aboutsummaryrefslogtreecommitdiff
path: root/source/Plugins/ABI/SysV-mips64/ABISysV_mips64.cpp
blob: e3da3631723e66b46f29a68a0421c05837a4ccc0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
//===-- ABISysV_mips64.cpp ----------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "ABISysV_mips64.h"

#include "lldb/Core/ConstString.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Thread.h"

#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"

using namespace lldb;
using namespace lldb_private;

enum dwarf_regnums
{
    dwarf_r0 = 0,
    dwarf_r1,
    dwarf_r2,
    dwarf_r3,
    dwarf_r4,
    dwarf_r5,
    dwarf_r6,
    dwarf_r7,
    dwarf_r8,
    dwarf_r9,
    dwarf_r10,
    dwarf_r11,
    dwarf_r12,
    dwarf_r13,
    dwarf_r14,
    dwarf_r15,
    dwarf_r16,
    dwarf_r17,
    dwarf_r18,
    dwarf_r19,
    dwarf_r20,
    dwarf_r21,
    dwarf_r22,
    dwarf_r23,
    dwarf_r24,
    dwarf_r25,
    dwarf_r26,
    dwarf_r27,
    dwarf_r28,
    dwarf_r29,
    dwarf_r30,
    dwarf_r31,
    dwarf_sr,
    dwarf_lo,
    dwarf_hi,
    dwarf_bad,
    dwarf_cause,
    dwarf_pc
};

static const RegisterInfo
g_register_infos_mips64[] =
{
   //  NAME      ALT    SZ OFF ENCODING        FORMAT         EH_FRAME           DWARF                   GENERIC                     PROCESS PLUGIN          LLDB NATIVE            VALUE REGS INVALIDATE REGS
  //  ========  ======  == === =============  ==========     =============      =================       ====================        =================       ====================    ========== ===============
    { "r0"    , "zero", 8,  0, eEncodingUint, eFormatHex,  {     dwarf_r0,          dwarf_r0,           LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r1"    , "AT",   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r1,          dwarf_r1,           LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r2"    , "v0",   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r2,          dwarf_r2,           LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r3"    , "v1",   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r3,          dwarf_r3,           LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r4"    , "arg1", 8,  0, eEncodingUint, eFormatHex,  {     dwarf_r4,          dwarf_r4,           LLDB_REGNUM_GENERIC_ARG1,   LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r5"    , "arg2", 8,  0, eEncodingUint, eFormatHex,  {     dwarf_r5,          dwarf_r5,           LLDB_REGNUM_GENERIC_ARG2,   LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r6"    , "arg3", 8,  0, eEncodingUint, eFormatHex,  {     dwarf_r6,          dwarf_r6,           LLDB_REGNUM_GENERIC_ARG3,   LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r7"    , "arg4", 8,  0, eEncodingUint, eFormatHex,  {     dwarf_r7,          dwarf_r7,           LLDB_REGNUM_GENERIC_ARG4,   LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r8"    , "arg5", 8,  0, eEncodingUint, eFormatHex,  {     dwarf_r8,          dwarf_r8,           LLDB_REGNUM_GENERIC_ARG5,   LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r9"    , "arg6", 8,  0, eEncodingUint, eFormatHex,  {     dwarf_r9,          dwarf_r9,           LLDB_REGNUM_GENERIC_ARG6,   LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r10"   , "arg7", 8,  0, eEncodingUint, eFormatHex,  {     dwarf_r10,         dwarf_r10,          LLDB_REGNUM_GENERIC_ARG7,   LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r11"   , "arg8", 8,  0, eEncodingUint, eFormatHex,  {     dwarf_r11,         dwarf_r11,          LLDB_REGNUM_GENERIC_ARG8,   LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r12"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r12,         dwarf_r12,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r13"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r13,         dwarf_r13,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r14"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r14,         dwarf_r14,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r15"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r15,         dwarf_r15,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r16"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r16,         dwarf_r16,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r17"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r17,         dwarf_r17,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r18"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r18,         dwarf_r18,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r19"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r19,         dwarf_r19,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r20"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r20,         dwarf_r20,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r21"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r21,         dwarf_r21,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r22"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r22,         dwarf_r22,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r23"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r23,         dwarf_r23,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r24"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r24,         dwarf_r24,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r25"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r25,         dwarf_r25,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r26"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r26,         dwarf_r26,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r27"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r27,         dwarf_r27,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r28"   , "gp",   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r28,         dwarf_r28,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r29"   , "sp",   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r29,         dwarf_r29,          LLDB_REGNUM_GENERIC_SP,     LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r30"   , "fp",   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r30,         dwarf_r30,          LLDB_REGNUM_GENERIC_FP,     LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "r31"   , "ra",   8,  0, eEncodingUint, eFormatHex,  {     dwarf_r31,         dwarf_r31,          LLDB_REGNUM_GENERIC_RA,     LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "sr"    , NULL,   4,  0, eEncodingUint, eFormatHex,  {     dwarf_sr,          dwarf_sr,           LLDB_REGNUM_GENERIC_FLAGS,  LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "lo"    , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_lo,          dwarf_lo,           LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "hi"    , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_hi,          dwarf_hi,           LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "bad"   , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_bad,         dwarf_bad,          LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "cause" , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_cause,       dwarf_cause,        LLDB_INVALID_REGNUM,        LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
    { "pc"    , NULL,   8,  0, eEncodingUint, eFormatHex,  {     dwarf_pc,          dwarf_pc,           LLDB_REGNUM_GENERIC_PC,     LLDB_INVALID_REGNUM,    LLDB_INVALID_REGNUM },  NULL,      NULL},
};

static const uint32_t k_num_register_infos = llvm::array_lengthof(g_register_infos_mips64);

const lldb_private::RegisterInfo *
ABISysV_mips64::GetRegisterInfoArray (uint32_t &count)
{
    count = k_num_register_infos;
    return g_register_infos_mips64;
}

size_t
ABISysV_mips64::GetRedZoneSize () const
{
    return 0;
}

//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABISysV_mips64::CreateInstance (const ArchSpec &arch)
{
    static ABISP g_abi_sp;
    const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
    if ((arch_type == llvm::Triple::mips64) ||
        (arch_type == llvm::Triple::mips64el))
    {
        if (!g_abi_sp)
            g_abi_sp.reset (new ABISysV_mips64);
        return g_abi_sp;
    }
    return ABISP();
}

bool
ABISysV_mips64::PrepareTrivialCall (Thread &thread,
                                  addr_t sp,
                                  addr_t func_addr,
                                  addr_t return_addr,
                                  llvm::ArrayRef<addr_t> args) const
{
    Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));

    if (log)
    {
        StreamString s;
        s.Printf("ABISysV_mips64::PrepareTrivialCall (tid = 0x%" PRIx64 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 ", return_addr = 0x%" PRIx64,
                    thread.GetID(),
                    (uint64_t)sp,
                    (uint64_t)func_addr,
                    (uint64_t)return_addr);

        for (size_t i = 0; i < args.size(); ++i)
            s.Printf (", arg%zd = 0x%" PRIx64, i + 1, args[i]);
        s.PutCString (")");
        log->PutCString(s.GetString().c_str());
    }

    RegisterContext *reg_ctx = thread.GetRegisterContext().get();
    if (!reg_ctx)
        return false;

    const RegisterInfo *reg_info = NULL;

    if (args.size() > 8) // TODO handle more than 8 arguments
        return false;

    for (size_t i = 0; i < args.size(); ++i)
    {
        reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i);
        if (log)
            log->Printf("About to write arg%zd (0x%" PRIx64 ") into %s", i + 1, args[i], reg_info->name);
        if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
            return false;
    }

    // First, align the SP

    if (log)
        log->Printf("16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, (uint64_t)sp, (uint64_t)(sp & ~0xfull));

    sp &= ~(0xfull); // 16-byte alignment

    Error error;
    const RegisterInfo *pc_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
    const RegisterInfo *sp_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
    const RegisterInfo *ra_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
    const RegisterInfo *r25_info = reg_ctx->GetRegisterInfoByName("r25", 0);

    if (log)
    log->Printf("Writing SP: 0x%" PRIx64, (uint64_t)sp);

    // Set "sp" to the requested value
    if (!reg_ctx->WriteRegisterFromUnsigned (sp_reg_info, sp))
        return false;

    if (log)
    log->Printf("Writing RA: 0x%" PRIx64, (uint64_t)return_addr);

    // Set "ra" to the return address
    if (!reg_ctx->WriteRegisterFromUnsigned (ra_reg_info, return_addr))
        return false;

    if (log)
        log->Printf("Writing PC: 0x%" PRIx64, (uint64_t)func_addr);

    // Set pc to the address of the called function.
    if (!reg_ctx->WriteRegisterFromUnsigned (pc_reg_info, func_addr))
        return false;

    if (log)
        log->Printf("Writing r25: 0x%" PRIx64, (uint64_t)func_addr);

    // All callers of position independent functions must place the address of the called function in t9 (r25)
    if (!reg_ctx->WriteRegisterFromUnsigned (r25_info, func_addr))
        return false;

    return true;
}

bool
ABISysV_mips64::GetArgumentValues (Thread &thread, ValueList &values) const
{
    return false;
}

Error
ABISysV_mips64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp)
{
    Error error;
    if (!new_value_sp)
    {
        error.SetErrorString("Empty value object for return value.");
        return error;
    }

    CompilerType compiler_type = new_value_sp->GetCompilerType();
    if (!compiler_type)
    {
        error.SetErrorString ("Null clang type for return value.");
        return error;
    }

    Thread *thread = frame_sp->GetThread().get();

    RegisterContext *reg_ctx = thread->GetRegisterContext().get();

    if (!reg_ctx)
        error.SetErrorString("no registers are available");
        
    DataExtractor data;
    Error data_error;
    size_t num_bytes = new_value_sp->GetData(data, data_error);
    if (data_error.Fail())
    {
        error.SetErrorStringWithFormat("Couldn't convert return value to raw data: %s", data_error.AsCString());
        return error;
    }

    const uint32_t type_flags = compiler_type.GetTypeInfo (NULL);
    
    if (type_flags & eTypeIsScalar ||
        type_flags & eTypeIsPointer)
    {
        if (type_flags & eTypeIsInteger ||
            type_flags & eTypeIsPointer )
        {
            lldb::offset_t offset = 0;
            
            if (num_bytes <= 16)
            {
                const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0);
                if (num_bytes <= 8)
                {
                    uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
                        
                    if (!reg_ctx->WriteRegisterFromUnsigned (r2_info, raw_value))
                        error.SetErrorString ("failed to write register r2");
                }
                else
                {
                    uint64_t raw_value = data.GetMaxU64(&offset, 8);
                    if (reg_ctx->WriteRegisterFromUnsigned (r2_info, raw_value))
                    {
                        const RegisterInfo *r3_info = reg_ctx->GetRegisterInfoByName("r3", 0);
                        raw_value = data.GetMaxU64(&offset, num_bytes - offset);
                        
                        if (!reg_ctx->WriteRegisterFromUnsigned (r3_info, raw_value))
                            error.SetErrorString ("failed to write register r3");
                    }
                    else
                        error.SetErrorString ("failed to write register r2");
                }
            }
            else
            {
                error.SetErrorString("We don't support returning longer than 128 bit integer values at present.");
            }
        }
        else if (type_flags & eTypeIsFloat)
        {
            error.SetErrorString("TODO: Handle Float Types.");
        }
    }
    else if (type_flags & eTypeIsVector)
    {
        error.SetErrorString("returning vector values are not supported");
    }

    return error;
}


ValueObjectSP
ABISysV_mips64::GetReturnValueObjectSimple (Thread &thread, CompilerType &return_compiler_type) const
{
    ValueObjectSP return_valobj_sp;
    return return_valobj_sp;
}

ValueObjectSP
ABISysV_mips64::GetReturnValueObjectImpl (Thread &thread, CompilerType &return_compiler_type) const
{
    ValueObjectSP return_valobj_sp;
    Value value;
    Error error;
    
    ExecutionContext exe_ctx (thread.shared_from_this());
    if (exe_ctx.GetTargetPtr() == NULL || exe_ctx.GetProcessPtr() == NULL)
        return return_valobj_sp;

    value.SetCompilerType(return_compiler_type);

    RegisterContext *reg_ctx = thread.GetRegisterContext().get();
    if (!reg_ctx)
        return return_valobj_sp;

    Target *target = exe_ctx.GetTargetPtr();
    ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
    const size_t byte_size = return_compiler_type.GetByteSize(nullptr);
    const uint32_t type_flags = return_compiler_type.GetTypeInfo (NULL);
    
    const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0);
    const RegisterInfo *r3_info = reg_ctx->GetRegisterInfoByName("r3", 0);

    if (type_flags & eTypeIsScalar ||
        type_flags & eTypeIsPointer)
    {
        value.SetValueType(Value::eValueTypeScalar);

        bool success = false;
        if (type_flags & eTypeIsInteger ||
            type_flags & eTypeIsPointer)
        {
            // Extract the register context so we can read arguments from registers
            // In MIPS register "r2" (v0) holds the integer function return values

            uint64_t raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_info, 0);

            const bool is_signed = (type_flags & eTypeIsSigned) != 0;
            switch (byte_size)
            {
                default:
                    break;

                case sizeof(uint64_t):
                    if (is_signed)
                        value.GetScalar() = (int64_t)(raw_value);
                    else
                        value.GetScalar() = (uint64_t)(raw_value);
                    success = true;
                    break;

                case sizeof(uint32_t):
                    if (is_signed)
                        value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
                    else
                        value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
                    success = true;
                    break;

                case sizeof(uint16_t):
                    if (is_signed)
                        value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
                    else
                        value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
                    success = true;
                    break;

                case sizeof(uint8_t):
                    if (is_signed)
                        value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
                    else
                        value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
                    success = true;
                    break;
            }
        }
        else if (type_flags & eTypeIsFloat)
        {
            if (type_flags & eTypeIsComplex)
            {
                // Don't handle complex yet.
            }
            else
            {
                if (byte_size <= sizeof(long double))
                {
                    const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0);
                    const RegisterInfo *f2_info = reg_ctx->GetRegisterInfoByName("f2", 0);
                    RegisterValue f0_value, f2_value;
                    DataExtractor f0_data, f2_data;
                    
                    reg_ctx->ReadRegister (f0_info, f0_value);
                    reg_ctx->ReadRegister (f2_info, f2_value);
                    
                    f0_value.GetData(f0_data);
                    f2_value.GetData(f2_data);

                    lldb::offset_t offset = 0;
                    if (byte_size == sizeof(float))
                    {
                        value.GetScalar() = (float) f0_data.GetFloat(&offset);
                        success = true;
                    }
                    else if (byte_size == sizeof(double))
                    {
                        value.GetScalar() = (double) f0_data.GetDouble(&offset);
                        success = true;
                    }
                    else if (byte_size == sizeof(long double))
                    {
                        DataExtractor *copy_from_extractor = NULL;
                        DataBufferSP data_sp (new DataBufferHeap(16, 0));
                        DataExtractor return_ext (data_sp, 
                                                  target_byte_order, 
                                                  target->GetArchitecture().GetAddressByteSize());

                        if (target_byte_order == eByteOrderLittle)
                        {
                             f0_data.Append(f2_data);
                             copy_from_extractor = &f0_data;
                        }
                        else
                        {
                            f2_data.Append(f0_data);
                            copy_from_extractor = &f2_data;
                        }

                        copy_from_extractor->CopyByteOrderedData (0,
                                                                  byte_size, 
                                                                  data_sp->GetBytes(),
                                                                  byte_size, 
                                                                  target_byte_order);

                        return_valobj_sp = ValueObjectConstResult::Create (&thread, 
                                                                           return_compiler_type,
                                                                           ConstString(""),
                                                                           return_ext);
                        return return_valobj_sp;

                    }
                }
            }
        }

        if (success)
        return_valobj_sp = ValueObjectConstResult::Create (thread.GetStackFrameAtIndex(0).get(),
                                                           value,
                                                           ConstString(""));
    }
    else if (type_flags & eTypeIsStructUnion ||
             type_flags & eTypeIsClass ||
             type_flags & eTypeIsVector)
    {
        // Any structure of up to 16 bytes in size is returned in the registers.
        if (byte_size <= 16)
        {
            DataBufferSP data_sp (new DataBufferHeap(16, 0));
            DataExtractor return_ext (data_sp, 
                                      target_byte_order, 
                                      target->GetArchitecture().GetAddressByteSize());

            RegisterValue r2_value, r3_value, f0_value, f1_value, f2_value;

            uint32_t integer_bytes = 0;         // Tracks how much bytes of r2 and r3 registers we've consumed so far
            bool use_fp_regs = 0;               // True if return values are in FP return registers.
            bool found_non_fp_field = 0;        // True if we found any non floating point field in structure.
            bool use_r2 = 0;                    // True if return values are in r2 register.
            bool use_r3 = 0;                    // True if return values are in r3 register.
            bool sucess = 0;                    // True if the result is copied into our data buffer
            std::string name;
            bool is_complex;
            uint32_t count;
            const uint32_t num_children = return_compiler_type.GetNumFields ();

            // A structure consisting of one or two FP values (and nothing else) will be
            // returned in the two FP return-value registers i.e fp0 and fp2.
            if (num_children <= 2)
            {
                uint64_t field_bit_offset = 0;

                // Check if this structure contains only floating point fields
                for (uint32_t idx = 0; idx < num_children; idx++)
                {
                    CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex (idx, name, &field_bit_offset, NULL, NULL);
                    
                    if (field_compiler_type.IsFloatingPointType (count, is_complex))
                        use_fp_regs = 1;
                    else
                        found_non_fp_field = 1;
                }

                if (use_fp_regs && !found_non_fp_field)
                {
                    // We have one or two FP-only values in this structure. Get it from f0/f2 registers.
                    DataExtractor f0_data, f1_data, f2_data;
                    const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0);
                    const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
                    const RegisterInfo *f2_info = reg_ctx->GetRegisterInfoByName("f2", 0);

                    reg_ctx->ReadRegister (f0_info, f0_value);
                    reg_ctx->ReadRegister (f2_info, f2_value);

                    f0_value.GetData(f0_data);
                    f2_value.GetData(f2_data);

                    for (uint32_t idx = 0; idx < num_children; idx++)
                    {
                        CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex (idx, name, &field_bit_offset, NULL, NULL);
                        const size_t field_byte_width = field_compiler_type.GetByteSize(nullptr);

                        DataExtractor *copy_from_extractor = NULL;

                        if (idx == 0)
                        {
                            if (field_byte_width == 16)                 // This case is for long double type.
                            {
                                // If structure contains long double type, then it is returned in fp0/fp1 registers.
                                reg_ctx->ReadRegister (f1_info, f1_value);
                                f1_value.GetData(f1_data);
                                
                                if (target_byte_order == eByteOrderLittle)
                                {
                                    f0_data.Append(f1_data);
                                    copy_from_extractor = &f0_data;
                                }
                                else
                                {
                                    f1_data.Append(f0_data);
                                    copy_from_extractor = &f1_data;
                                }
                            }
                            else
                                copy_from_extractor = &f0_data;        // This is in f0, copy from register to our result structure
                        }
                        else
                            copy_from_extractor = &f2_data;        // This is in f2, copy from register to our result structure

                        // Sanity check to avoid crash
                        if (!copy_from_extractor || field_byte_width > copy_from_extractor->GetByteSize())
                            return return_valobj_sp;

                        // copy the register contents into our data buffer
                        copy_from_extractor->CopyByteOrderedData (0,
                                                                  field_byte_width, 
                                                                  data_sp->GetBytes() + (field_bit_offset/8),
                                                                  field_byte_width, 
                                                                  target_byte_order);
                    }

                    // The result is in our data buffer.  Create a variable object out of it
                    return_valobj_sp = ValueObjectConstResult::Create (&thread, 
                                                                       return_compiler_type,
                                                                       ConstString(""),
                                                                       return_ext);

                    return return_valobj_sp;
                }
            }

            // If we reach here, it means this structure either contains more than two fields or 
            // it contains at least one non floating point type.
            // In that case, all fields are returned in GP return registers.
            for (uint32_t idx = 0; idx < num_children; idx++)
            {
                uint64_t field_bit_offset = 0;
                bool is_signed;
                uint32_t padding;

                CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex (idx, name, &field_bit_offset, NULL, NULL);
                const size_t field_byte_width = field_compiler_type.GetByteSize(nullptr);

                // if we don't know the size of the field (e.g. invalid type), just bail out
                if (field_byte_width == 0)
                    break;

                uint32_t field_byte_offset = field_bit_offset/8;

                if (field_compiler_type.IsIntegerType (is_signed)
                    || field_compiler_type.IsPointerType ()
                    || field_compiler_type.IsFloatingPointType (count, is_complex))
                {
                    padding = field_byte_offset - integer_bytes;

                    if (integer_bytes < 8)
                    {
                        // We have not yet consumed r2 completely.
                        if (integer_bytes + field_byte_width + padding <= 8)
                        {
                            // This field fits in r2, copy its value from r2 to our result structure
                            integer_bytes = integer_bytes + field_byte_width + padding;  // Increase the consumed bytes.
                            use_r2 = 1;
                        }
                        else
                        {
                            // There isn't enough space left in r2 for this field, so this will be in r3.
                            integer_bytes = integer_bytes + field_byte_width + padding;  // Increase the consumed bytes.
                            use_r3 = 1;
                        }
                    }
                    // We already have consumed at-least 8 bytes that means r2 is done, and this field will be in r3.
                    // Check if this field can fit in r3.
                    else if (integer_bytes + field_byte_width + padding <= 16)
                    {
                        integer_bytes = integer_bytes + field_byte_width + padding;
                        use_r3 = 1;
                    }
                    else
                    {
                        // There isn't any space left for this field, this should not happen as we have already checked
                        // the overall size is not greater than 16 bytes. For now, return a NULL return value object.
                        return return_valobj_sp;
                    }
                }
            }
            // Vector types upto 16 bytes are returned in GP return registers
            if (type_flags & eTypeIsVector)
            {
                if (byte_size <= 8)
                    use_r2 = 1;
                else
                {
                    use_r2 = 1;
                    use_r3 = 1;
                }    
            }

            if (use_r2)
            {
                reg_ctx->ReadRegister (r2_info, r2_value);

                const size_t bytes_copied = r2_value.GetAsMemoryData (r2_info,
                                                                      data_sp->GetBytes(),
                                                                      r2_info->byte_size,
                                                                      target_byte_order,
                                                                      error);
                if (bytes_copied != r2_info->byte_size)
                    return return_valobj_sp;
                sucess = 1;
            }
            if (use_r3)
            {
                reg_ctx->ReadRegister (r3_info, r3_value);
                const size_t bytes_copied = r3_value.GetAsMemoryData (r3_info,
                                                                      data_sp->GetBytes() + r2_info->byte_size,
                                                                      r3_info->byte_size,
                                                                      target_byte_order,
                                                                      error);                                                       
                                                        
                if (bytes_copied != r3_info->byte_size)
                    return return_valobj_sp;
                sucess = 1;
            }
            if (sucess)
            {
                // The result is in our data buffer.  Create a variable object out of it
                return_valobj_sp = ValueObjectConstResult::Create (&thread, 
                                                                   return_compiler_type,
                                                                   ConstString(""),
                                                                   return_ext);
            }
            return return_valobj_sp;
        }

        // Any structure/vector greater than 16 bytes in size is returned in memory.
        // The pointer to that memory is returned in r2.
        uint64_t mem_address = reg_ctx->ReadRegisterAsUnsigned(reg_ctx->GetRegisterInfoByName("r2", 0), 0);

        // We have got the address. Create a memory object out of it
        return_valobj_sp = ValueObjectMemory::Create (&thread,
                                                      "",
                                                      Address (mem_address, NULL),
                                                      return_compiler_type);
    }
    return return_valobj_sp;
}

bool
ABISysV_mips64::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    UnwindPlan::RowSP row(new UnwindPlan::Row);

    // Our Call Frame Address is the stack pointer value
    row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0);

    // The previous PC is in the RA
    row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true);
    unwind_plan.AppendRow (row);

    // All other registers are the same.

    unwind_plan.SetSourceName ("mips64 at-func-entry default");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetReturnAddressRegister(dwarf_r31);
    return true;
}

bool
ABISysV_mips64::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    UnwindPlan::RowSP row(new UnwindPlan::Row);

    row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0);

    row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true);

    unwind_plan.AppendRow (row);
    unwind_plan.SetSourceName ("mips64 default unwind plan");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    return true;
}

bool
ABISysV_mips64::RegisterIsVolatile (const RegisterInfo *reg_info)
{
    return !RegisterIsCalleeSaved (reg_info);
}

bool
ABISysV_mips64::RegisterIsCalleeSaved (const RegisterInfo *reg_info)
{
    if (reg_info)
    {
        // Preserved registers are :
        // r16-r23, r28, r29, r30, r31

        int reg = ((reg_info->byte_offset) / 8);

        bool save  = (reg >= 16) && (reg <= 23);
             save |= (reg >= 28) && (reg <= 31);

        return save;
    }
    return false;
}

void
ABISysV_mips64::Initialize()
{
    PluginManager::RegisterPlugin (GetPluginNameStatic(),
                                   "System V ABI for mips64 targets",
                                   CreateInstance);
}

void
ABISysV_mips64::Terminate()
{
    PluginManager::UnregisterPlugin (CreateInstance);
}

lldb_private::ConstString
ABISysV_mips64::GetPluginNameStatic()
{
    static ConstString g_name("sysv-mips64");
    return g_name;
}

//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString
ABISysV_mips64::GetPluginName()
{
    return GetPluginNameStatic();
}

uint32_t
ABISysV_mips64::GetPluginVersion()
{
    return 1;
}