aboutsummaryrefslogtreecommitdiff
path: root/sbin/i386/ft/ftecc.c
blob: 430f3a8316bb2b58b5408b811954809746c7ca27 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*
 *  ftecc.c  10/30/93 v0.3
 *  Handle error correction for floppy tape drives.
 *
 *  File contents are copyrighted by David L. Brown and falls under the
 *  terms of the GPL version 2 or greater.  See his original release for
 *  the specific terms.
 *
 *  Steve Gerakines
 *  steve2@genesis.nred.ma.us
 *  Modified slightly to fit with my tape driver.  I'm not at all happy
 *  with this module and will have it replaced with a more functional one
 *  in the next release(/RSN).  I am close, but progress will continue to
 *  be slow until I can find a book on the subject where the translator
 *  understands both the to and from languages. :-(  For now it will
 *  suffice.
 */
#include <sys/ftape.h>

/*
 *  In order to speed up the correction and adjustment, we can compute
 *  a matrix of coefficients for the multiplication.
 */
struct inv_mat {
  UCHAR log_denom;      /* The log z of the denominator. */
  UCHAR zs[3][3];       /* The coefficients for the adjustment matrix. */
};

/* This array is a table of powers of x, from 0 to 254. */
static UCHAR alpha_power[] = {
  0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4,
  0x6f, 0xde, 0x3b, 0x76, 0xec, 0x5f, 0xbe, 0xfb,
  0x71, 0xe2, 0x43, 0x86, 0x8b, 0x91, 0xa5, 0xcd,
  0x1d, 0x3a, 0x74, 0xe8, 0x57, 0xae, 0xdb, 0x31,
  0x62, 0xc4, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0x67,
  0xce, 0x1b, 0x36, 0x6c, 0xd8, 0x37, 0x6e, 0xdc,
  0x3f, 0x7e, 0xfc, 0x7f, 0xfe, 0x7b, 0xf6, 0x6b,
  0xd6, 0x2b, 0x56, 0xac, 0xdf, 0x39, 0x72, 0xe4,
  0x4f, 0x9e, 0xbb, 0xf1, 0x65, 0xca, 0x13, 0x26,
  0x4c, 0x98, 0xb7, 0xe9, 0x55, 0xaa, 0xd3, 0x21,
  0x42, 0x84, 0x8f, 0x99, 0xb5, 0xed, 0x5d, 0xba,
  0xf3, 0x61, 0xc2, 0x03, 0x06, 0x0c, 0x18, 0x30,
  0x60, 0xc0, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0,
  0x47, 0x8e, 0x9b, 0xb1, 0xe5, 0x4d, 0x9a, 0xb3,
  0xe1, 0x45, 0x8a, 0x93, 0xa1, 0xc5, 0x0d, 0x1a,
  0x34, 0x68, 0xd0, 0x27, 0x4e, 0x9c, 0xbf, 0xf9,
  0x75, 0xea, 0x53, 0xa6, 0xcb, 0x11, 0x22, 0x44,
  0x88, 0x97, 0xa9, 0xd5, 0x2d, 0x5a, 0xb4, 0xef,
  0x59, 0xb2, 0xe3, 0x41, 0x82, 0x83, 0x81, 0x85,
  0x8d, 0x9d, 0xbd, 0xfd, 0x7d, 0xfa, 0x73, 0xe6,
  0x4b, 0x96, 0xab, 0xd1, 0x25, 0x4a, 0x94, 0xaf,
  0xd9, 0x35, 0x6a, 0xd4, 0x2f, 0x5e, 0xbc, 0xff,
  0x79, 0xf2, 0x63, 0xc6, 0x0b, 0x16, 0x2c, 0x58,
  0xb0, 0xe7, 0x49, 0x92, 0xa3, 0xc1, 0x05, 0x0a,
  0x14, 0x28, 0x50, 0xa0, 0xc7, 0x09, 0x12, 0x24,
  0x48, 0x90, 0xa7, 0xc9, 0x15, 0x2a, 0x54, 0xa8,
  0xd7, 0x29, 0x52, 0xa4, 0xcf, 0x19, 0x32, 0x64,
  0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2,
  0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda,
  0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77,
  0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3
};

/*
 * This is the reverse lookup table.  There is no log of 0, so the
 * first element is not valid.
 */
static UCHAR alpha_log[] = {
  0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a,
  0x03, 0xcd, 0xc7, 0xbc, 0x65, 0x7e, 0x6b, 0x2a,
  0x04, 0x8d, 0xce, 0x4e, 0xc8, 0xd4, 0xbd, 0xe1,
  0x66, 0xdd, 0x7f, 0x31, 0x6c, 0x20, 0x2b, 0xf3,
  0x05, 0x57, 0x8e, 0xe8, 0xcf, 0xac, 0x4f, 0x83,
  0xc9, 0xd9, 0xd5, 0x41, 0xbe, 0x94, 0xe2, 0xb4,
  0x67, 0x27, 0xde, 0xf0, 0x80, 0xb1, 0x32, 0x35,
  0x6d, 0x45, 0x21, 0x12, 0x2c, 0x0d, 0xf4, 0x38,
  0x06, 0x9b, 0x58, 0x1a, 0x8f, 0x79, 0xe9, 0x70,
  0xd0, 0xc2, 0xad, 0xa8, 0x50, 0x75, 0x84, 0x48,
  0xca, 0xfc, 0xda, 0x8a, 0xd6, 0x54, 0x42, 0x24,
  0xbf, 0x98, 0x95, 0xf9, 0xe3, 0x5e, 0xb5, 0x15,
  0x68, 0x61, 0x28, 0xba, 0xdf, 0x4c, 0xf1, 0x2f,
  0x81, 0xe6, 0xb2, 0x3f, 0x33, 0xee, 0x36, 0x10,
  0x6e, 0x18, 0x46, 0xa6, 0x22, 0x88, 0x13, 0xf7,
  0x2d, 0xb8, 0x0e, 0x3d, 0xf5, 0xa4, 0x39, 0x3b,
  0x07, 0x9e, 0x9c, 0x9d, 0x59, 0x9f, 0x1b, 0x08,
  0x90, 0x09, 0x7a, 0x1c, 0xea, 0xa0, 0x71, 0x5a,
  0xd1, 0x1d, 0xc3, 0x7b, 0xae, 0x0a, 0xa9, 0x91,
  0x51, 0x5b, 0x76, 0x72, 0x85, 0xa1, 0x49, 0xeb,
  0xcb, 0x7c, 0xfd, 0xc4, 0xdb, 0x1e, 0x8b, 0xd2,
  0xd7, 0x92, 0x55, 0xaa, 0x43, 0x0b, 0x25, 0xaf,
  0xc0, 0x73, 0x99, 0x77, 0x96, 0x5c, 0xfa, 0x52,
  0xe4, 0xec, 0x5f, 0x4a, 0xb6, 0xa2, 0x16, 0x86,
  0x69, 0xc5, 0x62, 0xfe, 0x29, 0x7d, 0xbb, 0xcc,
  0xe0, 0xd3, 0x4d, 0x8c, 0xf2, 0x1f, 0x30, 0xdc,
  0x82, 0xab, 0xe7, 0x56, 0xb3, 0x93, 0x40, 0xd8,
  0x34, 0xb0, 0xef, 0x26, 0x37, 0x0c, 0x11, 0x44,
  0x6f, 0x78, 0x19, 0x9a, 0x47, 0x74, 0xa7, 0xc1,
  0x23, 0x53, 0x89, 0xfb, 0x14, 0x5d, 0xf8, 0x97,
  0x2e, 0x4b, 0xb9, 0x60, 0x0f, 0xed, 0x3e, 0xe5,
  0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7
};

/* Return number of sectors available in a segment. */
int sect_count(ULONG badmap)
{
  int i, amt;

  for (amt = QCV_BLKSEG, i = 0; i < QCV_BLKSEG; i++)
	if (badmap & (1 << i)) amt--;
  return(amt);
}

/* Return number of bytes available in a segment. */
int sect_bytes(ULONG badmap)
{
  int i, amt;

  for (amt = QCV_SEGSIZE, i = 0; i < QCV_BLKSEG; i++)
	if (badmap & (1 << i)) amt -= QCV_BLKSIZE;
  return(amt);
}

/* Multiply two numbers in the field. */
static UCHAR multiply(UCHAR a, UCHAR b)
{
  int tmp;

  if (a == 0 || b == 0) return(0);
  tmp = (alpha_log[a] + alpha_log[b]);
  if (tmp > 254) tmp -= 255;
  return (alpha_power[tmp]);
}

static UCHAR divide(UCHAR a, UCHAR b)
{
  int tmp;

  if (a == 0 || b == 0) return(0);
  tmp = (alpha_log[a] - alpha_log[b]);
  if (tmp < 0) tmp += 255;
  return (alpha_power[tmp]);
}

/*
 * This is just like divide, except we have already looked up the log
 * of the second number.
 */
static UCHAR divide_out(UCHAR a, UCHAR b)
{
  int tmp;

  if (a == 0) return 0;
  tmp = alpha_log[a] - b;
  if (tmp < 0) tmp += 255;
  return (alpha_power[tmp]);
}

/* This returns the value z^{a-b}. */
static UCHAR z_of_ab(UCHAR a, UCHAR b)
{
  int tmp = (int)a - (int)b;

  if (tmp < 0)
	tmp += 255;
  else if (tmp >= 255)
	tmp -= 255;
  return(alpha_power[tmp]);
}

/*  Calculate the inverse matrix.  Returns 1 if the matrix is valid, or
 *  zero if there is no inverse.  The i's are the indices of the bytes
 *  to be corrected.
 */
static int calculate_inverse (int *pblk, struct inv_mat *inv)
{
  /* First some variables to remember some of the results. */
  UCHAR z20, z10, z21, z12, z01, z02;
  UCHAR i0, i1, i2;

  i0 = pblk[0]; i1 = pblk[1]; i2 = pblk[2];

  z20 = z_of_ab (i2, i0); z10 = z_of_ab (i1, i0);
  z21 = z_of_ab (i2, i1); z12 = z_of_ab (i1, i2);
  z01 = z_of_ab (i0, i1); z02 = z_of_ab (i0, i2);
  inv->log_denom = (z20 ^ z10 ^ z21 ^ z12 ^ z01 ^ z02);
  if (inv->log_denom == 0) return 0;
  inv->log_denom = alpha_log[inv->log_denom];

  /* Calculate all of the coefficients on the top. */
  inv->zs[0][0] = alpha_power[i1] ^ alpha_power[i2];
  inv->zs[0][1] = z21 ^ z12;
  inv->zs[0][2] = alpha_power[255-i1] ^ alpha_power[255-i2];

  inv->zs[1][0] = alpha_power[i0] ^ alpha_power[i2];
  inv->zs[1][1] = z20 ^ z02;
  inv->zs[1][2] = alpha_power[255-i0] ^ alpha_power[255-i2];

  inv->zs[2][0] = alpha_power[i0] ^ alpha_power[i1];
  inv->zs[2][1] = z10 ^ z01;
  inv->zs[2][2] = alpha_power[255-i0] ^ alpha_power[255-i1];
  return(1);
}

/*
 * Determine the error values for a given inverse matrix and syndromes.
 */
static void determine3(struct inv_mat *inv, UCHAR *es, UCHAR *ss)
{
  UCHAR tmp;
  int i, j;

  for (i = 0; i < 3; i++) {
	tmp = 0;
	for (j = 0; j < 3; j++) tmp ^= multiply (ss[j], inv->zs[i][j]);
	es[i] = divide_out(tmp, inv->log_denom);
  }
}


/*
 *  Compute the 3 syndrome values.  The data pointer should point to
 *  the offset within the first block of the column to calculate.  The
 *  count of blocks is in blocks.  The three bytes will be placed in
 *  ss[0], ss[1], and ss[2].
 */
static void compute_syndromes(UCHAR *data, int nblks, int col, UCHAR *ss)
{
  int i;
  UCHAR v;

  ss[0] = 0; ss[1] = 0; ss[2] = 0;
  for (i = (nblks-1)*QCV_BLKSIZE; i >= 0; i -= QCV_BLKSIZE) {
	v = data[i+col];
	if (ss[0] & 0x01) { ss[0] >>= 1; ss[0] ^= 0xc3;	} else ss[0] >>= 1;
	ss[0] ^= v;
	ss[1] ^= v;
	if (ss[2] & 0x80) { ss[2] <<= 1; ss[2] ^= 0x87; } else ss[2] <<= 1;
	ss[2] ^= v;
  }
}

/*
 *  Calculate the parity bytes for a segment.  Returns 0 on success.
 */
int set_parity (UCHAR *data, ULONG badmap)
{
  int col;
  struct inv_mat inv;
  UCHAR ss[3], es[3];
  int nblks, pblk[3];

  nblks = sect_count(badmap);
  pblk[0] = nblks-3; pblk[1] = nblks-2; pblk[2] = nblks-1;
  if (!calculate_inverse(pblk, &inv)) return(1);

  pblk[0] *= QCV_BLKSIZE; pblk[1] *= QCV_BLKSIZE; pblk[2] *= QCV_BLKSIZE;
  for (col = 0; col < QCV_BLKSIZE; col++) {
	compute_syndromes (data, nblks-3, col, ss);
	determine3(&inv, es, ss);
	data[pblk[0]+col] = es[0];
	data[pblk[1]+col] = es[1];
	data[pblk[2]+col] = es[2];
  }
  return(0);
}


/*
 *  Check and correct errors in a block.  Returns 0 on success,
 *  1 if failed.
 */
int check_parity(UCHAR *data, ULONG badmap, ULONG crcmap)
{
  int i, j, col, crcerrs, r, tries, nblks;
  struct inv_mat inv;
  UCHAR ss[3], es[3];
  int i1, i2, eblk[3];

  nblks = sect_count(badmap);
  crcerrs = 0;
  for (i = 0; crcerrs < 3 && i < nblks; i++)
	if (crcmap & (1 << i)) eblk[crcerrs++] = i;

  for (i = 1, j = crcerrs; j < 3 && i < nblks; i++)
	if ((crcmap & (1 << i)) == 0) eblk[j++] = i;

  if (!calculate_inverse (eblk, &inv)) return(1);

  eblk[0] *= QCV_BLKSIZE; eblk[1] *= QCV_BLKSIZE; eblk[2] *= QCV_BLKSIZE;
  r = 0;
  for (col = 0; col < QCV_BLKSIZE; col++) {
	compute_syndromes (data, nblks, col, ss);

	if (!ss[0] && !ss[1] && !ss[2]) continue;
	if (crcerrs) {
		determine3 (&inv, es, ss);
		for (j = 0; j < crcerrs; j++)
			data[eblk[j] + col] ^= es[j];
		compute_syndromes (data, nblks, col, ss);
		if (!ss[0] && !ss[1] && !ss[2]) {
			r = 1;
			continue;
		}
	}
	determine3 (&inv, es, ss);
	i1 = alpha_log[divide(ss[2], ss[1])];
	i2 = alpha_log[divide(ss[1], ss[0])];
	if (i1 != i2 || ((QCV_BLKSIZE * i1) + col) > QCV_SEGSIZE)
		r = 1;
	else
		data[QCV_BLKSIZE * i1 + col] ^= ss[1];
  }

  return(r);
}