aboutsummaryrefslogtreecommitdiff
path: root/module/os/linux/zfs/vdev_disk.c
blob: 4bd27d1b516f0b325393d415117a55b062df682b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
 * LLNL-CODE-403049.
 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/vdev_disk.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_trim.h>
#include <sys/abd.h>
#include <sys/fs/zfs.h>
#include <sys/zio.h>
#include <linux/blkpg.h>
#include <linux/msdos_fs.h>
#include <linux/vfs_compat.h>

typedef struct vdev_disk {
	struct block_device		*vd_bdev;
	krwlock_t			vd_lock;
} vdev_disk_t;

/*
 * Unique identifier for the exclusive vdev holder.
 */
static void *zfs_vdev_holder = VDEV_HOLDER;

/*
 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
 * device is missing. The missing path may be transient since the links
 * can be briefly removed and recreated in response to udev events.
 */
static unsigned zfs_vdev_open_timeout_ms = 1000;

/*
 * Size of the "reserved" partition, in blocks.
 */
#define	EFI_MIN_RESV_SIZE	(16 * 1024)

/*
 * Virtual device vector for disks.
 */
typedef struct dio_request {
	zio_t			*dr_zio;	/* Parent ZIO */
	atomic_t		dr_ref;		/* References */
	int			dr_error;	/* Bio error */
	int			dr_bio_count;	/* Count of bio's */
	struct bio		*dr_bio[0];	/* Attached bio's */
} dio_request_t;

static fmode_t
vdev_bdev_mode(spa_mode_t spa_mode)
{
	fmode_t mode = 0;

	if (spa_mode & SPA_MODE_READ)
		mode |= FMODE_READ;

	if (spa_mode & SPA_MODE_WRITE)
		mode |= FMODE_WRITE;

	return (mode);
}

/*
 * Returns the usable capacity (in bytes) for the partition or disk.
 */
static uint64_t
bdev_capacity(struct block_device *bdev)
{
	return (i_size_read(bdev->bd_inode));
}

#if !defined(HAVE_BDEV_WHOLE)
static inline struct block_device *
bdev_whole(struct block_device *bdev)
{
	return (bdev->bd_contains);
}
#endif

/*
 * Returns the maximum expansion capacity of the block device (in bytes).
 *
 * It is possible to expand a vdev when it has been created as a wholedisk
 * and the containing block device has increased in capacity.  Or when the
 * partition containing the pool has been manually increased in size.
 *
 * This function is only responsible for calculating the potential expansion
 * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
 * responsible for verifying the expected partition layout in the wholedisk
 * case, and updating the partition table if appropriate.  Once the partition
 * size has been increased the additional capacity will be visible using
 * bdev_capacity().
 *
 * The returned maximum expansion capacity is always expected to be larger, or
 * at the very least equal, to its usable capacity to prevent overestimating
 * the pool expandsize.
 */
static uint64_t
bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
{
	uint64_t psize;
	int64_t available;

	if (wholedisk && bdev != bdev_whole(bdev)) {
		/*
		 * When reporting maximum expansion capacity for a wholedisk
		 * deduct any capacity which is expected to be lost due to
		 * alignment restrictions.  Over reporting this value isn't
		 * harmful and would only result in slightly less capacity
		 * than expected post expansion.
		 * The estimated available space may be slightly smaller than
		 * bdev_capacity() for devices where the number of sectors is
		 * not a multiple of the alignment size and the partition layout
		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
		 * "reserved" EFI partition: in such cases return the device
		 * usable capacity.
		 */
		available = i_size_read(bdev_whole(bdev)->bd_inode) -
		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
		psize = MAX(available, bdev_capacity(bdev));
	} else {
		psize = bdev_capacity(bdev);
	}

	return (psize);
}

static void
vdev_disk_error(zio_t *zio)
{
	/*
	 * This function can be called in interrupt context, for instance while
	 * handling IRQs coming from a misbehaving disk device; use printk()
	 * which is safe from any context.
	 */
	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
	    "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
	    zio->io_flags);
}

static int
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
    uint64_t *logical_ashift, uint64_t *physical_ashift)
{
	struct block_device *bdev;
	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
	vdev_disk_t *vd;

	/* Must have a pathname and it must be absolute. */
	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
		vdev_dbgmsg(v, "invalid vdev_path");
		return (SET_ERROR(EINVAL));
	}

	/*
	 * Reopen the device if it is currently open.  When expanding a
	 * partition force re-scanning the partition table if userland
	 * did not take care of this already. We need to do this while closed
	 * in order to get an accurate updated block device size.  Then
	 * since udev may need to recreate the device links increase the
	 * open retry timeout before reporting the device as unavailable.
	 */
	vd = v->vdev_tsd;
	if (vd) {
		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
		boolean_t reread_part = B_FALSE;

		rw_enter(&vd->vd_lock, RW_WRITER);
		bdev = vd->vd_bdev;
		vd->vd_bdev = NULL;

		if (bdev) {
			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
				bdevname(bdev_whole(bdev), disk_name + 5);
				/*
				 * If userland has BLKPG_RESIZE_PARTITION,
				 * then it should have updated the partition
				 * table already. We can detect this by
				 * comparing our current physical size
				 * with that of the device. If they are
				 * the same, then we must not have
				 * BLKPG_RESIZE_PARTITION or it failed to
				 * update the partition table online. We
				 * fallback to rescanning the partition
				 * table from the kernel below. However,
				 * if the capacity already reflects the
				 * updated partition, then we skip
				 * rescanning the partition table here.
				 */
				if (v->vdev_psize == bdev_capacity(bdev))
					reread_part = B_TRUE;
			}

			blkdev_put(bdev, mode | FMODE_EXCL);
		}

		if (reread_part) {
			bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
			    zfs_vdev_holder);
			if (!IS_ERR(bdev)) {
				int error = vdev_bdev_reread_part(bdev);
				blkdev_put(bdev, mode | FMODE_EXCL);
				if (error == 0) {
					timeout = MSEC2NSEC(
					    zfs_vdev_open_timeout_ms * 2);
				}
			}
		}
	} else {
		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);

		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
		rw_enter(&vd->vd_lock, RW_WRITER);
	}

	/*
	 * Devices are always opened by the path provided at configuration
	 * time.  This means that if the provided path is a udev by-id path
	 * then drives may be re-cabled without an issue.  If the provided
	 * path is a udev by-path path, then the physical location information
	 * will be preserved.  This can be critical for more complicated
	 * configurations where drives are located in specific physical
	 * locations to maximize the systems tolerance to component failure.
	 *
	 * Alternatively, you can provide your own udev rule to flexibly map
	 * the drives as you see fit.  It is not advised that you use the
	 * /dev/[hd]d devices which may be reordered due to probing order.
	 * Devices in the wrong locations will be detected by the higher
	 * level vdev validation.
	 *
	 * The specified paths may be briefly removed and recreated in
	 * response to udev events.  This should be exceptionally unlikely
	 * because the zpool command makes every effort to verify these paths
	 * have already settled prior to reaching this point.  Therefore,
	 * a ENOENT failure at this point is highly likely to be transient
	 * and it is reasonable to sleep and retry before giving up.  In
	 * practice delays have been observed to be on the order of 100ms.
	 */
	hrtime_t start = gethrtime();
	bdev = ERR_PTR(-ENXIO);
	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
		bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
		    zfs_vdev_holder);
		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
			schedule_timeout(MSEC_TO_TICK(10));
		} else if (IS_ERR(bdev)) {
			break;
		}
	}

	if (IS_ERR(bdev)) {
		int error = -PTR_ERR(bdev);
		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
		    (u_longlong_t)(gethrtime() - start),
		    (u_longlong_t)timeout);
		vd->vd_bdev = NULL;
		v->vdev_tsd = vd;
		rw_exit(&vd->vd_lock);
		return (SET_ERROR(error));
	} else {
		vd->vd_bdev = bdev;
		v->vdev_tsd = vd;
		rw_exit(&vd->vd_lock);
	}

	struct request_queue *q = bdev_get_queue(vd->vd_bdev);

	/*  Determine the physical block size */
	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);

	/*  Determine the logical block size */
	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);

	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
	v->vdev_nowritecache = B_FALSE;

	/* Set when device reports it supports TRIM. */
	v->vdev_has_trim = !!blk_queue_discard(q);

	/* Set when device reports it supports secure TRIM. */
	v->vdev_has_securetrim = !!blk_queue_discard_secure(q);

	/* Inform the ZIO pipeline that we are non-rotational */
	v->vdev_nonrot = blk_queue_nonrot(q);

	/* Physical volume size in bytes for the partition */
	*psize = bdev_capacity(vd->vd_bdev);

	/* Physical volume size in bytes including possible expansion space */
	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);

	/* Based on the minimum sector size set the block size */
	*physical_ashift = highbit64(MAX(physical_block_size,
	    SPA_MINBLOCKSIZE)) - 1;

	*logical_ashift = highbit64(MAX(logical_block_size,
	    SPA_MINBLOCKSIZE)) - 1;

	return (0);
}

static void
vdev_disk_close(vdev_t *v)
{
	vdev_disk_t *vd = v->vdev_tsd;

	if (v->vdev_reopening || vd == NULL)
		return;

	if (vd->vd_bdev != NULL) {
		blkdev_put(vd->vd_bdev,
		    vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
	}

	rw_destroy(&vd->vd_lock);
	kmem_free(vd, sizeof (vdev_disk_t));
	v->vdev_tsd = NULL;
}

static dio_request_t *
vdev_disk_dio_alloc(int bio_count)
{
	dio_request_t *dr;
	int i;

	dr = kmem_zalloc(sizeof (dio_request_t) +
	    sizeof (struct bio *) * bio_count, KM_SLEEP);
	if (dr) {
		atomic_set(&dr->dr_ref, 0);
		dr->dr_bio_count = bio_count;
		dr->dr_error = 0;

		for (i = 0; i < dr->dr_bio_count; i++)
			dr->dr_bio[i] = NULL;
	}

	return (dr);
}

static void
vdev_disk_dio_free(dio_request_t *dr)
{
	int i;

	for (i = 0; i < dr->dr_bio_count; i++)
		if (dr->dr_bio[i])
			bio_put(dr->dr_bio[i]);

	kmem_free(dr, sizeof (dio_request_t) +
	    sizeof (struct bio *) * dr->dr_bio_count);
}

static void
vdev_disk_dio_get(dio_request_t *dr)
{
	atomic_inc(&dr->dr_ref);
}

static int
vdev_disk_dio_put(dio_request_t *dr)
{
	int rc = atomic_dec_return(&dr->dr_ref);

	/*
	 * Free the dio_request when the last reference is dropped and
	 * ensure zio_interpret is called only once with the correct zio
	 */
	if (rc == 0) {
		zio_t *zio = dr->dr_zio;
		int error = dr->dr_error;

		vdev_disk_dio_free(dr);

		if (zio) {
			zio->io_error = error;
			ASSERT3S(zio->io_error, >=, 0);
			if (zio->io_error)
				vdev_disk_error(zio);

			zio_delay_interrupt(zio);
		}
	}

	return (rc);
}

BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
{
	dio_request_t *dr = bio->bi_private;
	int rc;

	if (dr->dr_error == 0) {
#ifdef HAVE_1ARG_BIO_END_IO_T
		dr->dr_error = BIO_END_IO_ERROR(bio);
#else
		if (error)
			dr->dr_error = -(error);
		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
			dr->dr_error = EIO;
#endif
	}

	/* Drop reference acquired by __vdev_disk_physio */
	rc = vdev_disk_dio_put(dr);
}

static inline void
vdev_submit_bio_impl(struct bio *bio)
{
#ifdef HAVE_1ARG_SUBMIT_BIO
	submit_bio(bio);
#else
	submit_bio(0, bio);
#endif
}

/*
 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
 * replace it with preempt_schedule under the following condition:
 */
#if defined(CONFIG_ARM64) && \
    defined(CONFIG_PREEMPTION) && \
    defined(CONFIG_BLK_CGROUP)
#define	preempt_schedule_notrace(x) preempt_schedule(x)
#endif

#ifdef HAVE_BIO_SET_DEV
#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
/*
 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
 * As a side effect the function was converted to GPL-only.  Define our
 * own version when needed which uses rcu_read_lock_sched().
 */
#if defined(HAVE_BLKG_TRYGET_GPL_ONLY)
static inline bool
vdev_blkg_tryget(struct blkcg_gq *blkg)
{
	struct percpu_ref *ref = &blkg->refcnt;
	unsigned long __percpu *count;
	bool rc;

	rcu_read_lock_sched();

	if (__ref_is_percpu(ref, &count)) {
		this_cpu_inc(*count);
		rc = true;
	} else {
#ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
		rc = atomic_long_inc_not_zero(&ref->data->count);
#else
		rc = atomic_long_inc_not_zero(&ref->count);
#endif
	}

	rcu_read_unlock_sched();

	return (rc);
}
#elif defined(HAVE_BLKG_TRYGET)
#define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
#endif
/*
 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
 * GPL-only bio_associate_blkg() symbol thus inadvertently converting
 * the entire macro.  Provide a minimal version which always assigns the
 * request queue's root_blkg to the bio.
 */
static inline void
vdev_bio_associate_blkg(struct bio *bio)
{
	struct request_queue *q = bio->bi_disk->queue;

	ASSERT3P(q, !=, NULL);
	ASSERT3P(bio->bi_blkg, ==, NULL);

	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
		bio->bi_blkg = q->root_blkg;
}
#define	bio_associate_blkg vdev_bio_associate_blkg
#endif
#else
/*
 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
 */
static inline void
bio_set_dev(struct bio *bio, struct block_device *bdev)
{
	bio->bi_bdev = bdev;
}
#endif /* HAVE_BIO_SET_DEV */

static inline void
vdev_submit_bio(struct bio *bio)
{
	struct bio_list *bio_list = current->bio_list;
	current->bio_list = NULL;
	vdev_submit_bio_impl(bio);
	current->bio_list = bio_list;
}

static int
__vdev_disk_physio(struct block_device *bdev, zio_t *zio,
    size_t io_size, uint64_t io_offset, int rw, int flags)
{
	dio_request_t *dr;
	uint64_t abd_offset;
	uint64_t bio_offset;
	int bio_size, bio_count = 16;
	int i = 0, error = 0;
	struct blk_plug plug;

	/*
	 * Accessing outside the block device is never allowed.
	 */
	if (io_offset + io_size > bdev->bd_inode->i_size) {
		vdev_dbgmsg(zio->io_vd,
		    "Illegal access %llu size %llu, device size %llu",
		    io_offset, io_size, i_size_read(bdev->bd_inode));
		return (SET_ERROR(EIO));
	}

retry:
	dr = vdev_disk_dio_alloc(bio_count);
	if (dr == NULL)
		return (SET_ERROR(ENOMEM));

	if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
		bio_set_flags_failfast(bdev, &flags);

	dr->dr_zio = zio;

	/*
	 * When the IO size exceeds the maximum bio size for the request
	 * queue we are forced to break the IO in multiple bio's and wait
	 * for them all to complete.  Ideally, all pool users will set
	 * their volume block size to match the maximum request size and
	 * the common case will be one bio per vdev IO request.
	 */

	abd_offset = 0;
	bio_offset = io_offset;
	bio_size   = io_size;
	for (i = 0; i <= dr->dr_bio_count; i++) {

		/* Finished constructing bio's for given buffer */
		if (bio_size <= 0)
			break;

		/*
		 * By default only 'bio_count' bio's per dio are allowed.
		 * However, if we find ourselves in a situation where more
		 * are needed we allocate a larger dio and warn the user.
		 */
		if (dr->dr_bio_count == i) {
			vdev_disk_dio_free(dr);
			bio_count *= 2;
			goto retry;
		}

		/* bio_alloc() with __GFP_WAIT never returns NULL */
		dr->dr_bio[i] = bio_alloc(GFP_NOIO,
		    MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
		    BIO_MAX_PAGES));
		if (unlikely(dr->dr_bio[i] == NULL)) {
			vdev_disk_dio_free(dr);
			return (SET_ERROR(ENOMEM));
		}

		/* Matching put called by vdev_disk_physio_completion */
		vdev_disk_dio_get(dr);

		bio_set_dev(dr->dr_bio[i], bdev);
		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
		dr->dr_bio[i]->bi_private = dr;
		bio_set_op_attrs(dr->dr_bio[i], rw, flags);

		/* Remaining size is returned to become the new size */
		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
		    bio_size, abd_offset);

		/* Advance in buffer and construct another bio if needed */
		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
	}

	/* Extra reference to protect dio_request during vdev_submit_bio */
	vdev_disk_dio_get(dr);

	if (dr->dr_bio_count > 1)
		blk_start_plug(&plug);

	/* Submit all bio's associated with this dio */
	for (i = 0; i < dr->dr_bio_count; i++)
		if (dr->dr_bio[i])
			vdev_submit_bio(dr->dr_bio[i]);

	if (dr->dr_bio_count > 1)
		blk_finish_plug(&plug);

	(void) vdev_disk_dio_put(dr);

	return (error);
}

BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
{
	zio_t *zio = bio->bi_private;
#ifdef HAVE_1ARG_BIO_END_IO_T
	zio->io_error = BIO_END_IO_ERROR(bio);
#else
	zio->io_error = -error;
#endif

	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
		zio->io_vd->vdev_nowritecache = B_TRUE;

	bio_put(bio);
	ASSERT3S(zio->io_error, >=, 0);
	if (zio->io_error)
		vdev_disk_error(zio);
	zio_interrupt(zio);
}

static int
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
{
	struct request_queue *q;
	struct bio *bio;

	q = bdev_get_queue(bdev);
	if (!q)
		return (SET_ERROR(ENXIO));

	bio = bio_alloc(GFP_NOIO, 0);
	/* bio_alloc() with __GFP_WAIT never returns NULL */
	if (unlikely(bio == NULL))
		return (SET_ERROR(ENOMEM));

	bio->bi_end_io = vdev_disk_io_flush_completion;
	bio->bi_private = zio;
	bio_set_dev(bio, bdev);
	bio_set_flush(bio);
	vdev_submit_bio(bio);
	invalidate_bdev(bdev);

	return (0);
}

static void
vdev_disk_io_start(zio_t *zio)
{
	vdev_t *v = zio->io_vd;
	vdev_disk_t *vd = v->vdev_tsd;
	unsigned long trim_flags = 0;
	int rw, error;

	/*
	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
	 * Nothing to be done here but return failure.
	 */
	if (vd == NULL) {
		zio->io_error = ENXIO;
		zio_interrupt(zio);
		return;
	}

	rw_enter(&vd->vd_lock, RW_READER);

	/*
	 * If the vdev is closed, it's likely due to a failed reopen and is
	 * in the UNAVAIL state.  Nothing to be done here but return failure.
	 */
	if (vd->vd_bdev == NULL) {
		rw_exit(&vd->vd_lock);
		zio->io_error = ENXIO;
		zio_interrupt(zio);
		return;
	}

	switch (zio->io_type) {
	case ZIO_TYPE_IOCTL:

		if (!vdev_readable(v)) {
			rw_exit(&vd->vd_lock);
			zio->io_error = SET_ERROR(ENXIO);
			zio_interrupt(zio);
			return;
		}

		switch (zio->io_cmd) {
		case DKIOCFLUSHWRITECACHE:

			if (zfs_nocacheflush)
				break;

			if (v->vdev_nowritecache) {
				zio->io_error = SET_ERROR(ENOTSUP);
				break;
			}

			error = vdev_disk_io_flush(vd->vd_bdev, zio);
			if (error == 0) {
				rw_exit(&vd->vd_lock);
				return;
			}

			zio->io_error = error;

			break;

		default:
			zio->io_error = SET_ERROR(ENOTSUP);
		}

		rw_exit(&vd->vd_lock);
		zio_execute(zio);
		return;
	case ZIO_TYPE_WRITE:
		rw = WRITE;
		break;

	case ZIO_TYPE_READ:
		rw = READ;
		break;

	case ZIO_TYPE_TRIM:
#if defined(BLKDEV_DISCARD_SECURE)
		if (zio->io_trim_flags & ZIO_TRIM_SECURE)
			trim_flags |= BLKDEV_DISCARD_SECURE;
#endif
		zio->io_error = -blkdev_issue_discard(vd->vd_bdev,
		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS,
		    trim_flags);

		rw_exit(&vd->vd_lock);
		zio_interrupt(zio);
		return;

	default:
		rw_exit(&vd->vd_lock);
		zio->io_error = SET_ERROR(ENOTSUP);
		zio_interrupt(zio);
		return;
	}

	zio->io_target_timestamp = zio_handle_io_delay(zio);
	error = __vdev_disk_physio(vd->vd_bdev, zio,
	    zio->io_size, zio->io_offset, rw, 0);
	rw_exit(&vd->vd_lock);

	if (error) {
		zio->io_error = error;
		zio_interrupt(zio);
		return;
	}
}

static void
vdev_disk_io_done(zio_t *zio)
{
	/*
	 * If the device returned EIO, we revalidate the media.  If it is
	 * determined the media has changed this triggers the asynchronous
	 * removal of the device from the configuration.
	 */
	if (zio->io_error == EIO) {
		vdev_t *v = zio->io_vd;
		vdev_disk_t *vd = v->vdev_tsd;

		if (zfs_check_media_change(vd->vd_bdev)) {
			invalidate_bdev(vd->vd_bdev);
			v->vdev_remove_wanted = B_TRUE;
			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
		}
	}
}

static void
vdev_disk_hold(vdev_t *vd)
{
	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));

	/* We must have a pathname, and it must be absolute. */
	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
		return;

	/*
	 * Only prefetch path and devid info if the device has
	 * never been opened.
	 */
	if (vd->vdev_tsd != NULL)
		return;

}

static void
vdev_disk_rele(vdev_t *vd)
{
	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));

	/* XXX: Implement me as a vnode rele for the device */
}

vdev_ops_t vdev_disk_ops = {
	.vdev_op_init = NULL,
	.vdev_op_fini = NULL,
	.vdev_op_open = vdev_disk_open,
	.vdev_op_close = vdev_disk_close,
	.vdev_op_asize = vdev_default_asize,
	.vdev_op_min_asize = vdev_default_min_asize,
	.vdev_op_min_alloc = NULL,
	.vdev_op_io_start = vdev_disk_io_start,
	.vdev_op_io_done = vdev_disk_io_done,
	.vdev_op_state_change = NULL,
	.vdev_op_need_resilver = NULL,
	.vdev_op_hold = vdev_disk_hold,
	.vdev_op_rele = vdev_disk_rele,
	.vdev_op_remap = NULL,
	.vdev_op_xlate = vdev_default_xlate,
	.vdev_op_rebuild_asize = NULL,
	.vdev_op_metaslab_init = NULL,
	.vdev_op_config_generate = NULL,
	.vdev_op_nparity = NULL,
	.vdev_op_ndisks = NULL,
	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
	.vdev_op_leaf = B_TRUE			/* leaf vdev */
};

/*
 * The zfs_vdev_scheduler module option has been deprecated. Setting this
 * value no longer has any effect.  It has not yet been entirely removed
 * to allow the module to be loaded if this option is specified in the
 * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
 */
static int
param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
{
	int error = param_set_charp(val, kp);
	if (error == 0) {
		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
		    "is not supported.\n");
	}

	return (error);
}

char *zfs_vdev_scheduler = "unused";
module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
    param_get_charp, &zfs_vdev_scheduler, 0644);
MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");

int
param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
{
	uint64_t val;
	int error;

	error = kstrtoull(buf, 0, &val);
	if (error < 0)
		return (SET_ERROR(error));

	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
		return (SET_ERROR(-EINVAL));

	error = param_set_ulong(buf, kp);
	if (error < 0)
		return (SET_ERROR(error));

	return (0);
}

int
param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
{
	uint64_t val;
	int error;

	error = kstrtoull(buf, 0, &val);
	if (error < 0)
		return (SET_ERROR(error));

	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
		return (SET_ERROR(-EINVAL));

	error = param_set_ulong(buf, kp);
	if (error < 0)
		return (SET_ERROR(error));

	return (0);
}