.
  auto GuessNonIVOperand = [&](bool SignExt) {
    const SCEV *WideLHS;
    const SCEV *WideRHS;

    auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
      if (SignExt)
        return SE->getSignExtendExpr(S, Ty);
      return SE->getZeroExtendExpr(S, Ty);
    };

    if (IVOpIdx == 0) {
      WideLHS = SE->getSCEV(WideDef);
      const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
      WideRHS = GetExtend(NarrowRHS, WideType);
    } else {
      const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
      WideLHS = GetExtend(NarrowLHS, WideType);
      WideRHS = SE->getSCEV(WideDef);
    }

    // WideUse is "WideDef `op.wide` X" as described in the comment.
    const SCEV *WideUse =
      getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());

    return WideUse == WideAR;
  };

  bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign;
  if (!GuessNonIVOperand(SignExtend)) {
    SignExtend = !SignExtend;
    if (!GuessNonIVOperand(SignExtend))
      return nullptr;
  }

  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
                   ? WideDef
                   : createExtendInst(NarrowUse->getOperand(0), WideType,
                                      SignExtend, NarrowUse);
  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
                   ? WideDef
                   : createExtendInst(NarrowUse->getOperand(1), WideType,
                                      SignExtend, NarrowUse);

  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
                                        NarrowBO->getName());

  IRBuilder<> Builder(NarrowUse);
  Builder.Insert(WideBO);
  WideBO->copyIRFlags(NarrowBO);
  return WideBO;
}

WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
  auto It = ExtendKindMap.find(I);
  assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
  return It->second;
}

const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
                                     unsigned OpCode) const {
  switch (OpCode) {
  case Instruction::Add:
    return SE->getAddExpr(LHS, RHS);
  case Instruction::Sub:
    return SE->getMinusSCEV(LHS, RHS);
  case Instruction::Mul:
    return SE->getMulExpr(LHS, RHS);
  case Instruction::UDiv:
    return SE->getUDivExpr(LHS, RHS);
  default:
    llvm_unreachable("Unsupported opcode.");
  };
}

/// No-wrap operations can transfer sign extension of their result to their
/// operands. Generate the SCEV value for the widened operation without
/// actually modifying the IR yet. If the expression after extending the
/// operands is an AddRec for this loop, return the AddRec and the kind of
/// extension used.
WidenIV::WidenedRecTy
WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
  // Handle the common case of add<nsw/nuw>
  const unsigned OpCode = DU.NarrowUse->getOpcode();
  // Only Add/Sub/Mul instructions supported yet.
  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
      OpCode != Instruction::Mul)
    return {nullptr, ExtendKind::Unknown};

  // One operand (NarrowDef) has already been extended to WideDef. Now determine
  // if extending the other will lead to a recurrence.
  const unsigned ExtendOperIdx =
      DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");

  const OverflowingBinaryOperator *OBO =
    cast<OverflowingBinaryOperator>(DU.NarrowUse);
  ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
  if (!(ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap()) &&
      !(ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap())) {
    ExtKind = ExtendKind::Unknown;

    // For a non-negative NarrowDef, we can choose either type of
    // extension.  We want to use the current extend kind if legal
    // (see above), and we only hit this code if we need to check
    // the opposite case.
    if (DU.NeverNegative) {
      if (OBO->hasNoSignedWrap()) {
        ExtKind = ExtendKind::Sign;
      } else if (OBO->hasNoUnsignedWrap()) {
        ExtKind = ExtendKind::Zero;
      }
    }
  }

  const SCEV *ExtendOperExpr =
      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx));
  if (ExtKind == ExtendKind::Sign)
    ExtendOperExpr = SE->getSignExtendExpr(ExtendOperExpr, WideType);
  else if (ExtKind == ExtendKind::Zero)
    ExtendOperExpr = SE->getZeroExtendExpr(ExtendOperExpr, WideType);
  else
    return {nullptr, ExtendKind::Unknown};

  // When creating this SCEV expr, don't apply the current operations NSW or NUW
  // flags. This instruction may be guarded by control flow that the no-wrap
  // behavior depends on. Non-control-equivalent instructions can be mapped to
  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
  // semantics to those operations.
  const SCEV *lhs = SE->getSCEV(DU.WideDef);
  const SCEV *rhs = ExtendOperExpr;

  // Let's swap operands to the initial order for the case of non-commutative
  // operations, like SUB. See PR21014.
  if (ExtendOperIdx == 0)
    std::swap(lhs, rhs);
  const SCEVAddRecExpr *AddRec =
      dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));

  if (!AddRec || AddRec->getLoop() != L)
    return {nullptr, ExtendKind::Unknown};

  return {AddRec, ExtKind};
}

/// Is this instruction potentially interesting for further simplification after
/// widening it's type? In other words, can the extend be safely hoisted out of
/// the loop with SCEV reducing the value to a recurrence on the same loop. If
/// so, return the extended recurrence and the kind of extension used. Otherwise
/// return {nullptr, ExtendKind::Unknown}.
WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
  if (!DU.NarrowUse->getType()->isIntegerTy())
    return {nullptr, ExtendKind::Unknown};

  const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
  if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
      SE->getTypeSizeInBits(WideType)) {
    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
    // index. So don't follow this use.
    return {nullptr, ExtendKind::Unknown};
  }

  const SCEV *WideExpr;
  ExtendKind ExtKind;
  if (DU.NeverNegative) {
    WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
    if (isa<SCEVAddRecExpr>(WideExpr))
      ExtKind = ExtendKind::Sign;
    else {
      WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
      ExtKind = ExtendKind::Zero;
    }
  } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) {
    WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
    ExtKind = ExtendKind::Sign;
  } else {
    WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
    ExtKind = ExtendKind::Zero;
  }
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
  if (!AddRec || AddRec->getLoop() != L)
    return {nullptr, ExtendKind::Unknown};
  return {AddRec, ExtKind};
}

/// This IV user cannot be widened. Replace this use of the original narrow IV
/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
                          LoopInfo *LI) {
  auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
  if (!InsertPt)
    return;
  LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
                    << *DU.NarrowUse << "\n");
  IRBuilder<> Builder(InsertPt);
  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
}

/// If the narrow use is a compare instruction, then widen the compare
//  (and possibly the other operand).  The extend operation is hoisted into the
// loop preheader as far as possible.
bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
  ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
  if (!Cmp)
    return false;

  // We can legally widen the comparison in the following two cases:
  //
  //  - The signedness of the IV extension and comparison match
  //
  //  - The narrow IV is always positive (and thus its sign extension is equal
  //    to its zero extension).  For instance, let's say we're zero extending
  //    %narrow for the following use
  //
  //      icmp slt i32 %narrow, %val   ... (A)
  //
  //    and %narrow is always positive.  Then
  //
  //      (A) == icmp slt i32 sext(%narrow), sext(%val)
  //          == icmp slt i32 zext(%narrow), sext(%val)
  bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
  if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
    return false;

  Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
  unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
  unsigned IVWidth = SE->getTypeSizeInBits(WideType);
  assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");

  // Widen the compare instruction.
  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);

  // Widen the other operand of the compare, if necessary.
  if (CastWidth < IVWidth) {
    Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
    DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
  }
  return true;
}

// The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
// will not work when:
//    1) SCEV traces back to an instruction inside the loop that SCEV can not
// expand, eg. add %indvar, (load %addr)
//    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
// While SCEV fails to avoid trunc, we can still try to use instruction
// combining approach to prove trunc is not required. This can be further
// extended with other instruction combining checks, but for now we handle the
// following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
//
// Src:
//   %c = sub nsw %b, %indvar
//   %d = sext %c to i64
// Dst:
//   %indvar.ext1 = sext %indvar to i64
//   %m = sext %b to i64
//   %d = sub nsw i64 %m, %indvar.ext1
// Therefore, as long as the result of add/sub/mul is extended to wide type, no
// trunc is required regardless of how %b is generated. This pattern is common
// when calculating address in 64 bit architecture
bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
  Instruction *NarrowUse = DU.NarrowUse;
  Instruction *NarrowDef = DU.NarrowDef;
  Instruction *WideDef = DU.WideDef;

  // Handle the common case of add<nsw/nuw>
  const unsigned OpCode = NarrowUse->getOpcode();
  // Only Add/Sub/Mul instructions are supported.
  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
      OpCode != Instruction::Mul)
    return false;

  // The operand that is not defined by NarrowDef of DU. Let's call it the
  // other operand.
  assert((NarrowUse->getOperand(0) == NarrowDef ||
          NarrowUse->getOperand(1) == NarrowDef) &&
         "bad DU");

  const OverflowingBinaryOperator *OBO =
    cast<OverflowingBinaryOperator>(NarrowUse);
  ExtendKind ExtKind = getExtendKind(NarrowDef);
  bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap();
  bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap();
  auto AnotherOpExtKind = ExtKind;

  // Check that all uses are either:
  // - narrow def (in case of we are widening the IV increment);
  // - single-input LCSSA Phis;
  // - comparison of the chosen type;
  // - extend of the chosen type (raison d'etre).
  SmallVector<Instruction *, 4> ExtUsers;
  SmallVector<PHINode *, 4> LCSSAPhiUsers;
  SmallVector<ICmpInst *, 4> ICmpUsers;
  for (Use &U : NarrowUse->uses()) {
    Instruction *User = cast<Instruction>(U.getUser());
    if (User == NarrowDef)
      continue;
    if (!L->contains(User)) {
      auto *LCSSAPhi = cast<PHINode>(User);
      // Make sure there is only 1 input, so that we don't have to split
      // critical edges.
      if (LCSSAPhi->getNumOperands() != 1)
        return false;
      LCSSAPhiUsers.push_back(LCSSAPhi);
      continue;
    }
    if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
      auto Pred = ICmp->getPredicate();
      // We have 3 types of predicates: signed, unsigned and equality
      // predicates. For equality, it's legal to widen icmp for either sign and
      // zero extend. For sign extend, we can also do so for signed predicates,
      // likeweise for zero extend we can widen icmp for unsigned predicates.
      if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred))
        return false;
      if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred))
        return false;
      ICmpUsers.push_back(ICmp);
      continue;
    }
    if (ExtKind == ExtendKind::Sign)
      User = dyn_cast<SExtInst>(User);
    else
      User = dyn_cast<ZExtInst>(User);
    if (!User || User->getType() != WideType)
      return false;
    ExtUsers.push_back(User);
  }
  if (ExtUsers.empty()) {
    DeadInsts.emplace_back(NarrowUse);
    return true;
  }

  // We'll prove some facts that should be true in the context of ext users. If
  // there is no users, we are done now. If there are some, pick their common
  // dominator as context.
  const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);

  if (!CanSignExtend && !CanZeroExtend) {
    // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
    // will most likely not see it. Let's try to prove it.
    if (OpCode != Instruction::Add)
      return false;
    if (ExtKind != ExtendKind::Zero)
      return false;
    const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
    const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
    // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
    if (NarrowUse->getOperand(0) != NarrowDef)
      return false;
    if (!SE->isKnownNegative(RHS))
      return false;
    bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
                                               SE->getNegativeSCEV(RHS), CtxI);
    if (!ProvedSubNUW)
      return false;
    // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
    // neg(zext(neg(op))), which is basically sext(op).
    AnotherOpExtKind = ExtendKind::Sign;
  }

  // Verifying that Defining operand is an AddRec
  const SCEV *Op1 = SE->getSCEV(WideDef);
  const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
  if (!AddRecOp1 || AddRecOp1->getLoop() != L)
    return false;

  LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");

  // Generating a widening use instruction.
  Value *LHS =
      (NarrowUse->getOperand(0) == NarrowDef)
          ? WideDef
          : createExtendInst(NarrowUse->getOperand(0), WideType,
                             AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
  Value *RHS =
      (NarrowUse->getOperand(1) == NarrowDef)
          ? WideDef
          : createExtendInst(NarrowUse->getOperand(1), WideType,
                             AnotherOpExtKind == ExtendKind::Sign, NarrowUse);

  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
                                        NarrowBO->getName());
  IRBuilder<> Builder(NarrowUse);
  Builder.Insert(WideBO);
  WideBO->copyIRFlags(NarrowBO);
  ExtendKindMap[NarrowUse] = ExtKind;

  for (Instruction *User : ExtUsers) {
    assert(User->getType() == WideType && "Checked before!");
    LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
                      << *WideBO << "\n");
    ++NumElimExt;
    User->replaceAllUsesWith(WideBO);
    DeadInsts.emplace_back(User);
  }

  for (PHINode *User : LCSSAPhiUsers) {
    assert(User->getNumOperands() == 1 && "Checked before!");
    Builder.SetInsertPoint(User);
    auto *WidePN =
        Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
    BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
    assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
           "Not a LCSSA Phi?");
    WidePN->addIncoming(WideBO, LoopExitingBlock);
    Builder.SetInsertPoint(User->getParent(),
                           User->getParent()->getFirstInsertionPt());
    auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
    User->replaceAllUsesWith(TruncPN);
    DeadInsts.emplace_back(User);
  }

  for (ICmpInst *User : ICmpUsers) {
    Builder.SetInsertPoint(User);
    auto ExtendedOp = [&](Value * V)->Value * {
      if (V == NarrowUse)
        return WideBO;
      if (ExtKind == ExtendKind::Zero)
        return Builder.CreateZExt(V, WideBO->getType());
      else
        return Builder.CreateSExt(V, WideBO->getType());
    };
    auto Pred = User->getPredicate();
    auto *LHS = ExtendedOp(User->getOperand(0));
    auto *RHS = ExtendedOp(User->getOperand(1));
    auto *WideCmp =
        Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
    User->replaceAllUsesWith(WideCmp);
    DeadInsts.emplace_back(User);
  }

  return true;
}

/// Determine whether an individual user of the narrow IV can be widened. If so,
/// return the wide clone of the user.
Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
  assert(ExtendKindMap.count(DU.NarrowDef) &&
         "Should already know the kind of extension used to widen NarrowDef");

  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
  if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
    if (LI->getLoopFor(UsePhi->getParent()) != L) {
      // For LCSSA phis, sink the truncate outside the loop.
      // After SimplifyCFG most loop exit targets have a single predecessor.
      // Otherwise fall back to a truncate within the loop.
      if (UsePhi->getNumOperands() != 1)
        truncateIVUse(DU, DT, LI);
      else {
        // Widening the PHI requires us to insert a trunc.  The logical place
        // for this trunc is in the same BB as the PHI.  This is not possible if
        // the BB is terminated by a catchswitch.
        if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
          return nullptr;

        PHINode *WidePhi =
          PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
                          UsePhi);
        WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
        BasicBlock *WidePhiBB = WidePhi->getParent();
        IRBuilder<> Builder(WidePhiBB, WidePhiBB->getFirstInsertionPt());
        Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
        UsePhi->replaceAllUsesWith(Trunc);
        DeadInsts.emplace_back(UsePhi);
        LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
                          << *WidePhi << "\n");
      }
      return nullptr;
    }
  }

  // This narrow use can be widened by a sext if it's non-negative or its narrow
  // def was widened by a sext. Same for zext.
  auto canWidenBySExt = [&]() {
    return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
  };
  auto canWidenByZExt = [&]() {
    return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero;
  };

  // Our raison d'etre! Eliminate sign and zero extension.
  if ((match(DU.NarrowUse, m_SExtLike(m_Value())) && canWidenBySExt()) ||
      (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
    Value *NewDef = DU.WideDef;
    if (DU.NarrowUse->getType() != WideType) {
      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
      if (CastWidth < IVWidth) {
        // The cast isn't as wide as the IV, so insert a Trunc.
        IRBuilder<> Builder(DU.NarrowUse);
        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
      }
      else {
        // A wider extend was hidden behind a narrower one. This may induce
        // another round of IV widening in which the intermediate IV becomes
        // dead. It should be very rare.
        LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
                          << " not wide enough to subsume " << *DU.NarrowUse
                          << "\n");
        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
        NewDef = DU.NarrowUse;
      }
    }
    if (NewDef != DU.NarrowUse) {
      LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
                        << " replaced by " << *DU.WideDef << "\n");
      ++NumElimExt;
      DU.NarrowUse->replaceAllUsesWith(NewDef);
      DeadInsts.emplace_back(DU.NarrowUse);
    }
    // Now that the extend is gone, we want to expose it's uses for potential
    // further simplification. We don't need to directly inform SimplifyIVUsers
    // of the new users, because their parent IV will be processed later as a
    // new loop phi. If we preserved IVUsers analysis, we would also want to
    // push the uses of WideDef here.

    // No further widening is needed. The deceased [sz]ext had done it for us.
    return nullptr;
  }

  auto tryAddRecExpansion = [&]() -> Instruction* {
    // Does this user itself evaluate to a recurrence after widening?
    WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
    if (!WideAddRec.first)
      WideAddRec = getWideRecurrence(DU);
    assert((WideAddRec.first == nullptr) ==
           (WideAddRec.second == ExtendKind::Unknown));
    if (!WideAddRec.first)
      return nullptr;

    // Reuse the IV increment that SCEVExpander created as long as it dominates
    // NarrowUse.
    Instruction *WideUse = nullptr;
    if (WideAddRec.first == WideIncExpr &&
        Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
      WideUse = WideInc;
    else {
      WideUse = cloneIVUser(DU, WideAddRec.first);
      if (!WideUse)
        return nullptr;
    }
    // Evaluation of WideAddRec ensured that the narrow expression could be
    // extended outside the loop without overflow. This suggests that the wide use
    // evaluates to the same expression as the extended narrow use, but doesn't
    // absolutely guarantee it. Hence the following failsafe check. In rare cases
    // where it fails, we simply throw away the newly created wide use.
    if (WideAddRec.first != SE->getSCEV(WideUse)) {
      LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
                 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
                 << "\n");
      DeadInsts.emplace_back(WideUse);
      return nullptr;
    };

    // if we reached this point then we are going to replace
    // DU.NarrowUse with WideUse. Reattach DbgValue then.
    replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);

    ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
    // Returning WideUse pushes it on the worklist.
    return WideUse;
  };

  if (auto *I = tryAddRecExpansion())
    return I;

  // If use is a loop condition, try to promote the condition instead of
  // truncating the IV first.
  if (widenLoopCompare(DU))
    return nullptr;

  // We are here about to generate a truncate instruction that may hurt
  // performance because the scalar evolution expression computed earlier
  // in WideAddRec.first does not indicate a polynomial induction expression.
  // In that case, look at the operands of the use instruction to determine
  // if we can still widen the use instead of truncating its operand.
  if (widenWithVariantUse(DU))
    return nullptr;

  // This user does not evaluate to a recurrence after widening, so don't
  // follow it. Instead insert a Trunc to kill off the original use,
  // eventually isolating the original narrow IV so it can be removed.
  truncateIVUse(DU, DT, LI);
  return nullptr;
}

/// Add eligible users of NarrowDef to NarrowIVUsers.
void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
  const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
  bool NonNegativeDef =
      SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
                           SE->getZero(NarrowSCEV->getType()));
  for (User *U : NarrowDef->users()) {
    Instruction *NarrowUser = cast<Instruction>(U);

    // Handle data flow merges and bizarre phi cycles.
    if (!Widened.insert(NarrowUser).second)
      continue;

    bool NonNegativeUse = false;
    if (!NonNegativeDef) {
      // We might have a control-dependent range information for this context.
      if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
        NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
    }

    NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
                               NonNegativeDef || NonNegativeUse);
  }
}

/// Process a single induction variable. First use the SCEVExpander to create a
/// wide induction variable that evaluates to the same recurrence as the
/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
/// def-use chain. After widenIVUse has processed all interesting IV users, the
/// narrow IV will be isolated for removal by DeleteDeadPHIs.
///
/// It would be simpler to delete uses as they are processed, but we must avoid
/// invalidating SCEV expressions.
PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
  // Is this phi an induction variable?
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
  if (!AddRec)
    return nullptr;

  // Widen the induction variable expression.
  const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign
                               ? SE->getSignExtendExpr(AddRec, WideType)
                               : SE->getZeroExtendExpr(AddRec, WideType);

  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
         "Expect the new IV expression to preserve its type");

  // Can the IV be extended outside the loop without overflow?
  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
  if (!AddRec || AddRec->getLoop() != L)
    return nullptr;

  // An AddRec must have loop-invariant operands. Since this AddRec is
  // materialized by a loop header phi, the expression cannot have any post-loop
  // operands, so they must dominate the loop header.
  assert(
      SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
      SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
      "Loop header phi recurrence inputs do not dominate the loop");

  // Iterate over IV uses (including transitive ones) looking for IV increments
  // of the form 'add nsw %iv, <const>'. For each increment and each use of
  // the increment calculate control-dependent range information basing on
  // dominating conditions inside of the loop (e.g. a range check inside of the
  // loop). Calculated ranges are stored in PostIncRangeInfos map.
  //
  // Control-dependent range information is later used to prove that a narrow
  // definition is not negative (see pushNarrowIVUsers). It's difficult to do
  // this on demand because when pushNarrowIVUsers needs this information some
  // of the dominating conditions might be already widened.
  if (UsePostIncrementRanges)
    calculatePostIncRanges(OrigPhi);

  // The rewriter provides a value for the desired IV expression. This may
  // either find an existing phi or materialize a new one. Either way, we
  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
  // of the phi-SCC dominates the loop entry.
  Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
  Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
  // If the wide phi is not a phi node, for example a cast node, like bitcast,
  // inttoptr, ptrtoint, just skip for now.
  if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
    // if the cast node is an inserted instruction without any user, we should
    // remove it to make sure the pass don't touch the function as we can not
    // wide the phi.
    if (ExpandInst->hasNUses(0) &&
        Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
      DeadInsts.emplace_back(ExpandInst);
    return nullptr;
  }

  // Remembering the WideIV increment generated by SCEVExpander allows
  // widenIVUse to reuse it when widening the narrow IV's increment. We don't
  // employ a general reuse mechanism because the call above is the only call to
  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
    WideInc =
        dyn_cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
    if (WideInc) {
      WideIncExpr = SE->getSCEV(WideInc);
      // Propagate the debug location associated with the original loop
      // increment to the new (widened) increment.
      auto *OrigInc =
          cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
      WideInc->setDebugLoc(OrigInc->getDebugLoc());
    }
  }

  LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
  ++NumWidened;

  // Traverse the def-use chain using a worklist starting at the original IV.
  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );

  Widened.insert(OrigPhi);
  pushNarrowIVUsers(OrigPhi, WidePhi);

  while (!NarrowIVUsers.empty()) {
    WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();

    // Process a def-use edge. This may replace the use, so don't hold a
    // use_iterator across it.
    Instruction *WideUse = widenIVUse(DU, Rewriter);

    // Follow all def-use edges from the previous narrow use.
    if (WideUse)
      pushNarrowIVUsers(DU.NarrowUse, WideUse);

    // widenIVUse may have removed the def-use edge.
    if (DU.NarrowDef->use_empty())
      DeadInsts.emplace_back(DU.NarrowDef);
  }

  // Attach any debug information to the new PHI.
  replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);

  return WidePhi;
}

/// Calculates control-dependent range for the given def at the given context
/// by looking at dominating conditions inside of the loop
void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
                                    Instruction *NarrowUser) {
  Value *NarrowDefLHS;
  const APInt *NarrowDefRHS;
  if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
                                 m_APInt(NarrowDefRHS))) ||
      !NarrowDefRHS->isNonNegative())
    return;

  auto UpdateRangeFromCondition = [&] (Value *Condition,
                                       bool TrueDest) {
    CmpInst::Predicate Pred;
    Value *CmpRHS;
    if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
                                 m_Value(CmpRHS))))
      return;

    CmpInst::Predicate P =
            TrueDest ? Pred : CmpInst::getInversePredicate(Pred);

    auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
    auto CmpConstrainedLHSRange =
            ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
    auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
        *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);

    updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
  };

  auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
    if (!HasGuards)
      return;

    for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
                                     Ctx->getParent()->rend())) {
      Value *C = nullptr;
      if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
        UpdateRangeFromCondition(C, /*TrueDest=*/true);
    }
  };

  UpdateRangeFromGuards(NarrowUser);

  BasicBlock *NarrowUserBB = NarrowUser->getParent();
  // If NarrowUserBB is statically unreachable asking dominator queries may
  // yield surprising results. (e.g. the block may not have a dom tree node)
  if (!DT->isReachableFromEntry(NarrowUserBB))
    return;

  for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
       L->contains(DTB->getBlock());
       DTB = DTB->getIDom()) {
    auto *BB = DTB->getBlock();
    auto *TI = BB->getTerminator();
    UpdateRangeFromGuards(TI);

    auto *BI = dyn_cast<BranchInst>(TI);
    if (!BI || !BI->isConditional())
      continue;

    auto *TrueSuccessor = BI->getSuccessor(0);
    auto *FalseSuccessor = BI->getSuccessor(1);

    auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
      return BBE.isSingleEdge() &&
             DT->dominates(BBE, NarrowUser->getParent());
    };

    if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
      UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);

    if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
      UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
  }
}

/// Calculates PostIncRangeInfos map for the given IV
void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
  SmallPtrSet<Instruction *, 16> Visited;
  SmallVector<Instruction *, 6> Worklist;
  Worklist.push_back(OrigPhi);
  Visited.insert(OrigPhi);

  while (!Worklist.empty()) {
    Instruction *NarrowDef = Worklist.pop_back_val();

    for (Use &U : NarrowDef->uses()) {
      auto *NarrowUser = cast<Instruction>(U.getUser());

      // Don't go looking outside the current loop.
      auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
      if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
        continue;

      if (!Visited.insert(NarrowUser).second)
        continue;

      Worklist.push_back(NarrowUser);

      calculatePostIncRange(NarrowDef, NarrowUser);
    }
  }
}

PHINode *llvm::createWideIV(const WideIVInfo &WI,
    LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
    DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
    unsigned &NumElimExt, unsigned &NumWidened,
    bool HasGuards, bool UsePostIncrementRanges) {
  WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
  PHINode *WidePHI = Widener.createWideIV(Rewriter);
  NumElimExt = Widener.getNumElimExt();
  NumWidened = Widener.getNumWidened();
  return WidePHI;
}