aboutsummaryrefslogtreecommitdiff
path: root/source/Expression/IRMemoryMap.cpp
blob: 7b9d26667389d2a5901a4d40ce87f19eaf09a9f1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
//===-- IRMemoryMap.cpp -----------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "lldb/Expression/IRMemoryMap.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/LLDBAssert.h"

using namespace lldb_private;

IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) {
  if (target_sp)
    m_process_wp = target_sp->GetProcessSP();
}

IRMemoryMap::~IRMemoryMap() {
  lldb::ProcessSP process_sp = m_process_wp.lock();

  if (process_sp) {
    AllocationMap::iterator iter;

    Error err;

    while ((iter = m_allocations.begin()) != m_allocations.end()) {
      err.Clear();
      if (iter->second.m_leak)
        m_allocations.erase(iter);
      else
        Free(iter->first, err);
    }
  }
}

lldb::addr_t IRMemoryMap::FindSpace(size_t size) {
  // The FindSpace algorithm's job is to find a region of memory that the
  // underlying process is unlikely to be using.
  //
  // The memory returned by this function will never be written to.  The only
  // point is that it should not shadow process memory if possible, so that
  // expressions processing real values from the process do not use the
  // wrong data.
  //
  // If the process can in fact allocate memory (CanJIT() lets us know this)
  // then this can be accomplished just be allocating memory in the inferior.
  // Then no guessing is required.

  lldb::TargetSP target_sp = m_target_wp.lock();
  lldb::ProcessSP process_sp = m_process_wp.lock();

  const bool process_is_alive = process_sp && process_sp->IsAlive();

  lldb::addr_t ret = LLDB_INVALID_ADDRESS;
  if (size == 0)
    return ret;

  if (process_is_alive && process_sp->CanJIT()) {
    Error alloc_error;

    ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable |
                                               lldb::ePermissionsWritable,
                                     alloc_error);

    if (!alloc_error.Success())
      return LLDB_INVALID_ADDRESS;
    else
      return ret;
  }

  // At this point we know that we need to hunt.
  //
  // First, go to the end of the existing allocations we've made if there are
  // any allocations.  Otherwise start at the beginning of memory.

  if (m_allocations.empty()) {
    ret = 0x0;
  } else {
    auto back = m_allocations.rbegin();
    lldb::addr_t addr = back->first;
    size_t alloc_size = back->second.m_size;
    ret = llvm::alignTo(addr + alloc_size, 4096);
  }

  // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped
  // regions, walk forward through memory until a region is found that
  // has adequate space for our allocation.
  if (process_is_alive) {
    const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8
                                       ? 0xffffffffffffffffull
                                       : 0xffffffffull;

    lldbassert(process_sp->GetAddressByteSize() == 4 ||
               end_of_memory != 0xffffffffull);

    MemoryRegionInfo region_info;
    Error err = process_sp->GetMemoryRegionInfo(ret, region_info);
    if (err.Success()) {
      while (true) {
        if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo ||
            region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo ||
            region_info.GetExecutable() !=
                MemoryRegionInfo::OptionalBool::eNo) {
          if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) {
            ret = LLDB_INVALID_ADDRESS;
            break;
          } else {
            ret = region_info.GetRange().GetRangeEnd();
          }
        } else if (ret + size < region_info.GetRange().GetRangeEnd()) {
          return ret;
        } else {
          // ret stays the same.  We just need to walk a bit further.
        }

        err = process_sp->GetMemoryRegionInfo(
            region_info.GetRange().GetRangeEnd(), region_info);
        if (err.Fail()) {
          lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed");
          ret = LLDB_INVALID_ADDRESS;
          break;
        }
      }
    }
  }

  // We've tried our algorithm, and it didn't work.  Now we have to reset back
  // to the end of the allocations we've already reported, or use a 'sensible'
  // default if this is our first allocation.

  if (m_allocations.empty()) {
    uint32_t address_byte_size = GetAddressByteSize();
    if (address_byte_size != UINT32_MAX) {
      switch (address_byte_size) {
      case 8:
        ret = 0xffffffff00000000ull;
        break;
      case 4:
        ret = 0xee000000ull;
        break;
      default:
        break;
      }
    }
  } else {
    auto back = m_allocations.rbegin();
    lldb::addr_t addr = back->first;
    size_t alloc_size = back->second.m_size;
    ret = llvm::alignTo(addr + alloc_size, 4096);
  }

  return ret;
}

IRMemoryMap::AllocationMap::iterator
IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) {
  if (addr == LLDB_INVALID_ADDRESS)
    return m_allocations.end();

  AllocationMap::iterator iter = m_allocations.lower_bound(addr);

  if (iter == m_allocations.end() || iter->first > addr) {
    if (iter == m_allocations.begin())
      return m_allocations.end();
    iter--;
  }

  if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size)
    return iter;

  return m_allocations.end();
}

bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const {
  if (addr == LLDB_INVALID_ADDRESS)
    return false;

  AllocationMap::const_iterator iter = m_allocations.lower_bound(addr);

  // Since we only know that the returned interval begins at a location greater
  // than or
  // equal to where the given interval begins, it's possible that the given
  // interval
  // intersects either the returned interval or the previous interval.  Thus, we
  // need to
  // check both. Note that we only need to check these two intervals.  Since all
  // intervals
  // are disjoint it is not possible that an adjacent interval does not
  // intersect, but a
  // non-adjacent interval does intersect.
  if (iter != m_allocations.end()) {
    if (AllocationsIntersect(addr, size, iter->second.m_process_start,
                             iter->second.m_size))
      return true;
  }

  if (iter != m_allocations.begin()) {
    --iter;
    if (AllocationsIntersect(addr, size, iter->second.m_process_start,
                             iter->second.m_size))
      return true;
  }

  return false;
}

bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1,
                                       lldb::addr_t addr2, size_t size2) {
  // Given two half open intervals [A, B) and [X, Y), the only 6 permutations
  // that satisfy
  // A<B and X<Y are the following:
  // A B X Y
  // A X B Y  (intersects)
  // A X Y B  (intersects)
  // X A B Y  (intersects)
  // X A Y B  (intersects)
  // X Y A B
  // The first is B <= X, and the last is Y <= A.
  // So the condition is !(B <= X || Y <= A)), or (X < B && A < Y)
  return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2));
}

lldb::ByteOrder IRMemoryMap::GetByteOrder() {
  lldb::ProcessSP process_sp = m_process_wp.lock();

  if (process_sp)
    return process_sp->GetByteOrder();

  lldb::TargetSP target_sp = m_target_wp.lock();

  if (target_sp)
    return target_sp->GetArchitecture().GetByteOrder();

  return lldb::eByteOrderInvalid;
}

uint32_t IRMemoryMap::GetAddressByteSize() {
  lldb::ProcessSP process_sp = m_process_wp.lock();

  if (process_sp)
    return process_sp->GetAddressByteSize();

  lldb::TargetSP target_sp = m_target_wp.lock();

  if (target_sp)
    return target_sp->GetArchitecture().GetAddressByteSize();

  return UINT32_MAX;
}

ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const {
  lldb::ProcessSP process_sp = m_process_wp.lock();

  if (process_sp)
    return process_sp.get();

  lldb::TargetSP target_sp = m_target_wp.lock();

  if (target_sp)
    return target_sp.get();

  return NULL;
}

IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc,
                                    lldb::addr_t process_start, size_t size,
                                    uint32_t permissions, uint8_t alignment,
                                    AllocationPolicy policy)
    : m_process_alloc(process_alloc), m_process_start(process_start),
      m_size(size), m_permissions(permissions), m_alignment(alignment),
      m_policy(policy), m_leak(false) {
  switch (policy) {
  default:
    assert(0 && "We cannot reach this!");
  case eAllocationPolicyHostOnly:
    m_data.SetByteSize(size);
    memset(m_data.GetBytes(), 0, size);
    break;
  case eAllocationPolicyProcessOnly:
    break;
  case eAllocationPolicyMirror:
    m_data.SetByteSize(size);
    memset(m_data.GetBytes(), 0, size);
    break;
  }
}

lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment,
                                 uint32_t permissions, AllocationPolicy policy,
                                 bool zero_memory, Error &error) {
  lldb_private::Log *log(
      lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
  error.Clear();

  lldb::ProcessSP process_sp;
  lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS;
  lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS;

  size_t alignment_mask = alignment - 1;
  size_t allocation_size;

  if (size == 0)
    allocation_size = alignment;
  else
    allocation_size = (size & alignment_mask)
                          ? ((size + alignment) & (~alignment_mask))
                          : size;

  switch (policy) {
  default:
    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't malloc: invalid allocation policy");
    return LLDB_INVALID_ADDRESS;
  case eAllocationPolicyHostOnly:
    allocation_address = FindSpace(allocation_size);
    if (allocation_address == LLDB_INVALID_ADDRESS) {
      error.SetErrorToGenericError();
      error.SetErrorString("Couldn't malloc: address space is full");
      return LLDB_INVALID_ADDRESS;
    }
    break;
  case eAllocationPolicyMirror:
    process_sp = m_process_wp.lock();
    if (log)
      log->Printf("IRMemoryMap::%s process_sp=0x%" PRIx64
                  ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s",
                  __FUNCTION__, (lldb::addr_t)process_sp.get(),
                  process_sp && process_sp->CanJIT() ? "true" : "false",
                  process_sp && process_sp->IsAlive() ? "true" : "false");
    if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) {
      if (!zero_memory)
        allocation_address =
            process_sp->AllocateMemory(allocation_size, permissions, error);
      else
        allocation_address =
            process_sp->CallocateMemory(allocation_size, permissions, error);

      if (!error.Success())
        return LLDB_INVALID_ADDRESS;
    } else {
      if (log)
        log->Printf("IRMemoryMap::%s switching to eAllocationPolicyHostOnly "
                    "due to failed condition (see previous expr log message)",
                    __FUNCTION__);
      policy = eAllocationPolicyHostOnly;
      allocation_address = FindSpace(allocation_size);
      if (allocation_address == LLDB_INVALID_ADDRESS) {
        error.SetErrorToGenericError();
        error.SetErrorString("Couldn't malloc: address space is full");
        return LLDB_INVALID_ADDRESS;
      }
    }
    break;
  case eAllocationPolicyProcessOnly:
    process_sp = m_process_wp.lock();
    if (process_sp) {
      if (process_sp->CanJIT() && process_sp->IsAlive()) {
        if (!zero_memory)
          allocation_address =
              process_sp->AllocateMemory(allocation_size, permissions, error);
        else
          allocation_address =
              process_sp->CallocateMemory(allocation_size, permissions, error);

        if (!error.Success())
          return LLDB_INVALID_ADDRESS;
      } else {
        error.SetErrorToGenericError();
        error.SetErrorString(
            "Couldn't malloc: process doesn't support allocating memory");
        return LLDB_INVALID_ADDRESS;
      }
    } else {
      error.SetErrorToGenericError();
      error.SetErrorString("Couldn't malloc: process doesn't exist, and this "
                           "memory must be in the process");
      return LLDB_INVALID_ADDRESS;
    }
    break;
  }

  lldb::addr_t mask = alignment - 1;
  aligned_address = (allocation_address + mask) & (~mask);

  m_allocations[aligned_address] =
      Allocation(allocation_address, aligned_address, allocation_size,
                 permissions, alignment, policy);

  if (zero_memory) {
    Error write_error;
    std::vector<uint8_t> zero_buf(size, 0);
    WriteMemory(aligned_address, zero_buf.data(), size, write_error);
  }

  if (log) {
    const char *policy_string;

    switch (policy) {
    default:
      policy_string = "<invalid policy>";
      break;
    case eAllocationPolicyHostOnly:
      policy_string = "eAllocationPolicyHostOnly";
      break;
    case eAllocationPolicyProcessOnly:
      policy_string = "eAllocationPolicyProcessOnly";
      break;
    case eAllocationPolicyMirror:
      policy_string = "eAllocationPolicyMirror";
      break;
    }

    log->Printf("IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64
                ", %s) -> 0x%" PRIx64,
                (uint64_t)allocation_size, (uint64_t)alignment,
                (uint64_t)permissions, policy_string, aligned_address);
  }

  return aligned_address;
}

void IRMemoryMap::Leak(lldb::addr_t process_address, Error &error) {
  error.Clear();

  AllocationMap::iterator iter = m_allocations.find(process_address);

  if (iter == m_allocations.end()) {
    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't leak: allocation doesn't exist");
    return;
  }

  Allocation &allocation = iter->second;

  allocation.m_leak = true;
}

void IRMemoryMap::Free(lldb::addr_t process_address, Error &error) {
  error.Clear();

  AllocationMap::iterator iter = m_allocations.find(process_address);

  if (iter == m_allocations.end()) {
    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't free: allocation doesn't exist");
    return;
  }

  Allocation &allocation = iter->second;

  switch (allocation.m_policy) {
  default:
  case eAllocationPolicyHostOnly: {
    lldb::ProcessSP process_sp = m_process_wp.lock();
    if (process_sp) {
      if (process_sp->CanJIT() && process_sp->IsAlive())
        process_sp->DeallocateMemory(
            allocation.m_process_alloc); // FindSpace allocated this for real
    }

    break;
  }
  case eAllocationPolicyMirror:
  case eAllocationPolicyProcessOnly: {
    lldb::ProcessSP process_sp = m_process_wp.lock();
    if (process_sp)
      process_sp->DeallocateMemory(allocation.m_process_alloc);
  }
  }

  if (lldb_private::Log *log =
          lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
    log->Printf("IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64
                "..0x%" PRIx64 ")",
                (uint64_t)process_address, iter->second.m_process_start,
                iter->second.m_process_start + iter->second.m_size);
  }

  m_allocations.erase(iter);
}

bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) {
  AllocationMap::iterator iter = FindAllocation(address, size);
  if (iter == m_allocations.end())
    return false;

  Allocation &al = iter->second;

  if (address > (al.m_process_start + al.m_size)) {
    size = 0;
    return false;
  }

  if (address > al.m_process_start) {
    int dif = address - al.m_process_start;
    size = al.m_size - dif;
    return true;
  }

  size = al.m_size;
  return true;
}

void IRMemoryMap::WriteMemory(lldb::addr_t process_address,
                              const uint8_t *bytes, size_t size, Error &error) {
  error.Clear();

  AllocationMap::iterator iter = FindAllocation(process_address, size);

  if (iter == m_allocations.end()) {
    lldb::ProcessSP process_sp = m_process_wp.lock();

    if (process_sp) {
      process_sp->WriteMemory(process_address, bytes, size, error);
      return;
    }

    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't write: no allocation contains the target "
                         "range and the process doesn't exist");
    return;
  }

  Allocation &allocation = iter->second;

  uint64_t offset = process_address - allocation.m_process_start;

  lldb::ProcessSP process_sp;

  switch (allocation.m_policy) {
  default:
    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't write: invalid allocation policy");
    return;
  case eAllocationPolicyHostOnly:
    if (!allocation.m_data.GetByteSize()) {
      error.SetErrorToGenericError();
      error.SetErrorString("Couldn't write: data buffer is empty");
      return;
    }
    ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
    break;
  case eAllocationPolicyMirror:
    if (!allocation.m_data.GetByteSize()) {
      error.SetErrorToGenericError();
      error.SetErrorString("Couldn't write: data buffer is empty");
      return;
    }
    ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
    process_sp = m_process_wp.lock();
    if (process_sp) {
      process_sp->WriteMemory(process_address, bytes, size, error);
      if (!error.Success())
        return;
    }
    break;
  case eAllocationPolicyProcessOnly:
    process_sp = m_process_wp.lock();
    if (process_sp) {
      process_sp->WriteMemory(process_address, bytes, size, error);
      if (!error.Success())
        return;
    }
    break;
  }

  if (lldb_private::Log *log =
          lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
    log->Printf("IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIx64
                ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")",
                (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size,
                (uint64_t)allocation.m_process_start,
                (uint64_t)allocation.m_process_start +
                    (uint64_t)allocation.m_size);
  }
}

void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address,
                                      Scalar &scalar, size_t size,
                                      Error &error) {
  error.Clear();

  if (size == UINT32_MAX)
    size = scalar.GetByteSize();

  if (size > 0) {
    uint8_t buf[32];
    const size_t mem_size =
        scalar.GetAsMemoryData(buf, size, GetByteOrder(), error);
    if (mem_size > 0) {
      return WriteMemory(process_address, buf, mem_size, error);
    } else {
      error.SetErrorToGenericError();
      error.SetErrorString(
          "Couldn't write scalar: failed to get scalar as memory data");
    }
  } else {
    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't write scalar: its size was zero");
  }
  return;
}

void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address,
                                       lldb::addr_t address, Error &error) {
  error.Clear();

  Scalar scalar(address);

  WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error);
}

void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address,
                             size_t size, Error &error) {
  error.Clear();

  AllocationMap::iterator iter = FindAllocation(process_address, size);

  if (iter == m_allocations.end()) {
    lldb::ProcessSP process_sp = m_process_wp.lock();

    if (process_sp) {
      process_sp->ReadMemory(process_address, bytes, size, error);
      return;
    }

    lldb::TargetSP target_sp = m_target_wp.lock();

    if (target_sp) {
      Address absolute_address(process_address);
      target_sp->ReadMemory(absolute_address, false, bytes, size, error);
      return;
    }

    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't read: no allocation contains the target "
                         "range, and neither the process nor the target exist");
    return;
  }

  Allocation &allocation = iter->second;

  uint64_t offset = process_address - allocation.m_process_start;

  if (offset > allocation.m_size) {
    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't read: data is not in the allocation");
    return;
  }

  lldb::ProcessSP process_sp;

  switch (allocation.m_policy) {
  default:
    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't read: invalid allocation policy");
    return;
  case eAllocationPolicyHostOnly:
    if (!allocation.m_data.GetByteSize()) {
      error.SetErrorToGenericError();
      error.SetErrorString("Couldn't read: data buffer is empty");
      return;
    }
    if (allocation.m_data.GetByteSize() < offset + size) {
      error.SetErrorToGenericError();
      error.SetErrorString("Couldn't read: not enough underlying data");
      return;
    }

    ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
    break;
  case eAllocationPolicyMirror:
    process_sp = m_process_wp.lock();
    if (process_sp) {
      process_sp->ReadMemory(process_address, bytes, size, error);
      if (!error.Success())
        return;
    } else {
      if (!allocation.m_data.GetByteSize()) {
        error.SetErrorToGenericError();
        error.SetErrorString("Couldn't read: data buffer is empty");
        return;
      }
      ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
    }
    break;
  case eAllocationPolicyProcessOnly:
    process_sp = m_process_wp.lock();
    if (process_sp) {
      process_sp->ReadMemory(process_address, bytes, size, error);
      if (!error.Success())
        return;
    }
    break;
  }

  if (lldb_private::Log *log =
          lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
    log->Printf("IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIx64
                ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")",
                (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size,
                (uint64_t)allocation.m_process_start,
                (uint64_t)allocation.m_process_start +
                    (uint64_t)allocation.m_size);
  }
}

void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar,
                                       lldb::addr_t process_address,
                                       size_t size, Error &error) {
  error.Clear();

  if (size > 0) {
    DataBufferHeap buf(size, 0);
    ReadMemory(buf.GetBytes(), process_address, size, error);

    if (!error.Success())
      return;

    DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(),
                            GetAddressByteSize());

    lldb::offset_t offset = 0;

    switch (size) {
    default:
      error.SetErrorToGenericError();
      error.SetErrorStringWithFormat(
          "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size);
      return;
    case 1:
      scalar = extractor.GetU8(&offset);
      break;
    case 2:
      scalar = extractor.GetU16(&offset);
      break;
    case 4:
      scalar = extractor.GetU32(&offset);
      break;
    case 8:
      scalar = extractor.GetU64(&offset);
      break;
    }
  } else {
    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't read scalar: its size was zero");
  }
  return;
}

void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address,
                                        lldb::addr_t process_address,
                                        Error &error) {
  error.Clear();

  Scalar pointer_scalar;
  ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(),
                       error);

  if (!error.Success())
    return;

  *address = pointer_scalar.ULongLong();

  return;
}

void IRMemoryMap::GetMemoryData(DataExtractor &extractor,
                                lldb::addr_t process_address, size_t size,
                                Error &error) {
  error.Clear();

  if (size > 0) {
    AllocationMap::iterator iter = FindAllocation(process_address, size);

    if (iter == m_allocations.end()) {
      error.SetErrorToGenericError();
      error.SetErrorStringWithFormat(
          "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64
          ")",
          process_address, process_address + size);
      return;
    }

    Allocation &allocation = iter->second;

    switch (allocation.m_policy) {
    default:
      error.SetErrorToGenericError();
      error.SetErrorString(
          "Couldn't get memory data: invalid allocation policy");
      return;
    case eAllocationPolicyProcessOnly:
      error.SetErrorToGenericError();
      error.SetErrorString(
          "Couldn't get memory data: memory is only in the target");
      return;
    case eAllocationPolicyMirror: {
      lldb::ProcessSP process_sp = m_process_wp.lock();

      if (!allocation.m_data.GetByteSize()) {
        error.SetErrorToGenericError();
        error.SetErrorString("Couldn't get memory data: data buffer is empty");
        return;
      }
      if (process_sp) {
        process_sp->ReadMemory(allocation.m_process_start,
                               allocation.m_data.GetBytes(),
                               allocation.m_data.GetByteSize(), error);
        if (!error.Success())
          return;
        uint64_t offset = process_address - allocation.m_process_start;
        extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
                                  GetByteOrder(), GetAddressByteSize());
        return;
      }
    } break;
    case eAllocationPolicyHostOnly:
      if (!allocation.m_data.GetByteSize()) {
        error.SetErrorToGenericError();
        error.SetErrorString("Couldn't get memory data: data buffer is empty");
        return;
      }
      uint64_t offset = process_address - allocation.m_process_start;
      extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
                                GetByteOrder(), GetAddressByteSize());
      return;
    }
  } else {
    error.SetErrorToGenericError();
    error.SetErrorString("Couldn't get memory data: its size was zero");
    return;
  }
}