aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Vectorize/VectorCombine.cpp
blob: d12624ffb824f5a687d3ba6263f7f6b722a3d21f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes scalar/vector interactions using target cost models. The
// transforms implemented here may not fit in traditional loop-based or SLP
// vectorization passes.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Vectorize/VectorCombine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Vectorize.h"

#define DEBUG_TYPE "vector-combine"
#include "llvm/Transforms/Utils/InstructionWorklist.h"

using namespace llvm;
using namespace llvm::PatternMatch;

STATISTIC(NumVecLoad, "Number of vector loads formed");
STATISTIC(NumVecCmp, "Number of vector compares formed");
STATISTIC(NumVecBO, "Number of vector binops formed");
STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
STATISTIC(NumScalarBO, "Number of scalar binops formed");
STATISTIC(NumScalarCmp, "Number of scalar compares formed");

static cl::opt<bool> DisableVectorCombine(
    "disable-vector-combine", cl::init(false), cl::Hidden,
    cl::desc("Disable all vector combine transforms"));

static cl::opt<bool> DisableBinopExtractShuffle(
    "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
    cl::desc("Disable binop extract to shuffle transforms"));

static cl::opt<unsigned> MaxInstrsToScan(
    "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
    cl::desc("Max number of instructions to scan for vector combining."));

static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();

namespace {
class VectorCombine {
public:
  VectorCombine(Function &F, const TargetTransformInfo &TTI,
                const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
                bool ScalarizationOnly)
      : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
        ScalarizationOnly(ScalarizationOnly) {}

  bool run();

private:
  Function &F;
  IRBuilder<> Builder;
  const TargetTransformInfo &TTI;
  const DominatorTree &DT;
  AAResults &AA;
  AssumptionCache &AC;

  /// If true only perform scalarization combines and do not introduce new
  /// vector operations.
  bool ScalarizationOnly;

  InstructionWorklist Worklist;

  bool vectorizeLoadInsert(Instruction &I);
  ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
                                        ExtractElementInst *Ext1,
                                        unsigned PreferredExtractIndex) const;
  bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
                             const Instruction &I,
                             ExtractElementInst *&ConvertToShuffle,
                             unsigned PreferredExtractIndex);
  void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
                     Instruction &I);
  void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
                       Instruction &I);
  bool foldExtractExtract(Instruction &I);
  bool foldBitcastShuf(Instruction &I);
  bool scalarizeBinopOrCmp(Instruction &I);
  bool foldExtractedCmps(Instruction &I);
  bool foldSingleElementStore(Instruction &I);
  bool scalarizeLoadExtract(Instruction &I);
  bool foldShuffleOfBinops(Instruction &I);
  bool foldShuffleFromReductions(Instruction &I);
  bool foldSelectShuffle(Instruction &I, bool FromReduction = false);

  void replaceValue(Value &Old, Value &New) {
    Old.replaceAllUsesWith(&New);
    if (auto *NewI = dyn_cast<Instruction>(&New)) {
      New.takeName(&Old);
      Worklist.pushUsersToWorkList(*NewI);
      Worklist.pushValue(NewI);
    }
    Worklist.pushValue(&Old);
  }

  void eraseInstruction(Instruction &I) {
    for (Value *Op : I.operands())
      Worklist.pushValue(Op);
    Worklist.remove(&I);
    I.eraseFromParent();
  }
};
} // namespace

bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
  // Match insert into fixed vector of scalar value.
  // TODO: Handle non-zero insert index.
  auto *Ty = dyn_cast<FixedVectorType>(I.getType());
  Value *Scalar;
  if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
      !Scalar->hasOneUse())
    return false;

  // Optionally match an extract from another vector.
  Value *X;
  bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
  if (!HasExtract)
    X = Scalar;

  // Match source value as load of scalar or vector.
  // Do not vectorize scalar load (widening) if atomic/volatile or under
  // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
  // or create data races non-existent in the source.
  auto *Load = dyn_cast<LoadInst>(X);
  if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
      Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
      mustSuppressSpeculation(*Load))
    return false;

  const DataLayout &DL = I.getModule()->getDataLayout();
  Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
  assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");

  unsigned AS = Load->getPointerAddressSpace();

  // We are potentially transforming byte-sized (8-bit) memory accesses, so make
  // sure we have all of our type-based constraints in place for this target.
  Type *ScalarTy = Scalar->getType();
  uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
  unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
  if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
      ScalarSize % 8 != 0)
    return false;

  // Check safety of replacing the scalar load with a larger vector load.
  // We use minimal alignment (maximum flexibility) because we only care about
  // the dereferenceable region. When calculating cost and creating a new op,
  // we may use a larger value based on alignment attributes.
  unsigned MinVecNumElts = MinVectorSize / ScalarSize;
  auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
  unsigned OffsetEltIndex = 0;
  Align Alignment = Load->getAlign();
  if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
    // It is not safe to load directly from the pointer, but we can still peek
    // through gep offsets and check if it safe to load from a base address with
    // updated alignment. If it is, we can shuffle the element(s) into place
    // after loading.
    unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
    APInt Offset(OffsetBitWidth, 0);
    SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);

    // We want to shuffle the result down from a high element of a vector, so
    // the offset must be positive.
    if (Offset.isNegative())
      return false;

    // The offset must be a multiple of the scalar element to shuffle cleanly
    // in the element's size.
    uint64_t ScalarSizeInBytes = ScalarSize / 8;
    if (Offset.urem(ScalarSizeInBytes) != 0)
      return false;

    // If we load MinVecNumElts, will our target element still be loaded?
    OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
    if (OffsetEltIndex >= MinVecNumElts)
      return false;

    if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
      return false;

    // Update alignment with offset value. Note that the offset could be negated
    // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
    // negation does not change the result of the alignment calculation.
    Alignment = commonAlignment(Alignment, Offset.getZExtValue());
  }

  // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
  // Use the greater of the alignment on the load or its source pointer.
  Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
  Type *LoadTy = Load->getType();
  InstructionCost OldCost =
      TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
  APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
  OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
                                          /* Insert */ true, HasExtract);

  // New pattern: load VecPtr
  InstructionCost NewCost =
      TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
  // Optionally, we are shuffling the loaded vector element(s) into place.
  // For the mask set everything but element 0 to undef to prevent poison from
  // propagating from the extra loaded memory. This will also optionally
  // shrink/grow the vector from the loaded size to the output size.
  // We assume this operation has no cost in codegen if there was no offset.
  // Note that we could use freeze to avoid poison problems, but then we might
  // still need a shuffle to change the vector size.
  unsigned OutputNumElts = Ty->getNumElements();
  SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
  assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
  Mask[0] = OffsetEltIndex;
  if (OffsetEltIndex)
    NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);

  // We can aggressively convert to the vector form because the backend can
  // invert this transform if it does not result in a performance win.
  if (OldCost < NewCost || !NewCost.isValid())
    return false;

  // It is safe and potentially profitable to load a vector directly:
  // inselt undef, load Scalar, 0 --> load VecPtr
  IRBuilder<> Builder(Load);
  Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
      SrcPtr, MinVecTy->getPointerTo(AS));
  Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
  VecLd = Builder.CreateShuffleVector(VecLd, Mask);

  replaceValue(I, *VecLd);
  ++NumVecLoad;
  return true;
}

/// Determine which, if any, of the inputs should be replaced by a shuffle
/// followed by extract from a different index.
ExtractElementInst *VectorCombine::getShuffleExtract(
    ExtractElementInst *Ext0, ExtractElementInst *Ext1,
    unsigned PreferredExtractIndex = InvalidIndex) const {
  auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
  auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
  assert(Index0C && Index1C && "Expected constant extract indexes");

  unsigned Index0 = Index0C->getZExtValue();
  unsigned Index1 = Index1C->getZExtValue();

  // If the extract indexes are identical, no shuffle is needed.
  if (Index0 == Index1)
    return nullptr;

  Type *VecTy = Ext0->getVectorOperand()->getType();
  assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
  InstructionCost Cost0 =
      TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
  InstructionCost Cost1 =
      TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);

  // If both costs are invalid no shuffle is needed
  if (!Cost0.isValid() && !Cost1.isValid())
    return nullptr;

  // We are extracting from 2 different indexes, so one operand must be shuffled
  // before performing a vector operation and/or extract. The more expensive
  // extract will be replaced by a shuffle.
  if (Cost0 > Cost1)
    return Ext0;
  if (Cost1 > Cost0)
    return Ext1;

  // If the costs are equal and there is a preferred extract index, shuffle the
  // opposite operand.
  if (PreferredExtractIndex == Index0)
    return Ext1;
  if (PreferredExtractIndex == Index1)
    return Ext0;

  // Otherwise, replace the extract with the higher index.
  return Index0 > Index1 ? Ext0 : Ext1;
}

/// Compare the relative costs of 2 extracts followed by scalar operation vs.
/// vector operation(s) followed by extract. Return true if the existing
/// instructions are cheaper than a vector alternative. Otherwise, return false
/// and if one of the extracts should be transformed to a shufflevector, set
/// \p ConvertToShuffle to that extract instruction.
bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
                                          ExtractElementInst *Ext1,
                                          const Instruction &I,
                                          ExtractElementInst *&ConvertToShuffle,
                                          unsigned PreferredExtractIndex) {
  auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getOperand(1));
  auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getOperand(1));
  assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");

  unsigned Opcode = I.getOpcode();
  Type *ScalarTy = Ext0->getType();
  auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
  InstructionCost ScalarOpCost, VectorOpCost;

  // Get cost estimates for scalar and vector versions of the operation.
  bool IsBinOp = Instruction::isBinaryOp(Opcode);
  if (IsBinOp) {
    ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
    VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
  } else {
    assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
           "Expected a compare");
    CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
    ScalarOpCost = TTI.getCmpSelInstrCost(
        Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
    VectorOpCost = TTI.getCmpSelInstrCost(
        Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
  }

  // Get cost estimates for the extract elements. These costs will factor into
  // both sequences.
  unsigned Ext0Index = Ext0IndexC->getZExtValue();
  unsigned Ext1Index = Ext1IndexC->getZExtValue();

  InstructionCost Extract0Cost =
      TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
  InstructionCost Extract1Cost =
      TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);

  // A more expensive extract will always be replaced by a splat shuffle.
  // For example, if Ext0 is more expensive:
  // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
  // extelt (opcode (splat V0, Ext0), V1), Ext1
  // TODO: Evaluate whether that always results in lowest cost. Alternatively,
  //       check the cost of creating a broadcast shuffle and shuffling both
  //       operands to element 0.
  InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);

  // Extra uses of the extracts mean that we include those costs in the
  // vector total because those instructions will not be eliminated.
  InstructionCost OldCost, NewCost;
  if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
    // Handle a special case. If the 2 extracts are identical, adjust the
    // formulas to account for that. The extra use charge allows for either the
    // CSE'd pattern or an unoptimized form with identical values:
    // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
    bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
                                  : !Ext0->hasOneUse() || !Ext1->hasOneUse();
    OldCost = CheapExtractCost + ScalarOpCost;
    NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
  } else {
    // Handle the general case. Each extract is actually a different value:
    // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
    OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
    NewCost = VectorOpCost + CheapExtractCost +
              !Ext0->hasOneUse() * Extract0Cost +
              !Ext1->hasOneUse() * Extract1Cost;
  }

  ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
  if (ConvertToShuffle) {
    if (IsBinOp && DisableBinopExtractShuffle)
      return true;

    // If we are extracting from 2 different indexes, then one operand must be
    // shuffled before performing the vector operation. The shuffle mask is
    // undefined except for 1 lane that is being translated to the remaining
    // extraction lane. Therefore, it is a splat shuffle. Ex:
    // ShufMask = { undef, undef, 0, undef }
    // TODO: The cost model has an option for a "broadcast" shuffle
    //       (splat-from-element-0), but no option for a more general splat.
    NewCost +=
        TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
  }

  // Aggressively form a vector op if the cost is equal because the transform
  // may enable further optimization.
  // Codegen can reverse this transform (scalarize) if it was not profitable.
  return OldCost < NewCost;
}

/// Create a shuffle that translates (shifts) 1 element from the input vector
/// to a new element location.
static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
                                 unsigned NewIndex, IRBuilder<> &Builder) {
  // The shuffle mask is undefined except for 1 lane that is being translated
  // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
  // ShufMask = { 2, undef, undef, undef }
  auto *VecTy = cast<FixedVectorType>(Vec->getType());
  SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
  ShufMask[NewIndex] = OldIndex;
  return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
}

/// Given an extract element instruction with constant index operand, shuffle
/// the source vector (shift the scalar element) to a NewIndex for extraction.
/// Return null if the input can be constant folded, so that we are not creating
/// unnecessary instructions.
static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
                                            unsigned NewIndex,
                                            IRBuilder<> &Builder) {
  // Shufflevectors can only be created for fixed-width vectors.
  if (!isa<FixedVectorType>(ExtElt->getOperand(0)->getType()))
    return nullptr;

  // If the extract can be constant-folded, this code is unsimplified. Defer
  // to other passes to handle that.
  Value *X = ExtElt->getVectorOperand();
  Value *C = ExtElt->getIndexOperand();
  assert(isa<ConstantInt>(C) && "Expected a constant index operand");
  if (isa<Constant>(X))
    return nullptr;

  Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
                                   NewIndex, Builder);
  return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
}

/// Try to reduce extract element costs by converting scalar compares to vector
/// compares followed by extract.
/// cmp (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
                                  ExtractElementInst *Ext1, Instruction &I) {
  assert(isa<CmpInst>(&I) && "Expected a compare");
  assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
             cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
         "Expected matching constant extract indexes");

  // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
  ++NumVecCmp;
  CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
  Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
  Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
  Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
  replaceValue(I, *NewExt);
}

/// Try to reduce extract element costs by converting scalar binops to vector
/// binops followed by extract.
/// bo (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
                                    ExtractElementInst *Ext1, Instruction &I) {
  assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
  assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
             cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
         "Expected matching constant extract indexes");

  // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
  ++NumVecBO;
  Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
  Value *VecBO =
      Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);

  // All IR flags are safe to back-propagate because any potential poison
  // created in unused vector elements is discarded by the extract.
  if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
    VecBOInst->copyIRFlags(&I);

  Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
  replaceValue(I, *NewExt);
}

/// Match an instruction with extracted vector operands.
bool VectorCombine::foldExtractExtract(Instruction &I) {
  // It is not safe to transform things like div, urem, etc. because we may
  // create undefined behavior when executing those on unknown vector elements.
  if (!isSafeToSpeculativelyExecute(&I))
    return false;

  Instruction *I0, *I1;
  CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
  if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
      !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
    return false;

  Value *V0, *V1;
  uint64_t C0, C1;
  if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
      !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
      V0->getType() != V1->getType())
    return false;

  // If the scalar value 'I' is going to be re-inserted into a vector, then try
  // to create an extract to that same element. The extract/insert can be
  // reduced to a "select shuffle".
  // TODO: If we add a larger pattern match that starts from an insert, this
  //       probably becomes unnecessary.
  auto *Ext0 = cast<ExtractElementInst>(I0);
  auto *Ext1 = cast<ExtractElementInst>(I1);
  uint64_t InsertIndex = InvalidIndex;
  if (I.hasOneUse())
    match(I.user_back(),
          m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));

  ExtractElementInst *ExtractToChange;
  if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
    return false;

  if (ExtractToChange) {
    unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
    ExtractElementInst *NewExtract =
        translateExtract(ExtractToChange, CheapExtractIdx, Builder);
    if (!NewExtract)
      return false;
    if (ExtractToChange == Ext0)
      Ext0 = NewExtract;
    else
      Ext1 = NewExtract;
  }

  if (Pred != CmpInst::BAD_ICMP_PREDICATE)
    foldExtExtCmp(Ext0, Ext1, I);
  else
    foldExtExtBinop(Ext0, Ext1, I);

  Worklist.push(Ext0);
  Worklist.push(Ext1);
  return true;
}

/// If this is a bitcast of a shuffle, try to bitcast the source vector to the
/// destination type followed by shuffle. This can enable further transforms by
/// moving bitcasts or shuffles together.
bool VectorCombine::foldBitcastShuf(Instruction &I) {
  Value *V;
  ArrayRef<int> Mask;
  if (!match(&I, m_BitCast(
                     m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
    return false;

  // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
  // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
  // mask for scalable type is a splat or not.
  // 2) Disallow non-vector casts and length-changing shuffles.
  // TODO: We could allow any shuffle.
  auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
  auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
  if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
    return false;

  unsigned DestNumElts = DestTy->getNumElements();
  unsigned SrcNumElts = SrcTy->getNumElements();
  SmallVector<int, 16> NewMask;
  if (SrcNumElts <= DestNumElts) {
    // The bitcast is from wide to narrow/equal elements. The shuffle mask can
    // always be expanded to the equivalent form choosing narrower elements.
    assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
    unsigned ScaleFactor = DestNumElts / SrcNumElts;
    narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
  } else {
    // The bitcast is from narrow elements to wide elements. The shuffle mask
    // must choose consecutive elements to allow casting first.
    assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
    unsigned ScaleFactor = SrcNumElts / DestNumElts;
    if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
      return false;
  }

  // The new shuffle must not cost more than the old shuffle. The bitcast is
  // moved ahead of the shuffle, so assume that it has the same cost as before.
  InstructionCost DestCost = TTI.getShuffleCost(
      TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
  InstructionCost SrcCost =
      TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
  if (DestCost > SrcCost || !DestCost.isValid())
    return false;

  // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
  ++NumShufOfBitcast;
  Value *CastV = Builder.CreateBitCast(V, DestTy);
  Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
  replaceValue(I, *Shuf);
  return true;
}

/// Match a vector binop or compare instruction with at least one inserted
/// scalar operand and convert to scalar binop/cmp followed by insertelement.
bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
  CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
  Value *Ins0, *Ins1;
  if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
      !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
    return false;

  // Do not convert the vector condition of a vector select into a scalar
  // condition. That may cause problems for codegen because of differences in
  // boolean formats and register-file transfers.
  // TODO: Can we account for that in the cost model?
  bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
  if (IsCmp)
    for (User *U : I.users())
      if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
        return false;

  // Match against one or both scalar values being inserted into constant
  // vectors:
  // vec_op VecC0, (inselt VecC1, V1, Index)
  // vec_op (inselt VecC0, V0, Index), VecC1
  // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
  // TODO: Deal with mismatched index constants and variable indexes?
  Constant *VecC0 = nullptr, *VecC1 = nullptr;
  Value *V0 = nullptr, *V1 = nullptr;
  uint64_t Index0 = 0, Index1 = 0;
  if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
                               m_ConstantInt(Index0))) &&
      !match(Ins0, m_Constant(VecC0)))
    return false;
  if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
                               m_ConstantInt(Index1))) &&
      !match(Ins1, m_Constant(VecC1)))
    return false;

  bool IsConst0 = !V0;
  bool IsConst1 = !V1;
  if (IsConst0 && IsConst1)
    return false;
  if (!IsConst0 && !IsConst1 && Index0 != Index1)
    return false;

  // Bail for single insertion if it is a load.
  // TODO: Handle this once getVectorInstrCost can cost for load/stores.
  auto *I0 = dyn_cast_or_null<Instruction>(V0);
  auto *I1 = dyn_cast_or_null<Instruction>(V1);
  if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
      (IsConst1 && I0 && I0->mayReadFromMemory()))
    return false;

  uint64_t Index = IsConst0 ? Index1 : Index0;
  Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
  Type *VecTy = I.getType();
  assert(VecTy->isVectorTy() &&
         (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
         (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
          ScalarTy->isPointerTy()) &&
         "Unexpected types for insert element into binop or cmp");

  unsigned Opcode = I.getOpcode();
  InstructionCost ScalarOpCost, VectorOpCost;
  if (IsCmp) {
    CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
    ScalarOpCost = TTI.getCmpSelInstrCost(
        Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
    VectorOpCost = TTI.getCmpSelInstrCost(
        Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
  } else {
    ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
    VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
  }

  // Get cost estimate for the insert element. This cost will factor into
  // both sequences.
  InstructionCost InsertCost =
      TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
  InstructionCost OldCost =
      (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
  InstructionCost NewCost = ScalarOpCost + InsertCost +
                            (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
                            (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);

  // We want to scalarize unless the vector variant actually has lower cost.
  if (OldCost < NewCost || !NewCost.isValid())
    return false;

  // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
  // inselt NewVecC, (scalar_op V0, V1), Index
  if (IsCmp)
    ++NumScalarCmp;
  else
    ++NumScalarBO;

  // For constant cases, extract the scalar element, this should constant fold.
  if (IsConst0)
    V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
  if (IsConst1)
    V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));

  Value *Scalar =
      IsCmp ? Builder.CreateCmp(Pred, V0, V1)
            : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);

  Scalar->setName(I.getName() + ".scalar");

  // All IR flags are safe to back-propagate. There is no potential for extra
  // poison to be created by the scalar instruction.
  if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
    ScalarInst->copyIRFlags(&I);

  // Fold the vector constants in the original vectors into a new base vector.
  Value *NewVecC =
      IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
            : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
  Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
  replaceValue(I, *Insert);
  return true;
}

/// Try to combine a scalar binop + 2 scalar compares of extracted elements of
/// a vector into vector operations followed by extract. Note: The SLP pass
/// may miss this pattern because of implementation problems.
bool VectorCombine::foldExtractedCmps(Instruction &I) {
  // We are looking for a scalar binop of booleans.
  // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
  if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
    return false;

  // The compare predicates should match, and each compare should have a
  // constant operand.
  // TODO: Relax the one-use constraints.
  Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
  Instruction *I0, *I1;
  Constant *C0, *C1;
  CmpInst::Predicate P0, P1;
  if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
      !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
      P0 != P1)
    return false;

  // The compare operands must be extracts of the same vector with constant
  // extract indexes.
  // TODO: Relax the one-use constraints.
  Value *X;
  uint64_t Index0, Index1;
  if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
      !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
    return false;

  auto *Ext0 = cast<ExtractElementInst>(I0);
  auto *Ext1 = cast<ExtractElementInst>(I1);
  ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
  if (!ConvertToShuf)
    return false;

  // The original scalar pattern is:
  // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
  CmpInst::Predicate Pred = P0;
  unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
                                                    : Instruction::ICmp;
  auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
  if (!VecTy)
    return false;

  InstructionCost OldCost =
      TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
  OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
  OldCost +=
      TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
                             CmpInst::makeCmpResultType(I0->getType()), Pred) *
      2;
  OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());

  // The proposed vector pattern is:
  // vcmp = cmp Pred X, VecC
  // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
  int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
  int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
  auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
  InstructionCost NewCost = TTI.getCmpSelInstrCost(
      CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
  SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
  ShufMask[CheapIndex] = ExpensiveIndex;
  NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
                                ShufMask);
  NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
  NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);

  // Aggressively form vector ops if the cost is equal because the transform
  // may enable further optimization.
  // Codegen can reverse this transform (scalarize) if it was not profitable.
  if (OldCost < NewCost || !NewCost.isValid())
    return false;

  // Create a vector constant from the 2 scalar constants.
  SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
                                   UndefValue::get(VecTy->getElementType()));
  CmpC[Index0] = C0;
  CmpC[Index1] = C1;
  Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));

  Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
  Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
                                        VCmp, Shuf);
  Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
  replaceValue(I, *NewExt);
  ++NumVecCmpBO;
  return true;
}

// Check if memory loc modified between two instrs in the same BB
static bool isMemModifiedBetween(BasicBlock::iterator Begin,
                                 BasicBlock::iterator End,
                                 const MemoryLocation &Loc, AAResults &AA) {
  unsigned NumScanned = 0;
  return std::any_of(Begin, End, [&](const Instruction &Instr) {
    return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
           ++NumScanned > MaxInstrsToScan;
  });
}

/// Helper class to indicate whether a vector index can be safely scalarized and
/// if a freeze needs to be inserted.
class ScalarizationResult {
  enum class StatusTy { Unsafe, Safe, SafeWithFreeze };

  StatusTy Status;
  Value *ToFreeze;

  ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
      : Status(Status), ToFreeze(ToFreeze) {}

public:
  ScalarizationResult(const ScalarizationResult &Other) = default;
  ~ScalarizationResult() {
    assert(!ToFreeze && "freeze() not called with ToFreeze being set");
  }

  static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
  static ScalarizationResult safe() { return {StatusTy::Safe}; }
  static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
    return {StatusTy::SafeWithFreeze, ToFreeze};
  }

  /// Returns true if the index can be scalarize without requiring a freeze.
  bool isSafe() const { return Status == StatusTy::Safe; }
  /// Returns true if the index cannot be scalarized.
  bool isUnsafe() const { return Status == StatusTy::Unsafe; }
  /// Returns true if the index can be scalarize, but requires inserting a
  /// freeze.
  bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }

  /// Reset the state of Unsafe and clear ToFreze if set.
  void discard() {
    ToFreeze = nullptr;
    Status = StatusTy::Unsafe;
  }

  /// Freeze the ToFreeze and update the use in \p User to use it.
  void freeze(IRBuilder<> &Builder, Instruction &UserI) {
    assert(isSafeWithFreeze() &&
           "should only be used when freezing is required");
    assert(is_contained(ToFreeze->users(), &UserI) &&
           "UserI must be a user of ToFreeze");
    IRBuilder<>::InsertPointGuard Guard(Builder);
    Builder.SetInsertPoint(cast<Instruction>(&UserI));
    Value *Frozen =
        Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
    for (Use &U : make_early_inc_range((UserI.operands())))
      if (U.get() == ToFreeze)
        U.set(Frozen);

    ToFreeze = nullptr;
  }
};

/// Check if it is legal to scalarize a memory access to \p VecTy at index \p
/// Idx. \p Idx must access a valid vector element.
static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy,
                                              Value *Idx, Instruction *CtxI,
                                              AssumptionCache &AC,
                                              const DominatorTree &DT) {
  if (auto *C = dyn_cast<ConstantInt>(Idx)) {
    if (C->getValue().ult(VecTy->getNumElements()))
      return ScalarizationResult::safe();
    return ScalarizationResult::unsafe();
  }

  unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
  APInt Zero(IntWidth, 0);
  APInt MaxElts(IntWidth, VecTy->getNumElements());
  ConstantRange ValidIndices(Zero, MaxElts);
  ConstantRange IdxRange(IntWidth, true);

  if (isGuaranteedNotToBePoison(Idx, &AC)) {
    if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
                                                   true, &AC, CtxI, &DT)))
      return ScalarizationResult::safe();
    return ScalarizationResult::unsafe();
  }

  // If the index may be poison, check if we can insert a freeze before the
  // range of the index is restricted.
  Value *IdxBase;
  ConstantInt *CI;
  if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
    IdxRange = IdxRange.binaryAnd(CI->getValue());
  } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
    IdxRange = IdxRange.urem(CI->getValue());
  }

  if (ValidIndices.contains(IdxRange))
    return ScalarizationResult::safeWithFreeze(IdxBase);
  return ScalarizationResult::unsafe();
}

/// The memory operation on a vector of \p ScalarType had alignment of
/// \p VectorAlignment. Compute the maximal, but conservatively correct,
/// alignment that will be valid for the memory operation on a single scalar
/// element of the same type with index \p Idx.
static Align computeAlignmentAfterScalarization(Align VectorAlignment,
                                                Type *ScalarType, Value *Idx,
                                                const DataLayout &DL) {
  if (auto *C = dyn_cast<ConstantInt>(Idx))
    return commonAlignment(VectorAlignment,
                           C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
  return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
}

// Combine patterns like:
//   %0 = load <4 x i32>, <4 x i32>* %a
//   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
//   store <4 x i32> %1, <4 x i32>* %a
// to:
//   %0 = bitcast <4 x i32>* %a to i32*
//   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
//   store i32 %b, i32* %1
bool VectorCombine::foldSingleElementStore(Instruction &I) {
  StoreInst *SI = dyn_cast<StoreInst>(&I);
  if (!SI || !SI->isSimple() ||
      !isa<FixedVectorType>(SI->getValueOperand()->getType()))
    return false;

  // TODO: Combine more complicated patterns (multiple insert) by referencing
  // TargetTransformInfo.
  Instruction *Source;
  Value *NewElement;
  Value *Idx;
  if (!match(SI->getValueOperand(),
             m_InsertElt(m_Instruction(Source), m_Value(NewElement),
                         m_Value(Idx))))
    return false;

  if (auto *Load = dyn_cast<LoadInst>(Source)) {
    auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
    const DataLayout &DL = I.getModule()->getDataLayout();
    Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
    // Don't optimize for atomic/volatile load or store. Ensure memory is not
    // modified between, vector type matches store size, and index is inbounds.
    if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
        !DL.typeSizeEqualsStoreSize(Load->getType()) ||
        SrcAddr != SI->getPointerOperand()->stripPointerCasts())
      return false;

    auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
    if (ScalarizableIdx.isUnsafe() ||
        isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
                             MemoryLocation::get(SI), AA))
      return false;

    if (ScalarizableIdx.isSafeWithFreeze())
      ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
    Value *GEP = Builder.CreateInBoundsGEP(
        SI->getValueOperand()->getType(), SI->getPointerOperand(),
        {ConstantInt::get(Idx->getType(), 0), Idx});
    StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
    NSI->copyMetadata(*SI);
    Align ScalarOpAlignment = computeAlignmentAfterScalarization(
        std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
        DL);
    NSI->setAlignment(ScalarOpAlignment);
    replaceValue(I, *NSI);
    eraseInstruction(I);
    return true;
  }

  return false;
}

/// Try to scalarize vector loads feeding extractelement instructions.
bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
  Value *Ptr;
  if (!match(&I, m_Load(m_Value(Ptr))))
    return false;

  auto *LI = cast<LoadInst>(&I);
  const DataLayout &DL = I.getModule()->getDataLayout();
  if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
    return false;

  auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
  if (!FixedVT)
    return false;

  InstructionCost OriginalCost =
      TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(),
                          LI->getPointerAddressSpace());
  InstructionCost ScalarizedCost = 0;

  Instruction *LastCheckedInst = LI;
  unsigned NumInstChecked = 0;
  // Check if all users of the load are extracts with no memory modifications
  // between the load and the extract. Compute the cost of both the original
  // code and the scalarized version.
  for (User *U : LI->users()) {
    auto *UI = dyn_cast<ExtractElementInst>(U);
    if (!UI || UI->getParent() != LI->getParent())
      return false;

    if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT))
      return false;

    // Check if any instruction between the load and the extract may modify
    // memory.
    if (LastCheckedInst->comesBefore(UI)) {
      for (Instruction &I :
           make_range(std::next(LI->getIterator()), UI->getIterator())) {
        // Bail out if we reached the check limit or the instruction may write
        // to memory.
        if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
          return false;
        NumInstChecked++;
      }
      LastCheckedInst = UI;
    }

    auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT);
    if (!ScalarIdx.isSafe()) {
      // TODO: Freeze index if it is safe to do so.
      ScalarIdx.discard();
      return false;
    }

    auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
    OriginalCost +=
        TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
                               Index ? Index->getZExtValue() : -1);
    ScalarizedCost +=
        TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
                            Align(1), LI->getPointerAddressSpace());
    ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
  }

  if (ScalarizedCost >= OriginalCost)
    return false;

  // Replace extracts with narrow scalar loads.
  for (User *U : LI->users()) {
    auto *EI = cast<ExtractElementInst>(U);
    Builder.SetInsertPoint(EI);

    Value *Idx = EI->getOperand(1);
    Value *GEP =
        Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx});
    auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
        FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));

    Align ScalarOpAlignment = computeAlignmentAfterScalarization(
        LI->getAlign(), FixedVT->getElementType(), Idx, DL);
    NewLoad->setAlignment(ScalarOpAlignment);

    replaceValue(*EI, *NewLoad);
  }

  return true;
}

/// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
/// "binop (shuffle), (shuffle)".
bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
  auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
  if (!VecTy)
    return false;

  BinaryOperator *B0, *B1;
  ArrayRef<int> Mask;
  if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
                           m_Mask(Mask))) ||
      B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
    return false;

  // Try to replace a binop with a shuffle if the shuffle is not costly.
  // The new shuffle will choose from a single, common operand, so it may be
  // cheaper than the existing two-operand shuffle.
  SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
  Instruction::BinaryOps Opcode = B0->getOpcode();
  InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
  InstructionCost ShufCost = TTI.getShuffleCost(
      TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
  if (ShufCost > BinopCost)
    return false;

  // If we have something like "add X, Y" and "add Z, X", swap ops to match.
  Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
  Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
  if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
    std::swap(X, Y);

  Value *Shuf0, *Shuf1;
  if (X == Z) {
    // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
    Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
    Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
  } else if (Y == W) {
    // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
    Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
    Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
  } else {
    return false;
  }

  Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
  // Intersect flags from the old binops.
  if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
    NewInst->copyIRFlags(B0);
    NewInst->andIRFlags(B1);
  }
  replaceValue(I, *NewBO);
  return true;
}

/// Given a commutative reduction, the order of the input lanes does not alter
/// the results. We can use this to remove certain shuffles feeding the
/// reduction, removing the need to shuffle at all.
bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
  auto *II = dyn_cast<IntrinsicInst>(&I);
  if (!II)
    return false;
  switch (II->getIntrinsicID()) {
  case Intrinsic::vector_reduce_add:
  case Intrinsic::vector_reduce_mul:
  case Intrinsic::vector_reduce_and:
  case Intrinsic::vector_reduce_or:
  case Intrinsic::vector_reduce_xor:
  case Intrinsic::vector_reduce_smin:
  case Intrinsic::vector_reduce_smax:
  case Intrinsic::vector_reduce_umin:
  case Intrinsic::vector_reduce_umax:
    break;
  default:
    return false;
  }

  // Find all the inputs when looking through operations that do not alter the
  // lane order (binops, for example). Currently we look for a single shuffle,
  // and can ignore splat values.
  std::queue<Value *> Worklist;
  SmallPtrSet<Value *, 4> Visited;
  ShuffleVectorInst *Shuffle = nullptr;
  if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
    Worklist.push(Op);

  while (!Worklist.empty()) {
    Value *CV = Worklist.front();
    Worklist.pop();
    if (Visited.contains(CV))
      continue;

    // Splats don't change the order, so can be safely ignored.
    if (isSplatValue(CV))
      continue;

    Visited.insert(CV);

    if (auto *CI = dyn_cast<Instruction>(CV)) {
      if (CI->isBinaryOp()) {
        for (auto *Op : CI->operand_values())
          Worklist.push(Op);
        continue;
      } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
        if (Shuffle && Shuffle != SV)
          return false;
        Shuffle = SV;
        continue;
      }
    }

    // Anything else is currently an unknown node.
    return false;
  }

  if (!Shuffle)
    return false;

  // Check all uses of the binary ops and shuffles are also included in the
  // lane-invariant operations (Visited should be the list of lanewise
  // instructions, including the shuffle that we found).
  for (auto *V : Visited)
    for (auto *U : V->users())
      if (!Visited.contains(U) && U != &I)
        return false;

  FixedVectorType *VecType =
      dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
  if (!VecType)
    return false;
  FixedVectorType *ShuffleInputType =
      dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
  if (!ShuffleInputType)
    return false;
  int NumInputElts = ShuffleInputType->getNumElements();

  // Find the mask from sorting the lanes into order. This is most likely to
  // become a identity or concat mask. Undef elements are pushed to the end.
  SmallVector<int> ConcatMask;
  Shuffle->getShuffleMask(ConcatMask);
  sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
  bool UsesSecondVec =
      any_of(ConcatMask, [&](int M) { return M >= NumInputElts; });
  InstructionCost OldCost = TTI.getShuffleCost(
      UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType,
      Shuffle->getShuffleMask());
  InstructionCost NewCost = TTI.getShuffleCost(
      UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType,
      ConcatMask);

  LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
                    << "\n");
  LLVM_DEBUG(dbgs() << "  OldCost: " << OldCost << " vs NewCost: " << NewCost
                    << "\n");
  if (NewCost < OldCost) {
    Builder.SetInsertPoint(Shuffle);
    Value *NewShuffle = Builder.CreateShuffleVector(
        Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
    LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
    replaceValue(*Shuffle, *NewShuffle);
  }

  // See if we can re-use foldSelectShuffle, getting it to reduce the size of
  // the shuffle into a nicer order, as it can ignore the order of the shuffles.
  return foldSelectShuffle(*Shuffle, true);
}

/// This method looks for groups of shuffles acting on binops, of the form:
///  %x = shuffle ...
///  %y = shuffle ...
///  %a = binop %x, %y
///  %b = binop %x, %y
///  shuffle %a, %b, selectmask
/// We may, especially if the shuffle is wider than legal, be able to convert
/// the shuffle to a form where only parts of a and b need to be computed. On
/// architectures with no obvious "select" shuffle, this can reduce the total
/// number of operations if the target reports them as cheaper.
bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
  auto *SVI = dyn_cast<ShuffleVectorInst>(&I);
  auto *VT = dyn_cast<FixedVectorType>(I.getType());
  if (!SVI || !VT)
    return false;
  auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
  auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
  if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
      VT != Op0->getType())
    return false;
  auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
  auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
  auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
  auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
  SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
  auto checkSVNonOpUses = [&](Instruction *I) {
    if (!I || I->getOperand(0)->getType() != VT)
      return true;
    return any_of(I->users(), [&](User *U) {
      return U != Op0 && U != Op1 &&
             !(isa<ShuffleVectorInst>(U) &&
               (InputShuffles.contains(cast<Instruction>(U)) ||
                isInstructionTriviallyDead(cast<Instruction>(U))));
    });
  };
  if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
      checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
    return false;

  // Collect all the uses that are shuffles that we can transform together. We
  // may not have a single shuffle, but a group that can all be transformed
  // together profitably.
  SmallVector<ShuffleVectorInst *> Shuffles;
  auto collectShuffles = [&](Instruction *I) {
    for (auto *U : I->users()) {
      auto *SV = dyn_cast<ShuffleVectorInst>(U);
      if (!SV || SV->getType() != VT)
        return false;
      if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
          (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
        return false;
      if (!llvm::is_contained(Shuffles, SV))
        Shuffles.push_back(SV);
    }
    return true;
  };
  if (!collectShuffles(Op0) || !collectShuffles(Op1))
    return false;
  // From a reduction, we need to be processing a single shuffle, otherwise the
  // other uses will not be lane-invariant.
  if (FromReduction && Shuffles.size() > 1)
    return false;

  // Add any shuffle uses for the shuffles we have found, to include them in our
  // cost calculations.
  if (!FromReduction) {
    for (ShuffleVectorInst *SV : Shuffles) {
      for (auto U : SV->users()) {
        ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
        if (SSV && isa<UndefValue>(SSV->getOperand(1)))
          Shuffles.push_back(SSV);
      }
    }
  }

  // For each of the output shuffles, we try to sort all the first vector
  // elements to the beginning, followed by the second array elements at the
  // end. If the binops are legalized to smaller vectors, this may reduce total
  // number of binops. We compute the ReconstructMask mask needed to convert
  // back to the original lane order.
  SmallVector<std::pair<int, int>> V1, V2;
  SmallVector<SmallVector<int>> OrigReconstructMasks;
  int MaxV1Elt = 0, MaxV2Elt = 0;
  unsigned NumElts = VT->getNumElements();
  for (ShuffleVectorInst *SVN : Shuffles) {
    SmallVector<int> Mask;
    SVN->getShuffleMask(Mask);

    // Check the operands are the same as the original, or reversed (in which
    // case we need to commute the mask).
    Value *SVOp0 = SVN->getOperand(0);
    Value *SVOp1 = SVN->getOperand(1);
    if (isa<UndefValue>(SVOp1)) {
      auto *SSV = cast<ShuffleVectorInst>(SVOp0);
      SVOp0 = SSV->getOperand(0);
      SVOp1 = SSV->getOperand(1);
      for (unsigned I = 0, E = Mask.size(); I != E; I++) {
        if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
          return false;
        Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
      }
    }
    if (SVOp0 == Op1 && SVOp1 == Op0) {
      std::swap(SVOp0, SVOp1);
      ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
    }
    if (SVOp0 != Op0 || SVOp1 != Op1)
      return false;

    // Calculate the reconstruction mask for this shuffle, as the mask needed to
    // take the packed values from Op0/Op1 and reconstructing to the original
    // order.
    SmallVector<int> ReconstructMask;
    for (unsigned I = 0; I < Mask.size(); I++) {
      if (Mask[I] < 0) {
        ReconstructMask.push_back(-1);
      } else if (Mask[I] < static_cast<int>(NumElts)) {
        MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
        auto It = find_if(V1, [&](const std::pair<int, int> &A) {
          return Mask[I] == A.first;
        });
        if (It != V1.end())
          ReconstructMask.push_back(It - V1.begin());
        else {
          ReconstructMask.push_back(V1.size());
          V1.emplace_back(Mask[I], V1.size());
        }
      } else {
        MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
        auto It = find_if(V2, [&](const std::pair<int, int> &A) {
          return Mask[I] - static_cast<int>(NumElts) == A.first;
        });
        if (It != V2.end())
          ReconstructMask.push_back(NumElts + It - V2.begin());
        else {
          ReconstructMask.push_back(NumElts + V2.size());
          V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
        }
      }
    }

    // For reductions, we know that the lane ordering out doesn't alter the
    // result. In-order can help simplify the shuffle away.
    if (FromReduction)
      sort(ReconstructMask);
    OrigReconstructMasks.push_back(std::move(ReconstructMask));
  }

  // If the Maximum element used from V1 and V2 are not larger than the new
  // vectors, the vectors are already packes and performing the optimization
  // again will likely not help any further. This also prevents us from getting
  // stuck in a cycle in case the costs do not also rule it out.
  if (V1.empty() || V2.empty() ||
      (MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
       MaxV2Elt == static_cast<int>(V2.size()) - 1))
    return false;

  // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
  // shuffle of another shuffle, or not a shuffle (that is treated like a
  // identity shuffle).
  auto GetBaseMaskValue = [&](Instruction *I, int M) {
    auto *SV = dyn_cast<ShuffleVectorInst>(I);
    if (!SV)
      return M;
    if (isa<UndefValue>(SV->getOperand(1)))
      if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
        if (InputShuffles.contains(SSV))
          return SSV->getMaskValue(SV->getMaskValue(M));
    return SV->getMaskValue(M);
  };

  // Attempt to sort the inputs my ascending mask values to make simpler input
  // shuffles and push complex shuffles down to the uses. We sort on the first
  // of the two input shuffle orders, to try and get at least one input into a
  // nice order.
  auto SortBase = [&](Instruction *A, std::pair<int, int> X,
                      std::pair<int, int> Y) {
    int MXA = GetBaseMaskValue(A, X.first);
    int MYA = GetBaseMaskValue(A, Y.first);
    return MXA < MYA;
  };
  stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
    return SortBase(SVI0A, A, B);
  });
  stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
    return SortBase(SVI1A, A, B);
  });
  // Calculate our ReconstructMasks from the OrigReconstructMasks and the
  // modified order of the input shuffles.
  SmallVector<SmallVector<int>> ReconstructMasks;
  for (auto Mask : OrigReconstructMasks) {
    SmallVector<int> ReconstructMask;
    for (int M : Mask) {
      auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
        auto It = find_if(V, [M](auto A) { return A.second == M; });
        assert(It != V.end() && "Expected all entries in Mask");
        return std::distance(V.begin(), It);
      };
      if (M < 0)
        ReconstructMask.push_back(-1);
      else if (M < static_cast<int>(NumElts)) {
        ReconstructMask.push_back(FindIndex(V1, M));
      } else {
        ReconstructMask.push_back(NumElts + FindIndex(V2, M));
      }
    }
    ReconstructMasks.push_back(std::move(ReconstructMask));
  }

  // Calculate the masks needed for the new input shuffles, which get padded
  // with undef
  SmallVector<int> V1A, V1B, V2A, V2B;
  for (unsigned I = 0; I < V1.size(); I++) {
    V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
    V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
  }
  for (unsigned I = 0; I < V2.size(); I++) {
    V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
    V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
  }
  while (V1A.size() < NumElts) {
    V1A.push_back(UndefMaskElem);
    V1B.push_back(UndefMaskElem);
  }
  while (V2A.size() < NumElts) {
    V2A.push_back(UndefMaskElem);
    V2B.push_back(UndefMaskElem);
  }

  auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
    auto *SV = dyn_cast<ShuffleVectorInst>(I);
    if (!SV)
      return C;
    return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
                                      ? TTI::SK_PermuteSingleSrc
                                      : TTI::SK_PermuteTwoSrc,
                                  VT, SV->getShuffleMask());
  };
  auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
    return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask);
  };

  // Get the costs of the shuffles + binops before and after with the new
  // shuffle masks.
  InstructionCost CostBefore =
      TTI.getArithmeticInstrCost(Op0->getOpcode(), VT) +
      TTI.getArithmeticInstrCost(Op1->getOpcode(), VT);
  CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
                                InstructionCost(0), AddShuffleCost);
  CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
                                InstructionCost(0), AddShuffleCost);

  // The new binops will be unused for lanes past the used shuffle lengths.
  // These types attempt to get the correct cost for that from the target.
  FixedVectorType *Op0SmallVT =
      FixedVectorType::get(VT->getScalarType(), V1.size());
  FixedVectorType *Op1SmallVT =
      FixedVectorType::get(VT->getScalarType(), V2.size());
  InstructionCost CostAfter =
      TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT) +
      TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT);
  CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
                               InstructionCost(0), AddShuffleMaskCost);
  std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
  CostAfter +=
      std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
                      InstructionCost(0), AddShuffleMaskCost);

  LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
  LLVM_DEBUG(dbgs() << "  CostBefore: " << CostBefore
                    << " vs CostAfter: " << CostAfter << "\n");
  if (CostBefore <= CostAfter)
    return false;

  // The cost model has passed, create the new instructions.
  auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
    auto *SV = dyn_cast<ShuffleVectorInst>(I);
    if (!SV)
      return I;
    if (isa<UndefValue>(SV->getOperand(1)))
      if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
        if (InputShuffles.contains(SSV))
          return SSV->getOperand(Op);
    return SV->getOperand(Op);
  };
  Builder.SetInsertPoint(SVI0A->getNextNode());
  Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
                                             GetShuffleOperand(SVI0A, 1), V1A);
  Builder.SetInsertPoint(SVI0B->getNextNode());
  Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
                                             GetShuffleOperand(SVI0B, 1), V1B);
  Builder.SetInsertPoint(SVI1A->getNextNode());
  Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
                                             GetShuffleOperand(SVI1A, 1), V2A);
  Builder.SetInsertPoint(SVI1B->getNextNode());
  Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
                                             GetShuffleOperand(SVI1B, 1), V2B);
  Builder.SetInsertPoint(Op0);
  Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
                                    NSV0A, NSV0B);
  if (auto *I = dyn_cast<Instruction>(NOp0))
    I->copyIRFlags(Op0, true);
  Builder.SetInsertPoint(Op1);
  Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
                                    NSV1A, NSV1B);
  if (auto *I = dyn_cast<Instruction>(NOp1))
    I->copyIRFlags(Op1, true);

  for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
    Builder.SetInsertPoint(Shuffles[S]);
    Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
    replaceValue(*Shuffles[S], *NSV);
  }

  Worklist.pushValue(NSV0A);
  Worklist.pushValue(NSV0B);
  Worklist.pushValue(NSV1A);
  Worklist.pushValue(NSV1B);
  for (auto *S : Shuffles)
    Worklist.add(S);
  return true;
}

/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
bool VectorCombine::run() {
  if (DisableVectorCombine)
    return false;

  // Don't attempt vectorization if the target does not support vectors.
  if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
    return false;

  bool MadeChange = false;
  auto FoldInst = [this, &MadeChange](Instruction &I) {
    Builder.SetInsertPoint(&I);
    if (!ScalarizationOnly) {
      MadeChange |= vectorizeLoadInsert(I);
      MadeChange |= foldExtractExtract(I);
      MadeChange |= foldBitcastShuf(I);
      MadeChange |= foldExtractedCmps(I);
      MadeChange |= foldShuffleOfBinops(I);
      MadeChange |= foldShuffleFromReductions(I);
      MadeChange |= foldSelectShuffle(I);
    }
    MadeChange |= scalarizeBinopOrCmp(I);
    MadeChange |= scalarizeLoadExtract(I);
    MadeChange |= foldSingleElementStore(I);
  };
  for (BasicBlock &BB : F) {
    // Ignore unreachable basic blocks.
    if (!DT.isReachableFromEntry(&BB))
      continue;
    // Use early increment range so that we can erase instructions in loop.
    for (Instruction &I : make_early_inc_range(BB)) {
      if (I.isDebugOrPseudoInst())
        continue;
      FoldInst(I);
    }
  }

  while (!Worklist.isEmpty()) {
    Instruction *I = Worklist.removeOne();
    if (!I)
      continue;

    if (isInstructionTriviallyDead(I)) {
      eraseInstruction(*I);
      continue;
    }

    FoldInst(*I);
  }

  return MadeChange;
}

// Pass manager boilerplate below here.

namespace {
class VectorCombineLegacyPass : public FunctionPass {
public:
  static char ID;
  VectorCombineLegacyPass() : FunctionPass(ID) {
    initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.setPreservesCFG();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<AAResultsWrapperPass>();
    AU.addPreserved<BasicAAWrapperPass>();
    FunctionPass::getAnalysisUsage(AU);
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    VectorCombine Combiner(F, TTI, DT, AA, AC, false);
    return Combiner.run();
  }
};
} // namespace

char VectorCombineLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
                      "Optimize scalar/vector ops", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
                    "Optimize scalar/vector ops", false, false)
Pass *llvm::createVectorCombinePass() {
  return new VectorCombineLegacyPass();
}

PreservedAnalyses VectorCombinePass::run(Function &F,
                                         FunctionAnalysisManager &FAM) {
  auto &AC = FAM.getResult<AssumptionAnalysis>(F);
  TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
  DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
  AAResults &AA = FAM.getResult<AAManager>(F);
  VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly);
  if (!Combiner.run())
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return PA;
}