aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
blob: 3b90997100f124ae81e744603ec09bfa14dc9f3a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
//===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass merges loads/stores to/from sequential memory addresses into vector
// loads/stores.  Although there's nothing GPU-specific in here, this pass is
// motivated by the microarchitectural quirks of nVidia and AMD GPUs.
//
// (For simplicity below we talk about loads only, but everything also applies
// to stores.)
//
// This pass is intended to be run late in the pipeline, after other
// vectorization opportunities have been exploited.  So the assumption here is
// that immediately following our new vector load we'll need to extract out the
// individual elements of the load, so we can operate on them individually.
//
// On CPUs this transformation is usually not beneficial, because extracting the
// elements of a vector register is expensive on most architectures.  It's
// usually better just to load each element individually into its own scalar
// register.
//
// However, nVidia and AMD GPUs don't have proper vector registers.  Instead, a
// "vector load" loads directly into a series of scalar registers.  In effect,
// extracting the elements of the vector is free.  It's therefore always
// beneficial to vectorize a sequence of loads on these architectures.
//
// Vectorizing (perhaps a better name might be "coalescing") loads can have
// large performance impacts on GPU kernels, and opportunities for vectorizing
// are common in GPU code.  This pass tries very hard to find such
// opportunities; its runtime is quadratic in the number of loads in a BB.
//
// Some CPU architectures, such as ARM, have instructions that load into
// multiple scalar registers, similar to a GPU vectorized load.  In theory ARM
// could use this pass (with some modifications), but currently it implements
// its own pass to do something similar to what we do here.

#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Vectorize.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "load-store-vectorizer"

STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");

// FIXME: Assuming stack alignment of 4 is always good enough
static const unsigned StackAdjustedAlignment = 4;

namespace {

/// ChainID is an arbitrary token that is allowed to be different only for the
/// accesses that are guaranteed to be considered non-consecutive by
/// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
/// together and reducing the number of instructions the main search operates on
/// at a time, i.e. this is to reduce compile time and nothing else as the main
/// search has O(n^2) time complexity. The underlying type of ChainID should not
/// be relied upon.
using ChainID = const Value *;
using InstrList = SmallVector<Instruction *, 8>;
using InstrListMap = MapVector<ChainID, InstrList>;

class Vectorizer {
  Function &F;
  AliasAnalysis &AA;
  AssumptionCache &AC;
  DominatorTree &DT;
  ScalarEvolution &SE;
  TargetTransformInfo &TTI;
  const DataLayout &DL;
  IRBuilder<> Builder;

public:
  Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
             DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
      : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
        DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}

  bool run();

private:
  unsigned getPointerAddressSpace(Value *I);

  static const unsigned MaxDepth = 3;

  bool isConsecutiveAccess(Value *A, Value *B);
  bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta,
                              unsigned Depth = 0) const;
  bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
                                   unsigned Depth) const;
  bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
                          unsigned Depth) const;

  /// After vectorization, reorder the instructions that I depends on
  /// (the instructions defining its operands), to ensure they dominate I.
  void reorder(Instruction *I);

  /// Returns the first and the last instructions in Chain.
  std::pair<BasicBlock::iterator, BasicBlock::iterator>
  getBoundaryInstrs(ArrayRef<Instruction *> Chain);

  /// Erases the original instructions after vectorizing.
  void eraseInstructions(ArrayRef<Instruction *> Chain);

  /// "Legalize" the vector type that would be produced by combining \p
  /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
  /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
  /// expected to have more than 4 elements.
  std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
  splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);

  /// Finds the largest prefix of Chain that's vectorizable, checking for
  /// intervening instructions which may affect the memory accessed by the
  /// instructions within Chain.
  ///
  /// The elements of \p Chain must be all loads or all stores and must be in
  /// address order.
  ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);

  /// Collects load and store instructions to vectorize.
  std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);

  /// Processes the collected instructions, the \p Map. The values of \p Map
  /// should be all loads or all stores.
  bool vectorizeChains(InstrListMap &Map);

  /// Finds the load/stores to consecutive memory addresses and vectorizes them.
  bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);

  /// Vectorizes the load instructions in Chain.
  bool
  vectorizeLoadChain(ArrayRef<Instruction *> Chain,
                     SmallPtrSet<Instruction *, 16> *InstructionsProcessed);

  /// Vectorizes the store instructions in Chain.
  bool
  vectorizeStoreChain(ArrayRef<Instruction *> Chain,
                      SmallPtrSet<Instruction *, 16> *InstructionsProcessed);

  /// Check if this load/store access is misaligned accesses.
  bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
                          Align Alignment);
};

class LoadStoreVectorizerLegacyPass : public FunctionPass {
public:
  static char ID;

  LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
    initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;

  StringRef getPassName() const override {
    return "GPU Load and Store Vectorizer";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
  }
};

} // end anonymous namespace

char LoadStoreVectorizerLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
                      "Vectorize load and Store instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
                    "Vectorize load and store instructions", false, false)

Pass *llvm::createLoadStoreVectorizerPass() {
  return new LoadStoreVectorizerLegacyPass();
}

bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
  // Don't vectorize when the attribute NoImplicitFloat is used.
  if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
    return false;

  AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  TargetTransformInfo &TTI =
      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);

  AssumptionCache &AC =
      getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);

  Vectorizer V(F, AA, AC, DT, SE, TTI);
  return V.run();
}

PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
  // Don't vectorize when the attribute NoImplicitFloat is used.
  if (F.hasFnAttribute(Attribute::NoImplicitFloat))
    return PreservedAnalyses::all();

  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
  ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
  AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);

  Vectorizer V(F, AA, AC, DT, SE, TTI);
  bool Changed = V.run();
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return Changed ? PA : PreservedAnalyses::all();
}

// The real propagateMetadata expects a SmallVector<Value*>, but we deal in
// vectors of Instructions.
static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
  SmallVector<Value *, 8> VL(IL.begin(), IL.end());
  propagateMetadata(I, VL);
}

// Vectorizer Implementation
bool Vectorizer::run() {
  bool Changed = false;

  // Scan the blocks in the function in post order.
  for (BasicBlock *BB : post_order(&F)) {
    InstrListMap LoadRefs, StoreRefs;
    std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
    Changed |= vectorizeChains(LoadRefs);
    Changed |= vectorizeChains(StoreRefs);
  }

  return Changed;
}

unsigned Vectorizer::getPointerAddressSpace(Value *I) {
  if (LoadInst *L = dyn_cast<LoadInst>(I))
    return L->getPointerAddressSpace();
  if (StoreInst *S = dyn_cast<StoreInst>(I))
    return S->getPointerAddressSpace();
  return -1;
}

// FIXME: Merge with llvm::isConsecutiveAccess
bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
  Value *PtrA = getLoadStorePointerOperand(A);
  Value *PtrB = getLoadStorePointerOperand(B);
  unsigned ASA = getPointerAddressSpace(A);
  unsigned ASB = getPointerAddressSpace(B);

  // Check that the address spaces match and that the pointers are valid.
  if (!PtrA || !PtrB || (ASA != ASB))
    return false;

  // Make sure that A and B are different pointers of the same size type.
  Type *PtrATy = getLoadStoreType(A);
  Type *PtrBTy = getLoadStoreType(B);
  if (PtrA == PtrB ||
      PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
      DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
      DL.getTypeStoreSize(PtrATy->getScalarType()) !=
          DL.getTypeStoreSize(PtrBTy->getScalarType()))
    return false;

  unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
  APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));

  return areConsecutivePointers(PtrA, PtrB, Size);
}

bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
                                        APInt PtrDelta, unsigned Depth) const {
  unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
  APInt OffsetA(PtrBitWidth, 0);
  APInt OffsetB(PtrBitWidth, 0);
  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);

  unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());

  if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
    return false;

  // In case if we have to shrink the pointer
  // stripAndAccumulateInBoundsConstantOffsets should properly handle a
  // possible overflow and the value should fit into a smallest data type
  // used in the cast/gep chain.
  assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth &&
         OffsetB.getMinSignedBits() <= NewPtrBitWidth);

  OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
  OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
  PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth);

  APInt OffsetDelta = OffsetB - OffsetA;

  // Check if they are based on the same pointer. That makes the offsets
  // sufficient.
  if (PtrA == PtrB)
    return OffsetDelta == PtrDelta;

  // Compute the necessary base pointer delta to have the necessary final delta
  // equal to the pointer delta requested.
  APInt BaseDelta = PtrDelta - OffsetDelta;

  // Compute the distance with SCEV between the base pointers.
  const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
  const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
  const SCEV *C = SE.getConstant(BaseDelta);
  const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
  if (X == PtrSCEVB)
    return true;

  // The above check will not catch the cases where one of the pointers is
  // factorized but the other one is not, such as (C + (S * (A + B))) vs
  // (AS + BS). Get the minus scev. That will allow re-combining the expresions
  // and getting the simplified difference.
  const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
  if (C == Dist)
    return true;

  // Sometimes even this doesn't work, because SCEV can't always see through
  // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
  // things the hard way.
  return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
}

static bool checkNoWrapFlags(Instruction *I, bool Signed) {
  BinaryOperator *BinOpI = cast<BinaryOperator>(I);
  return (Signed && BinOpI->hasNoSignedWrap()) ||
         (!Signed && BinOpI->hasNoUnsignedWrap());
}

static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
                                   unsigned MatchingOpIdxA, Instruction *AddOpB,
                                   unsigned MatchingOpIdxB, bool Signed) {
  // If both OpA and OpB is an add with NSW/NUW and with
  // one of the operands being the same, we can guarantee that the
  // transformation is safe if we can prove that OpA won't overflow when
  // IdxDiff added to the other operand of OpA.
  // For example:
  //  %tmp7 = add nsw i32 %tmp2, %v0
  //  %tmp8 = sext i32 %tmp7 to i64
  //  ...
  //  %tmp11 = add nsw i32 %v0, 1
  //  %tmp12 = add nsw i32 %tmp2, %tmp11
  //  %tmp13 = sext i32 %tmp12 to i64
  //
  //  Both %tmp7 and %tmp2 has the nsw flag and the first operand
  //  is %tmp2. It's guaranteed that adding 1 to %tmp7 won't overflow
  //  because %tmp11 adds 1 to %v0 and both %tmp11 and %tmp12 has the
  //  nsw flag.
  assert(AddOpA->getOpcode() == Instruction::Add &&
         AddOpB->getOpcode() == Instruction::Add &&
         checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
  if (AddOpA->getOperand(MatchingOpIdxA) ==
      AddOpB->getOperand(MatchingOpIdxB)) {
    Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
    Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
    Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
    Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
    // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
    if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
        checkNoWrapFlags(OtherInstrB, Signed) &&
        isa<ConstantInt>(OtherInstrB->getOperand(1))) {
      int64_t CstVal =
          cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
      if (OtherInstrB->getOperand(0) == OtherOperandA &&
          IdxDiff.getSExtValue() == CstVal)
        return true;
    }
    // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
    if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
        checkNoWrapFlags(OtherInstrA, Signed) &&
        isa<ConstantInt>(OtherInstrA->getOperand(1))) {
      int64_t CstVal =
          cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
      if (OtherInstrA->getOperand(0) == OtherOperandB &&
          IdxDiff.getSExtValue() == -CstVal)
        return true;
    }
    // Match `x +nsw/nuw (y +nsw/nuw c)` and
    // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
    if (OtherInstrA && OtherInstrB &&
        OtherInstrA->getOpcode() == Instruction::Add &&
        OtherInstrB->getOpcode() == Instruction::Add &&
        checkNoWrapFlags(OtherInstrA, Signed) &&
        checkNoWrapFlags(OtherInstrB, Signed) &&
        isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
        isa<ConstantInt>(OtherInstrB->getOperand(1))) {
      int64_t CstValA =
          cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
      int64_t CstValB =
          cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
      if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
          IdxDiff.getSExtValue() == (CstValB - CstValA))
        return true;
    }
  }
  return false;
}

bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
                                             APInt PtrDelta,
                                             unsigned Depth) const {
  auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
  auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
  if (!GEPA || !GEPB)
    return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);

  // Look through GEPs after checking they're the same except for the last
  // index.
  if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
      GEPA->getPointerOperand() != GEPB->getPointerOperand())
    return false;
  gep_type_iterator GTIA = gep_type_begin(GEPA);
  gep_type_iterator GTIB = gep_type_begin(GEPB);
  for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
    if (GTIA.getOperand() != GTIB.getOperand())
      return false;
    ++GTIA;
    ++GTIB;
  }

  Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
  Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
  if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
      OpA->getType() != OpB->getType())
    return false;

  if (PtrDelta.isNegative()) {
    if (PtrDelta.isMinSignedValue())
      return false;
    PtrDelta.negate();
    std::swap(OpA, OpB);
  }
  uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
  if (PtrDelta.urem(Stride) != 0)
    return false;
  unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
  APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth);

  // Only look through a ZExt/SExt.
  if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
    return false;

  bool Signed = isa<SExtInst>(OpA);

  // At this point A could be a function parameter, i.e. not an instruction
  Value *ValA = OpA->getOperand(0);
  OpB = dyn_cast<Instruction>(OpB->getOperand(0));
  if (!OpB || ValA->getType() != OpB->getType())
    return false;

  // Now we need to prove that adding IdxDiff to ValA won't overflow.
  bool Safe = false;

  // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
  // ValA, we're okay.
  if (OpB->getOpcode() == Instruction::Add &&
      isa<ConstantInt>(OpB->getOperand(1)) &&
      IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
      checkNoWrapFlags(OpB, Signed))
    Safe = true;

  // Second attempt: check if we have eligible add NSW/NUW instruction
  // sequences.
  OpA = dyn_cast<Instruction>(ValA);
  if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
      OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
      checkNoWrapFlags(OpB, Signed)) {
    // In the checks below a matching operand in OpA and OpB is
    // an operand which is the same in those two instructions.
    // Below we account for possible orders of the operands of
    // these add instructions.
    for (unsigned MatchingOpIdxA : {0, 1})
      for (unsigned MatchingOpIdxB : {0, 1})
        if (!Safe)
          Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
                                        MatchingOpIdxB, Signed);
  }

  unsigned BitWidth = ValA->getType()->getScalarSizeInBits();

  // Third attempt:
  // If all set bits of IdxDiff or any higher order bit other than the sign bit
  // are known to be zero in ValA, we can add Diff to it while guaranteeing no
  // overflow of any sort.
  if (!Safe) {
    KnownBits Known(BitWidth);
    computeKnownBits(ValA, Known, DL, 0, &AC, OpB, &DT);
    APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
    if (Signed)
      BitsAllowedToBeSet.clearBit(BitWidth - 1);
    if (BitsAllowedToBeSet.ult(IdxDiff))
      return false;
  }

  const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
  const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
  const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
  const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
  return X == OffsetSCEVB;
}

bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
                                    const APInt &PtrDelta,
                                    unsigned Depth) const {
  if (Depth++ == MaxDepth)
    return false;

  if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
    if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
      return SelectA->getCondition() == SelectB->getCondition() &&
             areConsecutivePointers(SelectA->getTrueValue(),
                                    SelectB->getTrueValue(), PtrDelta, Depth) &&
             areConsecutivePointers(SelectA->getFalseValue(),
                                    SelectB->getFalseValue(), PtrDelta, Depth);
    }
  }
  return false;
}

void Vectorizer::reorder(Instruction *I) {
  SmallPtrSet<Instruction *, 16> InstructionsToMove;
  SmallVector<Instruction *, 16> Worklist;

  Worklist.push_back(I);
  while (!Worklist.empty()) {
    Instruction *IW = Worklist.pop_back_val();
    int NumOperands = IW->getNumOperands();
    for (int i = 0; i < NumOperands; i++) {
      Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
      if (!IM || IM->getOpcode() == Instruction::PHI)
        continue;

      // If IM is in another BB, no need to move it, because this pass only
      // vectorizes instructions within one BB.
      if (IM->getParent() != I->getParent())
        continue;

      if (!IM->comesBefore(I)) {
        InstructionsToMove.insert(IM);
        Worklist.push_back(IM);
      }
    }
  }

  // All instructions to move should follow I. Start from I, not from begin().
  for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
       ++BBI) {
    if (!InstructionsToMove.count(&*BBI))
      continue;
    Instruction *IM = &*BBI;
    --BBI;
    IM->removeFromParent();
    IM->insertBefore(I);
  }
}

std::pair<BasicBlock::iterator, BasicBlock::iterator>
Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
  Instruction *C0 = Chain[0];
  BasicBlock::iterator FirstInstr = C0->getIterator();
  BasicBlock::iterator LastInstr = C0->getIterator();

  BasicBlock *BB = C0->getParent();
  unsigned NumFound = 0;
  for (Instruction &I : *BB) {
    if (!is_contained(Chain, &I))
      continue;

    ++NumFound;
    if (NumFound == 1) {
      FirstInstr = I.getIterator();
    }
    if (NumFound == Chain.size()) {
      LastInstr = I.getIterator();
      break;
    }
  }

  // Range is [first, last).
  return std::make_pair(FirstInstr, ++LastInstr);
}

void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
  SmallVector<Instruction *, 16> Instrs;
  for (Instruction *I : Chain) {
    Value *PtrOperand = getLoadStorePointerOperand(I);
    assert(PtrOperand && "Instruction must have a pointer operand.");
    Instrs.push_back(I);
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
      Instrs.push_back(GEP);
  }

  // Erase instructions.
  for (Instruction *I : Instrs)
    if (I->use_empty())
      I->eraseFromParent();
}

std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
                               unsigned ElementSizeBits) {
  unsigned ElementSizeBytes = ElementSizeBits / 8;
  unsigned SizeBytes = ElementSizeBytes * Chain.size();
  unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
  if (NumLeft == Chain.size()) {
    if ((NumLeft & 1) == 0)
      NumLeft /= 2; // Split even in half
    else
      --NumLeft;    // Split off last element
  } else if (NumLeft == 0)
    NumLeft = 1;
  return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
}

ArrayRef<Instruction *>
Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
  // These are in BB order, unlike Chain, which is in address order.
  SmallVector<Instruction *, 16> MemoryInstrs;
  SmallVector<Instruction *, 16> ChainInstrs;

  bool IsLoadChain = isa<LoadInst>(Chain[0]);
  LLVM_DEBUG({
    for (Instruction *I : Chain) {
      if (IsLoadChain)
        assert(isa<LoadInst>(I) &&
               "All elements of Chain must be loads, or all must be stores.");
      else
        assert(isa<StoreInst>(I) &&
               "All elements of Chain must be loads, or all must be stores.");
    }
  });

  for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
    if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
      if (!is_contained(Chain, &I))
        MemoryInstrs.push_back(&I);
      else
        ChainInstrs.push_back(&I);
    } else if (isa<IntrinsicInst>(&I) &&
               cast<IntrinsicInst>(&I)->getIntrinsicID() ==
                   Intrinsic::sideeffect) {
      // Ignore llvm.sideeffect calls.
    } else if (isa<IntrinsicInst>(&I) &&
               cast<IntrinsicInst>(&I)->getIntrinsicID() ==
                   Intrinsic::pseudoprobe) {
      // Ignore llvm.pseudoprobe calls.
    } else if (isa<IntrinsicInst>(&I) &&
               cast<IntrinsicInst>(&I)->getIntrinsicID() == Intrinsic::assume) {
      // Ignore llvm.assume calls.
    } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) {
      LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I
                        << '\n');
      break;
    } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) {
      LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I
                        << '\n');
      break;
    }
  }

  // Loop until we find an instruction in ChainInstrs that we can't vectorize.
  unsigned ChainInstrIdx = 0;
  Instruction *BarrierMemoryInstr = nullptr;

  for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
    Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];

    // If a barrier memory instruction was found, chain instructions that follow
    // will not be added to the valid prefix.
    if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr))
      break;

    // Check (in BB order) if any instruction prevents ChainInstr from being
    // vectorized. Find and store the first such "conflicting" instruction.
    for (Instruction *MemInstr : MemoryInstrs) {
      // If a barrier memory instruction was found, do not check past it.
      if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr))
        break;

      auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
      auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
      if (MemLoad && ChainLoad)
        continue;

      // We can ignore the alias if the we have a load store pair and the load
      // is known to be invariant. The load cannot be clobbered by the store.
      auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
        return LI->hasMetadata(LLVMContext::MD_invariant_load);
      };

      // We can ignore the alias as long as the load comes before the store,
      // because that means we won't be moving the load past the store to
      // vectorize it (the vectorized load is inserted at the location of the
      // first load in the chain).
      if (isa<StoreInst>(MemInstr) && ChainLoad &&
          (IsInvariantLoad(ChainLoad) || ChainLoad->comesBefore(MemInstr)))
        continue;

      // Same case, but in reverse.
      if (MemLoad && isa<StoreInst>(ChainInstr) &&
          (IsInvariantLoad(MemLoad) || MemLoad->comesBefore(ChainInstr)))
        continue;

      if (!AA.isNoAlias(MemoryLocation::get(MemInstr),
                        MemoryLocation::get(ChainInstr))) {
        LLVM_DEBUG({
          dbgs() << "LSV: Found alias:\n"
                    "  Aliasing instruction and pointer:\n"
                 << "  " << *MemInstr << '\n'
                 << "  " << *getLoadStorePointerOperand(MemInstr) << '\n'
                 << "  Aliased instruction and pointer:\n"
                 << "  " << *ChainInstr << '\n'
                 << "  " << *getLoadStorePointerOperand(ChainInstr) << '\n';
        });
        // Save this aliasing memory instruction as a barrier, but allow other
        // instructions that precede the barrier to be vectorized with this one.
        BarrierMemoryInstr = MemInstr;
        break;
      }
    }
    // Continue the search only for store chains, since vectorizing stores that
    // precede an aliasing load is valid. Conversely, vectorizing loads is valid
    // up to an aliasing store, but should not pull loads from further down in
    // the basic block.
    if (IsLoadChain && BarrierMemoryInstr) {
      // The BarrierMemoryInstr is a store that precedes ChainInstr.
      assert(BarrierMemoryInstr->comesBefore(ChainInstr));
      break;
    }
  }

  // Find the largest prefix of Chain whose elements are all in
  // ChainInstrs[0, ChainInstrIdx).  This is the largest vectorizable prefix of
  // Chain.  (Recall that Chain is in address order, but ChainInstrs is in BB
  // order.)
  SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
      ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
  unsigned ChainIdx = 0;
  for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
    if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
      break;
  }
  return Chain.slice(0, ChainIdx);
}

static ChainID getChainID(const Value *Ptr) {
  const Value *ObjPtr = getUnderlyingObject(Ptr);
  if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
    // The select's themselves are distinct instructions even if they share the
    // same condition and evaluate to consecutive pointers for true and false
    // values of the condition. Therefore using the select's themselves for
    // grouping instructions would put consecutive accesses into different lists
    // and they won't be even checked for being consecutive, and won't be
    // vectorized.
    return Sel->getCondition();
  }
  return ObjPtr;
}

std::pair<InstrListMap, InstrListMap>
Vectorizer::collectInstructions(BasicBlock *BB) {
  InstrListMap LoadRefs;
  InstrListMap StoreRefs;

  for (Instruction &I : *BB) {
    if (!I.mayReadOrWriteMemory())
      continue;

    if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
      if (!LI->isSimple())
        continue;

      // Skip if it's not legal.
      if (!TTI.isLegalToVectorizeLoad(LI))
        continue;

      Type *Ty = LI->getType();
      if (!VectorType::isValidElementType(Ty->getScalarType()))
        continue;

      // Skip weird non-byte sizes. They probably aren't worth the effort of
      // handling correctly.
      unsigned TySize = DL.getTypeSizeInBits(Ty);
      if ((TySize % 8) != 0)
        continue;

      // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
      // functions are currently using an integer type for the vectorized
      // load/store, and does not support casting between the integer type and a
      // vector of pointers (e.g. i64 to <2 x i16*>)
      if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
        continue;

      Value *Ptr = LI->getPointerOperand();
      unsigned AS = Ptr->getType()->getPointerAddressSpace();
      unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);

      unsigned VF = VecRegSize / TySize;
      VectorType *VecTy = dyn_cast<VectorType>(Ty);

      // No point in looking at these if they're too big to vectorize.
      if (TySize > VecRegSize / 2 ||
          (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
        continue;

      // Make sure all the users of a vector are constant-index extracts.
      if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) {
            const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
            return EEI && isa<ConstantInt>(EEI->getOperand(1));
          }))
        continue;

      // Save the load locations.
      const ChainID ID = getChainID(Ptr);
      LoadRefs[ID].push_back(LI);
    } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
      if (!SI->isSimple())
        continue;

      // Skip if it's not legal.
      if (!TTI.isLegalToVectorizeStore(SI))
        continue;

      Type *Ty = SI->getValueOperand()->getType();
      if (!VectorType::isValidElementType(Ty->getScalarType()))
        continue;

      // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
      // functions are currently using an integer type for the vectorized
      // load/store, and does not support casting between the integer type and a
      // vector of pointers (e.g. i64 to <2 x i16*>)
      if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
        continue;

      // Skip weird non-byte sizes. They probably aren't worth the effort of
      // handling correctly.
      unsigned TySize = DL.getTypeSizeInBits(Ty);
      if ((TySize % 8) != 0)
        continue;

      Value *Ptr = SI->getPointerOperand();
      unsigned AS = Ptr->getType()->getPointerAddressSpace();
      unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);

      unsigned VF = VecRegSize / TySize;
      VectorType *VecTy = dyn_cast<VectorType>(Ty);

      // No point in looking at these if they're too big to vectorize.
      if (TySize > VecRegSize / 2 ||
          (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
        continue;

      if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) {
            const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
            return EEI && isa<ConstantInt>(EEI->getOperand(1));
          }))
        continue;

      // Save store location.
      const ChainID ID = getChainID(Ptr);
      StoreRefs[ID].push_back(SI);
    }
  }

  return {LoadRefs, StoreRefs};
}

bool Vectorizer::vectorizeChains(InstrListMap &Map) {
  bool Changed = false;

  for (const std::pair<ChainID, InstrList> &Chain : Map) {
    unsigned Size = Chain.second.size();
    if (Size < 2)
      continue;

    LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");

    // Process the stores in chunks of 64.
    for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
      unsigned Len = std::min<unsigned>(CE - CI, 64);
      ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
      Changed |= vectorizeInstructions(Chunk);
    }
  }

  return Changed;
}

bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
  LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
                    << " instructions.\n");
  SmallVector<int, 16> Heads, Tails;
  int ConsecutiveChain[64];

  // Do a quadratic search on all of the given loads/stores and find all of the
  // pairs of loads/stores that follow each other.
  for (int i = 0, e = Instrs.size(); i < e; ++i) {
    ConsecutiveChain[i] = -1;
    for (int j = e - 1; j >= 0; --j) {
      if (i == j)
        continue;

      if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
        if (ConsecutiveChain[i] != -1) {
          int CurDistance = std::abs(ConsecutiveChain[i] - i);
          int NewDistance = std::abs(ConsecutiveChain[i] - j);
          if (j < i || NewDistance > CurDistance)
            continue; // Should not insert.
        }

        Tails.push_back(j);
        Heads.push_back(i);
        ConsecutiveChain[i] = j;
      }
    }
  }

  bool Changed = false;
  SmallPtrSet<Instruction *, 16> InstructionsProcessed;

  for (int Head : Heads) {
    if (InstructionsProcessed.count(Instrs[Head]))
      continue;
    bool LongerChainExists = false;
    for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
      if (Head == Tails[TIt] &&
          !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
        LongerChainExists = true;
        break;
      }
    if (LongerChainExists)
      continue;

    // We found an instr that starts a chain. Now follow the chain and try to
    // vectorize it.
    SmallVector<Instruction *, 16> Operands;
    int I = Head;
    while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
      if (InstructionsProcessed.count(Instrs[I]))
        break;

      Operands.push_back(Instrs[I]);
      I = ConsecutiveChain[I];
    }

    bool Vectorized = false;
    if (isa<LoadInst>(*Operands.begin()))
      Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
    else
      Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);

    Changed |= Vectorized;
  }

  return Changed;
}

bool Vectorizer::vectorizeStoreChain(
    ArrayRef<Instruction *> Chain,
    SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
  StoreInst *S0 = cast<StoreInst>(Chain[0]);

  // If the vector has an int element, default to int for the whole store.
  Type *StoreTy = nullptr;
  for (Instruction *I : Chain) {
    StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
    if (StoreTy->isIntOrIntVectorTy())
      break;

    if (StoreTy->isPtrOrPtrVectorTy()) {
      StoreTy = Type::getIntNTy(F.getParent()->getContext(),
                                DL.getTypeSizeInBits(StoreTy));
      break;
    }
  }
  assert(StoreTy && "Failed to find store type");

  unsigned Sz = DL.getTypeSizeInBits(StoreTy);
  unsigned AS = S0->getPointerAddressSpace();
  unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
  unsigned VF = VecRegSize / Sz;
  unsigned ChainSize = Chain.size();
  Align Alignment = S0->getAlign();

  if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
    InstructionsProcessed->insert(Chain.begin(), Chain.end());
    return false;
  }

  ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
  if (NewChain.empty()) {
    // No vectorization possible.
    InstructionsProcessed->insert(Chain.begin(), Chain.end());
    return false;
  }
  if (NewChain.size() == 1) {
    // Failed after the first instruction. Discard it and try the smaller chain.
    InstructionsProcessed->insert(NewChain.front());
    return false;
  }

  // Update Chain to the valid vectorizable subchain.
  Chain = NewChain;
  ChainSize = Chain.size();

  // Check if it's legal to vectorize this chain. If not, split the chain and
  // try again.
  unsigned EltSzInBytes = Sz / 8;
  unsigned SzInBytes = EltSzInBytes * ChainSize;

  FixedVectorType *VecTy;
  auto *VecStoreTy = dyn_cast<FixedVectorType>(StoreTy);
  if (VecStoreTy)
    VecTy = FixedVectorType::get(StoreTy->getScalarType(),
                                 Chain.size() * VecStoreTy->getNumElements());
  else
    VecTy = FixedVectorType::get(StoreTy, Chain.size());

  // If it's more than the max vector size or the target has a better
  // vector factor, break it into two pieces.
  unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
  if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
    LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
                         " Creating two separate arrays.\n");
    return vectorizeStoreChain(Chain.slice(0, TargetVF),
                               InstructionsProcessed) |
           vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
  }

  LLVM_DEBUG({
    dbgs() << "LSV: Stores to vectorize:\n";
    for (Instruction *I : Chain)
      dbgs() << "  " << *I << "\n";
  });

  // We won't try again to vectorize the elements of the chain, regardless of
  // whether we succeed below.
  InstructionsProcessed->insert(Chain.begin(), Chain.end());

  // If the store is going to be misaligned, don't vectorize it.
  if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
    if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
      auto Chains = splitOddVectorElts(Chain, Sz);
      return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
             vectorizeStoreChain(Chains.second, InstructionsProcessed);
    }

    Align NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
                                                Align(StackAdjustedAlignment),
                                                DL, S0, nullptr, &DT);
    if (NewAlign >= Alignment)
      Alignment = NewAlign;
    else
      return false;
  }

  if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
    auto Chains = splitOddVectorElts(Chain, Sz);
    return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
           vectorizeStoreChain(Chains.second, InstructionsProcessed);
  }

  BasicBlock::iterator First, Last;
  std::tie(First, Last) = getBoundaryInstrs(Chain);
  Builder.SetInsertPoint(&*Last);

  Value *Vec = UndefValue::get(VecTy);

  if (VecStoreTy) {
    unsigned VecWidth = VecStoreTy->getNumElements();
    for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
      StoreInst *Store = cast<StoreInst>(Chain[I]);
      for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
        unsigned NewIdx = J + I * VecWidth;
        Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
                                                      Builder.getInt32(J));
        if (Extract->getType() != StoreTy->getScalarType())
          Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());

        Value *Insert =
            Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
        Vec = Insert;
      }
    }
  } else {
    for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
      StoreInst *Store = cast<StoreInst>(Chain[I]);
      Value *Extract = Store->getValueOperand();
      if (Extract->getType() != StoreTy->getScalarType())
        Extract =
            Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());

      Value *Insert =
          Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
      Vec = Insert;
    }
  }

  StoreInst *SI = Builder.CreateAlignedStore(
    Vec,
    Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
    Alignment);
  propagateMetadata(SI, Chain);

  eraseInstructions(Chain);
  ++NumVectorInstructions;
  NumScalarsVectorized += Chain.size();
  return true;
}

bool Vectorizer::vectorizeLoadChain(
    ArrayRef<Instruction *> Chain,
    SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
  LoadInst *L0 = cast<LoadInst>(Chain[0]);

  // If the vector has an int element, default to int for the whole load.
  Type *LoadTy = nullptr;
  for (const auto &V : Chain) {
    LoadTy = cast<LoadInst>(V)->getType();
    if (LoadTy->isIntOrIntVectorTy())
      break;

    if (LoadTy->isPtrOrPtrVectorTy()) {
      LoadTy = Type::getIntNTy(F.getParent()->getContext(),
                               DL.getTypeSizeInBits(LoadTy));
      break;
    }
  }
  assert(LoadTy && "Can't determine LoadInst type from chain");

  unsigned Sz = DL.getTypeSizeInBits(LoadTy);
  unsigned AS = L0->getPointerAddressSpace();
  unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
  unsigned VF = VecRegSize / Sz;
  unsigned ChainSize = Chain.size();
  Align Alignment = L0->getAlign();

  if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
    InstructionsProcessed->insert(Chain.begin(), Chain.end());
    return false;
  }

  ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
  if (NewChain.empty()) {
    // No vectorization possible.
    InstructionsProcessed->insert(Chain.begin(), Chain.end());
    return false;
  }
  if (NewChain.size() == 1) {
    // Failed after the first instruction. Discard it and try the smaller chain.
    InstructionsProcessed->insert(NewChain.front());
    return false;
  }

  // Update Chain to the valid vectorizable subchain.
  Chain = NewChain;
  ChainSize = Chain.size();

  // Check if it's legal to vectorize this chain. If not, split the chain and
  // try again.
  unsigned EltSzInBytes = Sz / 8;
  unsigned SzInBytes = EltSzInBytes * ChainSize;
  VectorType *VecTy;
  auto *VecLoadTy = dyn_cast<FixedVectorType>(LoadTy);
  if (VecLoadTy)
    VecTy = FixedVectorType::get(LoadTy->getScalarType(),
                                 Chain.size() * VecLoadTy->getNumElements());
  else
    VecTy = FixedVectorType::get(LoadTy, Chain.size());

  // If it's more than the max vector size or the target has a better
  // vector factor, break it into two pieces.
  unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
  if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
    LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
                         " Creating two separate arrays.\n");
    return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) |
           vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
  }

  // We won't try again to vectorize the elements of the chain, regardless of
  // whether we succeed below.
  InstructionsProcessed->insert(Chain.begin(), Chain.end());

  // If the load is going to be misaligned, don't vectorize it.
  if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
    if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
      auto Chains = splitOddVectorElts(Chain, Sz);
      return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
             vectorizeLoadChain(Chains.second, InstructionsProcessed);
    }

    Align NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(),
                                                Align(StackAdjustedAlignment),
                                                DL, L0, nullptr, &DT);
    if (NewAlign >= Alignment)
      Alignment = NewAlign;
    else
      return false;
  }

  if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
    auto Chains = splitOddVectorElts(Chain, Sz);
    return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
           vectorizeLoadChain(Chains.second, InstructionsProcessed);
  }

  LLVM_DEBUG({
    dbgs() << "LSV: Loads to vectorize:\n";
    for (Instruction *I : Chain)
      I->dump();
  });

  // getVectorizablePrefix already computed getBoundaryInstrs.  The value of
  // Last may have changed since then, but the value of First won't have.  If it
  // matters, we could compute getBoundaryInstrs only once and reuse it here.
  BasicBlock::iterator First, Last;
  std::tie(First, Last) = getBoundaryInstrs(Chain);
  Builder.SetInsertPoint(&*First);

  Value *Bitcast =
      Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
  LoadInst *LI =
      Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment));
  propagateMetadata(LI, Chain);

  if (VecLoadTy) {
    SmallVector<Instruction *, 16> InstrsToErase;

    unsigned VecWidth = VecLoadTy->getNumElements();
    for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
      for (auto Use : Chain[I]->users()) {
        // All users of vector loads are ExtractElement instructions with
        // constant indices, otherwise we would have bailed before now.
        Instruction *UI = cast<Instruction>(Use);
        unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
        unsigned NewIdx = Idx + I * VecWidth;
        Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
                                                UI->getName());
        if (V->getType() != UI->getType())
          V = Builder.CreateBitCast(V, UI->getType());

        // Replace the old instruction.
        UI->replaceAllUsesWith(V);
        InstrsToErase.push_back(UI);
      }
    }

    // Bitcast might not be an Instruction, if the value being loaded is a
    // constant.  In that case, no need to reorder anything.
    if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
      reorder(BitcastInst);

    for (auto I : InstrsToErase)
      I->eraseFromParent();
  } else {
    for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
      Value *CV = Chain[I];
      Value *V =
          Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
      if (V->getType() != CV->getType()) {
        V = Builder.CreateBitOrPointerCast(V, CV->getType());
      }

      // Replace the old instruction.
      CV->replaceAllUsesWith(V);
    }

    if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
      reorder(BitcastInst);
  }

  eraseInstructions(Chain);

  ++NumVectorInstructions;
  NumScalarsVectorized += Chain.size();
  return true;
}

bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
                                    Align Alignment) {
  if (Alignment.value() % SzInBytes == 0)
    return false;

  bool Fast = false;
  bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
                                                   SzInBytes * 8, AddressSpace,
                                                   Alignment, &Fast);
  LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
                    << " and fast? " << Fast << "\n";);
  return !Allows || !Fast;
}