aboutsummaryrefslogtreecommitdiff
path: root/source/Core/Timer.cpp
blob: b1416bdaf62ef1c5402d2ad5bc3892ff5657dc72 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
//===-- Timer.cpp -----------------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Timer.h"

#include <map>
#include <vector>
#include <algorithm>

#include "lldb/Core/Stream.h"
#include "lldb/Host/Mutex.h"

#include <stdio.h>

using namespace lldb_private;

#define TIMER_INDENT_AMOUNT 2
static bool g_quiet = true;
uint32_t Timer::g_depth = 0;
uint32_t Timer::g_display_depth = 0;
FILE * Timer::g_file = NULL;
typedef std::vector<Timer *> TimerStack;
typedef std::map<const char *, uint64_t> TimerCategoryMap;
static pthread_key_t g_key;

static Mutex &
GetCategoryMutex()
{
    static Mutex g_category_mutex(Mutex::eMutexTypeNormal);
    return g_category_mutex;
}

static TimerCategoryMap &
GetCategoryMap()
{
    static TimerCategoryMap g_category_map;
    return g_category_map;
}


static TimerStack *
GetTimerStackForCurrentThread ()
{
    void *timer_stack = ::pthread_getspecific (g_key);
    if (timer_stack == NULL)
    {
        ::pthread_setspecific (g_key, new TimerStack);
        timer_stack = ::pthread_getspecific (g_key);
    }
    return (TimerStack *)timer_stack;
}

void
ThreadSpecificCleanup (void *p)
{
    delete (TimerStack *)p;
}

void
Timer::SetQuiet (bool value)
{
    g_quiet = value;
}

void
Timer::Initialize ()
{
    Timer::g_file = stdout;
    ::pthread_key_create (&g_key, ThreadSpecificCleanup);

}

Timer::Timer (const char *category, const char *format, ...) :
    m_category (category),
    m_total_start (),
    m_timer_start (),
    m_total_ticks (0),
    m_timer_ticks (0)
{
    if (g_depth++ < g_display_depth)
    {
        if (g_quiet == false)
        {
            // Indent
            ::fprintf (g_file, "%*s", g_depth * TIMER_INDENT_AMOUNT, "");
            // Print formatted string
            va_list args;
            va_start (args, format);
            ::vfprintf (g_file, format, args);
            va_end (args);

            // Newline
            ::fprintf (g_file, "\n");
        }
        TimeValue start_time(TimeValue::Now());
        m_total_start = start_time;
        m_timer_start = start_time;
        TimerStack *stack = GetTimerStackForCurrentThread ();
        if (stack)
        {
            if (stack->empty() == false)
                stack->back()->ChildStarted (start_time);
            stack->push_back(this);
        }
    }
}


Timer::~Timer()
{
    if (m_total_start.IsValid())
    {
        TimeValue stop_time = TimeValue::Now();
        if (m_total_start.IsValid())
        {
            m_total_ticks += (stop_time - m_total_start);
            m_total_start.Clear();
        }
        if (m_timer_start.IsValid())
        {
            m_timer_ticks += (stop_time - m_timer_start);
            m_timer_start.Clear();
        }

        TimerStack *stack = GetTimerStackForCurrentThread ();
        if (stack)
        {
            assert (stack->back() == this);
            stack->pop_back();
            if (stack->empty() == false)
                stack->back()->ChildStopped(stop_time);
        }

        const uint64_t total_nsec_uint = GetTotalElapsedNanoSeconds();
        const uint64_t timer_nsec_uint = GetTimerElapsedNanoSeconds();
        const double total_nsec = total_nsec_uint;
        const double timer_nsec = timer_nsec_uint;

        if (g_quiet == false)
        {

            ::fprintf (g_file,
                       "%*s%.9f sec (%.9f sec)\n",
                       (g_depth - 1) *TIMER_INDENT_AMOUNT, "",
                       total_nsec / 1000000000.0,
                       timer_nsec / 1000000000.0);
        }

        // Keep total results for each category so we can dump results.
        Mutex::Locker locker (GetCategoryMutex());
        TimerCategoryMap &category_map = GetCategoryMap();
        category_map[m_category] += timer_nsec_uint;
    }
    if (g_depth > 0)
        --g_depth;
}

uint64_t
Timer::GetTotalElapsedNanoSeconds()
{
    uint64_t total_ticks = m_total_ticks;

    // If we are currently running, we need to add the current
    // elapsed time of the running timer...
    if (m_total_start.IsValid())
        total_ticks += (TimeValue::Now() - m_total_start);

    return total_ticks;
}

uint64_t
Timer::GetTimerElapsedNanoSeconds()
{
    uint64_t timer_ticks = m_timer_ticks;

    // If we are currently running, we need to add the current
    // elapsed time of the running timer...
    if (m_timer_start.IsValid())
        timer_ticks += (TimeValue::Now() - m_timer_start);

    return timer_ticks;
}

void
Timer::ChildStarted (const TimeValue& start_time)
{
    if (m_timer_start.IsValid())
    {
        m_timer_ticks += (start_time - m_timer_start);
        m_timer_start.Clear();
    }
}

void
Timer::ChildStopped (const TimeValue& stop_time)
{
    if (!m_timer_start.IsValid())
        m_timer_start = stop_time;
}

void
Timer::SetDisplayDepth (uint32_t depth)
{
    g_display_depth = depth;
}


/* binary function predicate:
 * - returns whether a person is less than another person
 */
static bool
CategoryMapIteratorSortCriterion (const TimerCategoryMap::const_iterator& lhs, const TimerCategoryMap::const_iterator& rhs)
{
    return lhs->second > rhs->second;
}


void
Timer::ResetCategoryTimes ()
{
    Mutex::Locker locker (GetCategoryMutex());
    TimerCategoryMap &category_map = GetCategoryMap();
    category_map.clear();
}

void
Timer::DumpCategoryTimes (Stream *s)
{
    Mutex::Locker locker (GetCategoryMutex());
    TimerCategoryMap &category_map = GetCategoryMap();
    std::vector<TimerCategoryMap::const_iterator> sorted_iterators;
    TimerCategoryMap::const_iterator pos, end = category_map.end();
    for (pos = category_map.begin(); pos != end; ++pos)
    {
        sorted_iterators.push_back (pos);
    }
    std::sort (sorted_iterators.begin(), sorted_iterators.end(), CategoryMapIteratorSortCriterion);

    const size_t count = sorted_iterators.size();
    for (size_t i=0; i<count; ++i)
    {
        const double timer_nsec = sorted_iterators[i]->second;
        s->Printf("%.9f sec for %s\n", timer_nsec / 1000000000.0, sorted_iterators[i]->first);
    }
}