aboutsummaryrefslogtreecommitdiff
path: root/module/zfs/ddt.c
blob: 4c53cb0a2f9b54366ccd7436760f9ad34aba16f8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
 * Copyright (c) 2022 by Pawel Jakub Dawidek
 * Copyright (c) 2023, Klara Inc.
 */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/ddt.h>
#include <sys/ddt_impl.h>
#include <sys/zap.h>
#include <sys/dmu_tx.h>
#include <sys/arc.h>
#include <sys/dsl_pool.h>
#include <sys/zio_checksum.h>
#include <sys/dsl_scan.h>
#include <sys/abd.h>

/*
 * # DDT: Deduplication tables
 *
 * The dedup subsystem provides block-level deduplication. When enabled, blocks
 * to be written will have the dedup (D) bit set, which causes them to be
 * tracked in a "dedup table", or DDT. If a block has been seen before (exists
 * in the DDT), instead of being written, it will instead be made to reference
 * the existing on-disk data, and a refcount bumped in the DDT instead.
 *
 * ## Dedup tables and entries
 *
 * Conceptually, a DDT is a dictionary or map. Each entry has a "key"
 * (ddt_key_t) made up a block's checksum and certian properties, and a "value"
 * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth
 * time and refcount. Together these are enough to track references to a
 * specific block, to build a valid block pointer to reference that block (for
 * freeing, scrubbing, etc), and to fill a new block pointer with the missing
 * pieces to make it seem like it was written.
 *
 * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[].
 * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk
 * object data formats, each with their own implementations) and "classes"
 * (ddt_class_t, instance of a storage type object, for entries with a specific
 * characteristic). An entry (key) will only ever exist on one of these objects
 * at any given time, but may be moved from one to another if their type or
 * class changes.
 *
 * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block
 * is to be written, before DVAs have been allocated, ddt_lookup() is called to
 * see if the block has been seen before. If its not found, the write proceeds
 * as normal, and after it succeeds, a new entry is created. If it is found, we
 * fill the BP with the DVAs from the entry, increment the refcount and cause
 * the write IO to return immediately.
 *
 * Each ddt_phys_t slot in the entry represents a separate dedup block for the
 * same content/checksum. The slot is selected based on the zp_copies parameter
 * the block is written with, that is, the number of DVAs in the block. The
 * "ditto" slot (DDT_PHYS_DITTO) used to be used for now-removed "dedupditto"
 * feature. These are no longer written, and will be freed if encountered on
 * old pools.
 *
 * ## Lifetime of an entry
 *
 * A DDT can be enormous, and typically is not held in memory all at once.
 * Instead, the changes to an entry are tracked in memory, and written down to
 * disk at the end of each txg.
 *
 * A "live" in-memory entry (ddt_entry_t) is a node on the live tree
 * (ddt_tree).  At the start of a txg, ddt_tree is empty. When an entry is
 * required for IO, ddt_lookup() is called. If an entry already exists on
 * ddt_tree, it is returned. Otherwise, a new one is created, and the
 * type/class objects for the DDT are searched for that key. If its found, its
 * value is copied into the live entry. If not, an empty entry is created.
 *
 * The live entry will be modified during the txg, usually by modifying the
 * refcount, but sometimes by adding or updating DVAs. At the end of the txg
 * (during spa_sync()), type and class are recalculated for entry (see
 * ddt_sync_entry()), and the entry is written to the appropriate storage
 * object and (if necessary), removed from an old one. ddt_tree is cleared and
 * the next txg can start.
 *
 * ## Repair IO
 *
 * If a read on a dedup block fails, but there are other copies of the block in
 * the other ddt_phys_t slots, reads will be issued for those instead
 * (zio_ddt_read_start()). If one of those succeeds, the read is returned to
 * the caller, and a copy is stashed on the entry's dde_repair_abd.
 *
 * During the end-of-txg sync, any entries with a dde_repair_abd get a
 * "rewrite" write issued for the original block pointer, with the data read
 * from the alternate block. If the block is actually damaged, this will invoke
 * the pool's "self-healing" mechanism, and repair the block.
 *
 * ## Scanning (scrub/resilver)
 *
 * If dedup is active, the scrub machinery will walk the dedup table first, and
 * scrub all blocks with refcnt > 1 first. After that it will move on to the
 * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them.
 * In this way, heavily deduplicated blocks are only scrubbed once. See the
 * commentary on dsl_scan_ddt() for more details.
 *
 * Walking the DDT is done via ddt_walk(). The current position is stored in a
 * ddt_bookmark_t, which represents a stable position in the storage object.
 * This bookmark is stored by the scan machinery, and must reference the same
 * position on the object even if the object changes, the pool is exported, or
 * OpenZFS is upgraded.
 *
 * ## Interaction with block cloning
 *
 * If block cloning and dedup are both enabled on a pool, BRT will look for the
 * dedup bit on an incoming block pointer. If set, it will call into the DDT
 * (ddt_addref()) to add a reference to the block, instead of adding a
 * reference to the BRT. See brt_pending_apply().
 */

/*
 * These are the only checksums valid for dedup. They must match the list
 * from dedup_table in zfs_prop.c
 */
#define	DDT_CHECKSUM_VALID(c)	\
	(c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \
	c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \
	c == ZIO_CHECKSUM_BLAKE3)

static kmem_cache_t *ddt_cache;
static kmem_cache_t *ddt_entry_cache;

/*
 * Enable/disable prefetching of dedup-ed blocks which are going to be freed.
 */
int zfs_dedup_prefetch = 0;

static const ddt_ops_t *const ddt_ops[DDT_TYPES] = {
	&ddt_zap_ops,
};

static const char *const ddt_class_name[DDT_CLASSES] = {
	"ditto",
	"duplicate",
	"unique",
};

static void
ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    dmu_tx_t *tx)
{
	spa_t *spa = ddt->ddt_spa;
	objset_t *os = ddt->ddt_os;
	uint64_t *objectp = &ddt->ddt_object[type][class];
	boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags &
	    ZCHECKSUM_FLAG_DEDUP;
	char name[DDT_NAMELEN];

	ddt_object_name(ddt, type, class, name);

	ASSERT3U(*objectp, ==, 0);
	VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash));
	ASSERT3U(*objectp, !=, 0);

	VERIFY0(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, name,
	    sizeof (uint64_t), 1, objectp, tx));

	VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name,
	    sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
	    &ddt->ddt_histogram[type][class], tx));
}

static void
ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    dmu_tx_t *tx)
{
	spa_t *spa = ddt->ddt_spa;
	objset_t *os = ddt->ddt_os;
	uint64_t *objectp = &ddt->ddt_object[type][class];
	uint64_t count;
	char name[DDT_NAMELEN];

	ddt_object_name(ddt, type, class, name);

	ASSERT3U(*objectp, !=, 0);
	ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class]));
	VERIFY0(ddt_object_count(ddt, type, class, &count));
	VERIFY0(count);
	VERIFY0(zap_remove(os, DMU_POOL_DIRECTORY_OBJECT, name, tx));
	VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx));
	VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx));
	memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t));

	*objectp = 0;
}

static int
ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
{
	ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
	dmu_object_info_t doi;
	uint64_t count;
	char name[DDT_NAMELEN];
	int error;

	ddt_object_name(ddt, type, class, name);

	error = zap_lookup(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name,
	    sizeof (uint64_t), 1, &ddt->ddt_object[type][class]);
	if (error != 0)
		return (error);

	error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
	    sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
	    &ddt->ddt_histogram[type][class]);
	if (error != 0)
		return (error);

	/*
	 * Seed the cached statistics.
	 */
	error = ddt_object_info(ddt, type, class, &doi);
	if (error)
		return (error);

	error = ddt_object_count(ddt, type, class, &count);
	if (error)
		return (error);

	ddo->ddo_count = count;
	ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
	ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;

	return (0);
}

static void
ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    dmu_tx_t *tx)
{
	ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
	dmu_object_info_t doi;
	uint64_t count;
	char name[DDT_NAMELEN];

	ddt_object_name(ddt, type, class, name);

	VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
	    sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
	    &ddt->ddt_histogram[type][class], tx));

	/*
	 * Cache DDT statistics; this is the only time they'll change.
	 */
	VERIFY0(ddt_object_info(ddt, type, class, &doi));
	VERIFY0(ddt_object_count(ddt, type, class, &count));

	ddo->ddo_count = count;
	ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
	ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
}

static boolean_t
ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
{
	return (!!ddt->ddt_object[type][class]);
}

static int
ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    ddt_entry_t *dde)
{
	if (!ddt_object_exists(ddt, type, class))
		return (SET_ERROR(ENOENT));

	return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os,
	    ddt->ddt_object[type][class], &dde->dde_key,
	    dde->dde_phys, sizeof (dde->dde_phys)));
}

static int
ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    const ddt_key_t *ddk)
{
	if (!ddt_object_exists(ddt, type, class))
		return (SET_ERROR(ENOENT));

	return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os,
	    ddt->ddt_object[type][class], ddk));
}

static void
ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    const ddt_key_t *ddk)
{
	if (!ddt_object_exists(ddt, type, class))
		return;

	ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os,
	    ddt->ddt_object[type][class], ddk);
}

static int
ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    ddt_entry_t *dde, dmu_tx_t *tx)
{
	ASSERT(ddt_object_exists(ddt, type, class));

	return (ddt_ops[type]->ddt_op_update(ddt->ddt_os,
	    ddt->ddt_object[type][class], &dde->dde_key, dde->dde_phys,
	    sizeof (dde->dde_phys), tx));
}

static int
ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    const ddt_key_t *ddk, dmu_tx_t *tx)
{
	ASSERT(ddt_object_exists(ddt, type, class));

	return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os,
	    ddt->ddt_object[type][class], ddk, tx));
}

int
ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    uint64_t *walk, ddt_entry_t *dde)
{
	ASSERT(ddt_object_exists(ddt, type, class));

	return (ddt_ops[type]->ddt_op_walk(ddt->ddt_os,
	    ddt->ddt_object[type][class], walk, &dde->dde_key,
	    dde->dde_phys, sizeof (dde->dde_phys)));
}

int
ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    uint64_t *count)
{
	ASSERT(ddt_object_exists(ddt, type, class));

	return (ddt_ops[type]->ddt_op_count(ddt->ddt_os,
	    ddt->ddt_object[type][class], count));
}

int
ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    dmu_object_info_t *doi)
{
	if (!ddt_object_exists(ddt, type, class))
		return (SET_ERROR(ENOENT));

	return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class],
	    doi));
}

void
ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
    char *name)
{
	(void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT,
	    zio_checksum_table[ddt->ddt_checksum].ci_name,
	    ddt_ops[type]->ddt_op_name, ddt_class_name[class]);
}

void
ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp, uint64_t txg)
{
	ASSERT3U(txg, !=, 0);

	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
		bp->blk_dva[d] = ddp->ddp_dva[d];
	BP_SET_BIRTH(bp, txg, ddp->ddp_phys_birth);
}

/*
 * The bp created via this function may be used for repairs and scrub, but it
 * will be missing the salt / IV required to do a full decrypting read.
 */
void
ddt_bp_create(enum zio_checksum checksum,
    const ddt_key_t *ddk, const ddt_phys_t *ddp, blkptr_t *bp)
{
	BP_ZERO(bp);

	if (ddp != NULL)
		ddt_bp_fill(ddp, bp, ddp->ddp_phys_birth);

	bp->blk_cksum = ddk->ddk_cksum;

	BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk));
	BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk));
	BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk));
	BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk));
	BP_SET_FILL(bp, 1);
	BP_SET_CHECKSUM(bp, checksum);
	BP_SET_TYPE(bp, DMU_OT_DEDUP);
	BP_SET_LEVEL(bp, 0);
	BP_SET_DEDUP(bp, 1);
	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
}

void
ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp)
{
	ddk->ddk_cksum = bp->blk_cksum;
	ddk->ddk_prop = 0;

	ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp));

	DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp));
	DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp));
	DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp));
	DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp));
}

void
ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp)
{
	ASSERT0(ddp->ddp_phys_birth);

	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
		ddp->ddp_dva[d] = bp->blk_dva[d];
	ddp->ddp_phys_birth = BP_GET_BIRTH(bp);
}

void
ddt_phys_clear(ddt_phys_t *ddp)
{
	memset(ddp, 0, sizeof (*ddp));
}

void
ddt_phys_addref(ddt_phys_t *ddp)
{
	ddp->ddp_refcnt++;
}

void
ddt_phys_decref(ddt_phys_t *ddp)
{
	if (ddp) {
		ASSERT3U(ddp->ddp_refcnt, >, 0);
		ddp->ddp_refcnt--;
	}
}

static void
ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp, uint64_t txg)
{
	blkptr_t blk;

	ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);

	/*
	 * We clear the dedup bit so that zio_free() will actually free the
	 * space, rather than just decrementing the refcount in the DDT.
	 */
	BP_SET_DEDUP(&blk, 0);

	ddt_phys_clear(ddp);
	zio_free(ddt->ddt_spa, txg, &blk);
}

ddt_phys_t *
ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp)
{
	ddt_phys_t *ddp = (ddt_phys_t *)dde->dde_phys;

	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
		if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_dva[0]) &&
		    BP_GET_BIRTH(bp) == ddp->ddp_phys_birth)
			return (ddp);
	}
	return (NULL);
}

uint64_t
ddt_phys_total_refcnt(const ddt_entry_t *dde)
{
	uint64_t refcnt = 0;

	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++)
		refcnt += dde->dde_phys[p].ddp_refcnt;

	return (refcnt);
}

ddt_t *
ddt_select(spa_t *spa, const blkptr_t *bp)
{
	ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp)));
	return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]);
}

void
ddt_enter(ddt_t *ddt)
{
	mutex_enter(&ddt->ddt_lock);
}

void
ddt_exit(ddt_t *ddt)
{
	mutex_exit(&ddt->ddt_lock);
}

void
ddt_init(void)
{
	ddt_cache = kmem_cache_create("ddt_cache",
	    sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
	ddt_entry_cache = kmem_cache_create("ddt_entry_cache",
	    sizeof (ddt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
}

void
ddt_fini(void)
{
	kmem_cache_destroy(ddt_entry_cache);
	kmem_cache_destroy(ddt_cache);
}

static ddt_entry_t *
ddt_alloc(const ddt_key_t *ddk)
{
	ddt_entry_t *dde;

	dde = kmem_cache_alloc(ddt_entry_cache, KM_SLEEP);
	memset(dde, 0, sizeof (ddt_entry_t));
	cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL);

	dde->dde_key = *ddk;

	return (dde);
}

static void
ddt_free(ddt_entry_t *dde)
{
	ASSERT(dde->dde_flags & DDE_FLAG_LOADED);

	for (int p = 0; p < DDT_PHYS_TYPES; p++)
		ASSERT3P(dde->dde_lead_zio[p], ==, NULL);

	if (dde->dde_repair_abd != NULL)
		abd_free(dde->dde_repair_abd);

	cv_destroy(&dde->dde_cv);
	kmem_cache_free(ddt_entry_cache, dde);
}

void
ddt_remove(ddt_t *ddt, ddt_entry_t *dde)
{
	ASSERT(MUTEX_HELD(&ddt->ddt_lock));

	avl_remove(&ddt->ddt_tree, dde);
	ddt_free(dde);
}

ddt_entry_t *
ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add)
{
	ddt_key_t search;
	ddt_entry_t *dde;
	ddt_type_t type;
	ddt_class_t class;
	avl_index_t where;
	int error;

	ASSERT(MUTEX_HELD(&ddt->ddt_lock));

	ddt_key_fill(&search, bp);

	/* Find an existing live entry */
	dde = avl_find(&ddt->ddt_tree, &search, &where);
	if (dde != NULL) {
		/* Found it. If it's already loaded, we can just return it. */
		if (dde->dde_flags & DDE_FLAG_LOADED)
			return (dde);

		/* Someone else is loading it, wait for it. */
		while (!(dde->dde_flags & DDE_FLAG_LOADED))
			cv_wait(&dde->dde_cv, &ddt->ddt_lock);

		return (dde);
	}

	/* Not found. */
	if (!add)
		return (NULL);

	/* Time to make a new entry. */
	dde = ddt_alloc(&search);
	avl_insert(&ddt->ddt_tree, dde, where);

	/*
	 * ddt_tree is now stable, so unlock and let everyone else keep moving.
	 * Anyone landing on this entry will find it without DDE_FLAG_LOADED,
	 * and go to sleep waiting for it above.
	 */
	ddt_exit(ddt);

	/* Search all store objects for the entry. */
	error = ENOENT;
	for (type = 0; type < DDT_TYPES; type++) {
		for (class = 0; class < DDT_CLASSES; class++) {
			error = ddt_object_lookup(ddt, type, class, dde);
			if (error != ENOENT) {
				ASSERT0(error);
				break;
			}
		}
		if (error != ENOENT)
			break;
	}

	ddt_enter(ddt);

	ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED));

	dde->dde_type = type;	/* will be DDT_TYPES if no entry found */
	dde->dde_class = class;	/* will be DDT_CLASSES if no entry found */

	if (error == 0)
		ddt_stat_update(ddt, dde, -1ULL);

	/* Entry loaded, everyone can proceed now */
	dde->dde_flags |= DDE_FLAG_LOADED;
	cv_broadcast(&dde->dde_cv);

	return (dde);
}

void
ddt_prefetch(spa_t *spa, const blkptr_t *bp)
{
	ddt_t *ddt;
	ddt_key_t ddk;

	if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp))
		return;

	/*
	 * We only remove the DDT once all tables are empty and only
	 * prefetch dedup blocks when there are entries in the DDT.
	 * Thus no locking is required as the DDT can't disappear on us.
	 */
	ddt = ddt_select(spa, bp);
	ddt_key_fill(&ddk, bp);

	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
			ddt_object_prefetch(ddt, type, class, &ddk);
		}
	}
}

/*
 * Key comparison. Any struct wanting to make use of this function must have
 * the key as the first element.
 */
#define	DDT_KEY_CMP_LEN	(sizeof (ddt_key_t) / sizeof (uint16_t))

typedef struct ddt_key_cmp {
	uint16_t	u16[DDT_KEY_CMP_LEN];
} ddt_key_cmp_t;

int
ddt_key_compare(const void *x1, const void *x2)
{
	const ddt_key_cmp_t *k1 = (const ddt_key_cmp_t *)x1;
	const ddt_key_cmp_t *k2 = (const ddt_key_cmp_t *)x2;
	int32_t cmp = 0;

	for (int i = 0; i < DDT_KEY_CMP_LEN; i++) {
		cmp = (int32_t)k1->u16[i] - (int32_t)k2->u16[i];
		if (likely(cmp))
			break;
	}

	return (TREE_ISIGN(cmp));
}

static ddt_t *
ddt_table_alloc(spa_t *spa, enum zio_checksum c)
{
	ddt_t *ddt;

	ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP);
	memset(ddt, 0, sizeof (ddt_t));

	mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL);
	avl_create(&ddt->ddt_tree, ddt_key_compare,
	    sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
	avl_create(&ddt->ddt_repair_tree, ddt_key_compare,
	    sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
	ddt->ddt_checksum = c;
	ddt->ddt_spa = spa;
	ddt->ddt_os = spa->spa_meta_objset;

	return (ddt);
}

static void
ddt_table_free(ddt_t *ddt)
{
	ASSERT0(avl_numnodes(&ddt->ddt_tree));
	ASSERT0(avl_numnodes(&ddt->ddt_repair_tree));
	avl_destroy(&ddt->ddt_tree);
	avl_destroy(&ddt->ddt_repair_tree);
	mutex_destroy(&ddt->ddt_lock);
	kmem_cache_free(ddt_cache, ddt);
}

void
ddt_create(spa_t *spa)
{
	spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM;

	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
		if (DDT_CHECKSUM_VALID(c))
			spa->spa_ddt[c] = ddt_table_alloc(spa, c);
	}
}

int
ddt_load(spa_t *spa)
{
	int error;

	ddt_create(spa);

	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
	    &spa->spa_ddt_stat_object);

	if (error)
		return (error == ENOENT ? 0 : error);

	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
		if (!DDT_CHECKSUM_VALID(c))
			continue;

		ddt_t *ddt = spa->spa_ddt[c];
		for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
			for (ddt_class_t class = 0; class < DDT_CLASSES;
			    class++) {
				error = ddt_object_load(ddt, type, class);
				if (error != 0 && error != ENOENT)
					return (error);
			}
		}

		/*
		 * Seed the cached histograms.
		 */
		memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
		    sizeof (ddt->ddt_histogram));
		spa->spa_dedup_dspace = ~0ULL;
	}

	return (0);
}

void
ddt_unload(spa_t *spa)
{
	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
		if (spa->spa_ddt[c]) {
			ddt_table_free(spa->spa_ddt[c]);
			spa->spa_ddt[c] = NULL;
		}
	}
}

boolean_t
ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp)
{
	ddt_t *ddt;
	ddt_key_t ddk;

	if (!BP_GET_DEDUP(bp))
		return (B_FALSE);

	if (max_class == DDT_CLASS_UNIQUE)
		return (B_TRUE);

	ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)];

	ddt_key_fill(&ddk, bp);

	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
		for (ddt_class_t class = 0; class <= max_class; class++) {
			if (ddt_object_contains(ddt, type, class, &ddk) == 0)
				return (B_TRUE);
		}
	}

	return (B_FALSE);
}

ddt_entry_t *
ddt_repair_start(ddt_t *ddt, const blkptr_t *bp)
{
	ddt_key_t ddk;
	ddt_entry_t *dde;

	ddt_key_fill(&ddk, bp);

	dde = ddt_alloc(&ddk);

	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
			/*
			 * We can only do repair if there are multiple copies
			 * of the block.  For anything in the UNIQUE class,
			 * there's definitely only one copy, so don't even try.
			 */
			if (class != DDT_CLASS_UNIQUE &&
			    ddt_object_lookup(ddt, type, class, dde) == 0)
				return (dde);
		}
	}

	memset(dde->dde_phys, 0, sizeof (dde->dde_phys));

	return (dde);
}

void
ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde)
{
	avl_index_t where;

	ddt_enter(ddt);

	if (dde->dde_repair_abd != NULL && spa_writeable(ddt->ddt_spa) &&
	    avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL)
		avl_insert(&ddt->ddt_repair_tree, dde, where);
	else
		ddt_free(dde);

	ddt_exit(ddt);
}

static void
ddt_repair_entry_done(zio_t *zio)
{
	ddt_entry_t *rdde = zio->io_private;

	ddt_free(rdde);
}

static void
ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio)
{
	ddt_phys_t *ddp = dde->dde_phys;
	ddt_phys_t *rddp = rdde->dde_phys;
	ddt_key_t *ddk = &dde->dde_key;
	ddt_key_t *rddk = &rdde->dde_key;
	zio_t *zio;
	blkptr_t blk;

	zio = zio_null(rio, rio->io_spa, NULL,
	    ddt_repair_entry_done, rdde, rio->io_flags);

	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++, rddp++) {
		if (ddp->ddp_phys_birth == 0 ||
		    ddp->ddp_phys_birth != rddp->ddp_phys_birth ||
		    memcmp(ddp->ddp_dva, rddp->ddp_dva, sizeof (ddp->ddp_dva)))
			continue;
		ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
		zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk,
		    rdde->dde_repair_abd, DDK_GET_PSIZE(rddk), NULL, NULL,
		    ZIO_PRIORITY_SYNC_WRITE, ZIO_DDT_CHILD_FLAGS(zio), NULL));
	}

	zio_nowait(zio);
}

static void
ddt_repair_table(ddt_t *ddt, zio_t *rio)
{
	spa_t *spa = ddt->ddt_spa;
	ddt_entry_t *dde, *rdde_next, *rdde;
	avl_tree_t *t = &ddt->ddt_repair_tree;
	blkptr_t blk;

	if (spa_sync_pass(spa) > 1)
		return;

	ddt_enter(ddt);
	for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) {
		rdde_next = AVL_NEXT(t, rdde);
		avl_remove(&ddt->ddt_repair_tree, rdde);
		ddt_exit(ddt);
		ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, &blk);
		dde = ddt_repair_start(ddt, &blk);
		ddt_repair_entry(ddt, dde, rdde, rio);
		ddt_repair_done(ddt, dde);
		ddt_enter(ddt);
	}
	ddt_exit(ddt);
}

static void
ddt_sync_entry(ddt_t *ddt, ddt_entry_t *dde, dmu_tx_t *tx, uint64_t txg)
{
	dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool;
	ddt_phys_t *ddp = dde->dde_phys;
	ddt_key_t *ddk = &dde->dde_key;
	ddt_type_t otype = dde->dde_type;
	ddt_type_t ntype = DDT_TYPE_DEFAULT;
	ddt_class_t oclass = dde->dde_class;
	ddt_class_t nclass;
	uint64_t total_refcnt = 0;

	ASSERT(dde->dde_flags & DDE_FLAG_LOADED);

	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
		ASSERT3P(dde->dde_lead_zio[p], ==, NULL);
		if (ddp->ddp_phys_birth == 0) {
			ASSERT0(ddp->ddp_refcnt);
			continue;
		}
		if (p == DDT_PHYS_DITTO) {
			/*
			 * Note, we no longer create DDT-DITTO blocks, but we
			 * don't want to leak any written by older software.
			 */
			ddt_phys_free(ddt, ddk, ddp, txg);
			continue;
		}
		if (ddp->ddp_refcnt == 0)
			ddt_phys_free(ddt, ddk, ddp, txg);
		total_refcnt += ddp->ddp_refcnt;
	}

	/* We do not create new DDT-DITTO blocks. */
	ASSERT0(dde->dde_phys[DDT_PHYS_DITTO].ddp_phys_birth);
	if (total_refcnt > 1)
		nclass = DDT_CLASS_DUPLICATE;
	else
		nclass = DDT_CLASS_UNIQUE;

	if (otype != DDT_TYPES &&
	    (otype != ntype || oclass != nclass || total_refcnt == 0)) {
		VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx));
		ASSERT3U(
		    ddt_object_contains(ddt, otype, oclass, ddk), ==, ENOENT);
	}

	if (total_refcnt != 0) {
		dde->dde_type = ntype;
		dde->dde_class = nclass;
		ddt_stat_update(ddt, dde, 0);
		if (!ddt_object_exists(ddt, ntype, nclass))
			ddt_object_create(ddt, ntype, nclass, tx);
		VERIFY0(ddt_object_update(ddt, ntype, nclass, dde, tx));

		/*
		 * If the class changes, the order that we scan this bp
		 * changes.  If it decreases, we could miss it, so
		 * scan it right now.  (This covers both class changing
		 * while we are doing ddt_walk(), and when we are
		 * traversing.)
		 */
		if (nclass < oclass) {
			dsl_scan_ddt_entry(dp->dp_scan,
			    ddt->ddt_checksum, dde, tx);
		}
	}
}

static void
ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx, uint64_t txg)
{
	spa_t *spa = ddt->ddt_spa;
	ddt_entry_t *dde;
	void *cookie = NULL;

	if (avl_numnodes(&ddt->ddt_tree) == 0)
		return;

	ASSERT3U(spa->spa_uberblock.ub_version, >=, SPA_VERSION_DEDUP);

	if (spa->spa_ddt_stat_object == 0) {
		spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os,
		    DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_DDT_STATS, tx);
	}

	while ((dde = avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) {
		ddt_sync_entry(ddt, dde, tx, txg);
		ddt_free(dde);
	}

	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
		uint64_t add, count = 0;
		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
			if (ddt_object_exists(ddt, type, class)) {
				ddt_object_sync(ddt, type, class, tx);
				VERIFY0(ddt_object_count(ddt, type, class,
				    &add));
				count += add;
			}
		}
		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
			if (count == 0 && ddt_object_exists(ddt, type, class))
				ddt_object_destroy(ddt, type, class, tx);
		}
	}

	memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
	    sizeof (ddt->ddt_histogram));
	spa->spa_dedup_dspace = ~0ULL;
}

void
ddt_sync(spa_t *spa, uint64_t txg)
{
	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
	dmu_tx_t *tx;
	zio_t *rio;

	ASSERT3U(spa_syncing_txg(spa), ==, txg);

	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);

	rio = zio_root(spa, NULL, NULL,
	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL);

	/*
	 * This function may cause an immediate scan of ddt blocks (see
	 * the comment above dsl_scan_ddt() for details). We set the
	 * scan's root zio here so that we can wait for any scan IOs in
	 * addition to the regular ddt IOs.
	 */
	ASSERT3P(scn->scn_zio_root, ==, NULL);
	scn->scn_zio_root = rio;

	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
		ddt_t *ddt = spa->spa_ddt[c];
		if (ddt == NULL)
			continue;
		ddt_sync_table(ddt, tx, txg);
		ddt_repair_table(ddt, rio);
	}

	(void) zio_wait(rio);
	scn->scn_zio_root = NULL;

	dmu_tx_commit(tx);
}

int
ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde)
{
	do {
		do {
			do {
				ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum];
				if (ddt == NULL)
					continue;
				int error = ENOENT;
				if (ddt_object_exists(ddt, ddb->ddb_type,
				    ddb->ddb_class)) {
					error = ddt_object_walk(ddt,
					    ddb->ddb_type, ddb->ddb_class,
					    &ddb->ddb_cursor, dde);
				}
				dde->dde_type = ddb->ddb_type;
				dde->dde_class = ddb->ddb_class;
				if (error == 0)
					return (0);
				if (error != ENOENT)
					return (error);
				ddb->ddb_cursor = 0;
			} while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS);
			ddb->ddb_checksum = 0;
		} while (++ddb->ddb_type < DDT_TYPES);
		ddb->ddb_type = 0;
	} while (++ddb->ddb_class < DDT_CLASSES);

	return (SET_ERROR(ENOENT));
}

/*
 * This function is used by Block Cloning (brt.c) to increase reference
 * counter for the DDT entry if the block is already in DDT.
 *
 * Return false if the block, despite having the D bit set, is not present
 * in the DDT. Currently this is not possible but might be in the future.
 * See the comment below.
 */
boolean_t
ddt_addref(spa_t *spa, const blkptr_t *bp)
{
	ddt_t *ddt;
	ddt_entry_t *dde;
	boolean_t result;

	spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
	ddt = ddt_select(spa, bp);
	ddt_enter(ddt);

	dde = ddt_lookup(ddt, bp, B_TRUE);
	ASSERT3P(dde, !=, NULL);

	if (dde->dde_type < DDT_TYPES) {
		ddt_phys_t *ddp;

		ASSERT3S(dde->dde_class, <, DDT_CLASSES);

		ddp = &dde->dde_phys[BP_GET_NDVAS(bp)];

		/*
		 * This entry already existed (dde_type is real), so it must
		 * have refcnt >0 at the start of this txg. We are called from
		 * brt_pending_apply(), before frees are issued, so the refcnt
		 * can't be lowered yet. Therefore, it must be >0. We assert
		 * this because if the order of BRT and DDT interactions were
		 * ever to change and the refcnt was ever zero here, then
		 * likely further action is required to fill out the DDT entry,
		 * and this is a place that is likely to be missed in testing.
		 */
		ASSERT3U(ddp->ddp_refcnt, >, 0);

		ddt_phys_addref(ddp);
		result = B_TRUE;
	} else {
		/*
		 * At the time of implementating this if the block has the
		 * DEDUP flag set it must exist in the DEDUP table, but
		 * there are many advocates that want ability to remove
		 * entries from DDT with refcnt=1. If this will happen,
		 * we may have a block with the DEDUP set, but which doesn't
		 * have a corresponding entry in the DDT. Be ready.
		 */
		ASSERT3S(dde->dde_class, ==, DDT_CLASSES);
		ddt_remove(ddt, dde);
		result = B_FALSE;
	}

	ddt_exit(ddt);
	spa_config_exit(spa, SCL_ZIO, FTAG);

	return (result);
}

ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW,
	"Enable prefetching dedup-ed blks");