aboutsummaryrefslogtreecommitdiff
path: root/source/Plugins/Instruction/ARM64/EmulateInstructionARM64.cpp
blob: 3900af9b00d09561b2456cfe5ee8f6e85f98e0c0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
//===-- EmulateInstructionARM64.cpp -------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "EmulateInstructionARM64.h"

#include <stdlib.h>

#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Stream.h"
#include "lldb/Symbol/UnwindPlan.h"

#include "Plugins/Process/Utility/ARMDefines.h"
#include "Plugins/Process/Utility/ARMUtils.h"
#include "Utility/ARM64_DWARF_Registers.h"

#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h" // for SignExtend32 template function
                                     // and CountTrailingZeros_32 function

#include "Plugins/Process/Utility/InstructionUtils.h"

using namespace lldb;
using namespace lldb_private;

#define No_VFP  0
#define VFPv1   (1u << 1)
#define VFPv2   (1u << 2)
#define VFPv3   (1u << 3)
#define AdvancedSIMD (1u << 4)

#define VFPv1_ABOVE (VFPv1 | VFPv2 | VFPv3 | AdvancedSIMD)
#define VFPv2_ABOVE (VFPv2 | VFPv3 | AdvancedSIMD)
#define VFPv2v3     (VFPv2 | VFPv3)

#define UInt(x) ((uint64_t)x)
#define SInt(x) ((int64_t)x)
#define bit bool
#define boolean bool
#define integer int64_t

static inline bool
IsZero(uint64_t x)
{
    return x == 0;
}

static inline uint64_t
NOT(uint64_t x)
{
    return ~x;
}

#if 0
// LSL_C() 
// =======
static inline uint64_t
LSL_C (uint64_t x, integer shift, bool &carry_out)
{
    assert (shift >= 0); 
    uint64_t result = x << shift;
    carry_out = ((1ull << (64-1)) >> (shift - 1)) != 0;
    return result;
}
#endif

// LSL()
// =====

static inline uint64_t
LSL(uint64_t x, integer shift)
{
    if (shift == 0)
        return x;
    return x << shift;
}

// AddWithCarry()
// ===============
static inline uint64_t
AddWithCarry (uint32_t N, uint64_t x, uint64_t y, bit carry_in, EmulateInstructionARM64::ProcState &proc_state)
{
    uint64_t unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
    int64_t signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
    uint64_t result = unsigned_sum;
    if (N < 64)
        result = Bits64 (result, N-1, 0);
    proc_state.N = Bit64(result, N-1);
    proc_state.Z = IsZero(result);
    proc_state.C = UInt(result) == unsigned_sum;
    proc_state.V = SInt(result) == signed_sum;
    return result;
}

// ConstrainUnpredictable()
// ========================

EmulateInstructionARM64::ConstraintType
ConstrainUnpredictable (EmulateInstructionARM64::Unpredictable which)
{
    EmulateInstructionARM64::ConstraintType result = EmulateInstructionARM64::Constraint_UNKNOWN;
    switch (which)
    {
        case EmulateInstructionARM64::Unpredictable_WBOVERLAP:
        case EmulateInstructionARM64::Unpredictable_LDPOVERLAP:
            // TODO: don't know what to really do here? Pseudo code says:
            // set result to one of above Constraint behaviours or UNDEFINED
            break;
    }
    return result;
}



//----------------------------------------------------------------------
//
// EmulateInstructionARM implementation
//
//----------------------------------------------------------------------

void
EmulateInstructionARM64::Initialize ()
{
    PluginManager::RegisterPlugin (GetPluginNameStatic (),
                                   GetPluginDescriptionStatic (),
                                   CreateInstance);
}

void
EmulateInstructionARM64::Terminate ()
{
    PluginManager::UnregisterPlugin (CreateInstance);
}

ConstString
EmulateInstructionARM64::GetPluginNameStatic ()
{
    ConstString g_plugin_name ("lldb.emulate-instruction.arm64");
    return g_plugin_name;
}

lldb_private::ConstString
EmulateInstructionARM64::GetPluginName()
{
    static ConstString g_plugin_name ("EmulateInstructionARM64");
    return g_plugin_name;
}

const char *
EmulateInstructionARM64::GetPluginDescriptionStatic ()
{
    return "Emulate instructions for the ARM64 architecture.";
}

EmulateInstruction *
EmulateInstructionARM64::CreateInstance (const ArchSpec &arch, InstructionType inst_type)
{
    if (EmulateInstructionARM64::SupportsEmulatingInstructionsOfTypeStatic(inst_type))
    {
        if (arch.GetTriple().getArch() == llvm::Triple::aarch64)
        {
            std::auto_ptr<EmulateInstructionARM64> emulate_insn_ap (new EmulateInstructionARM64 (arch));
            if (emulate_insn_ap.get())
                return emulate_insn_ap.release();
        }
    }
    
    return NULL;
}

bool
EmulateInstructionARM64::SetTargetTriple (const ArchSpec &arch)
{
    if (arch.GetTriple().getArch () == llvm::Triple::arm)
        return true;
    else if (arch.GetTriple().getArch () == llvm::Triple::thumb)
        return true;
       
    return false;
}
    
bool
EmulateInstructionARM64::GetRegisterInfo (RegisterKind reg_kind, uint32_t reg_num, RegisterInfo &reg_info)
{
    if (reg_kind == eRegisterKindGeneric)
    {
        switch (reg_num)
        {
            case LLDB_REGNUM_GENERIC_PC:    reg_kind = eRegisterKindDWARF; reg_num = arm64_dwarf::pc; break;
            case LLDB_REGNUM_GENERIC_SP:    reg_kind = eRegisterKindDWARF; reg_num = arm64_dwarf::sp; break;
            case LLDB_REGNUM_GENERIC_FP:    reg_kind = eRegisterKindDWARF; reg_num = arm64_dwarf::fp; break;
            case LLDB_REGNUM_GENERIC_RA:    reg_kind = eRegisterKindDWARF; reg_num = arm64_dwarf::lr; break;
            case LLDB_REGNUM_GENERIC_FLAGS: 
                // There is no DWARF register number for the CPSR right now...
                reg_info.name = "cpsr";
                reg_info.alt_name = NULL;
                reg_info.byte_size = 4;
                reg_info.byte_offset = 0;
                reg_info.encoding = eEncodingUint;
                reg_info.format = eFormatHex;
                for (uint32_t i=0; i<lldb::kNumRegisterKinds; ++i)
                    reg_info.kinds[reg_kind] = LLDB_INVALID_REGNUM;
                reg_info.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FLAGS;
                return true;
                
            default: return false;
        }
    }
    
    if (reg_kind == eRegisterKindDWARF)
        return arm64_dwarf::GetRegisterInfo(reg_num, reg_info);
    return false;
}

EmulateInstructionARM64::Opcode*
EmulateInstructionARM64::GetOpcodeForInstruction (const uint32_t opcode)
{
    static EmulateInstructionARM64::Opcode 
    g_opcodes[] = 
    {
        //----------------------------------------------------------------------
        // Prologue instructions
        //----------------------------------------------------------------------

        // push register(s)
        { 0xff000000, 0xd1000000, No_VFP, &EmulateInstructionARM64::Emulate_addsub_imm, "SUB  <Xd|SP>, <Xn|SP>, #<imm> {, <shift>}" },
        { 0xff000000, 0xf1000000, No_VFP, &EmulateInstructionARM64::Emulate_addsub_imm, "SUBS  <Xd>, <Xn|SP>, #<imm> {, <shift>}" },
        { 0xff000000, 0x91000000, No_VFP, &EmulateInstructionARM64::Emulate_addsub_imm, "ADD  <Xd|SP>, <Xn|SP>, #<imm> {, <shift>}" },
        { 0xff000000, 0xb1000000, No_VFP, &EmulateInstructionARM64::Emulate_addsub_imm, "ADDS  <Xd>, <Xn|SP>, #<imm> {, <shift>}" },


        { 0xff000000, 0x51000000, No_VFP, &EmulateInstructionARM64::Emulate_addsub_imm, "SUB  <Wd|WSP>, <Wn|WSP>, #<imm> {, <shift>}" },
        { 0xff000000, 0x71000000, No_VFP, &EmulateInstructionARM64::Emulate_addsub_imm, "SUBS  <Wd>, <Wn|WSP>, #<imm> {, <shift>}" },
        { 0xff000000, 0x11000000, No_VFP, &EmulateInstructionARM64::Emulate_addsub_imm, "ADD  <Wd|WSP>, <Wn|WSP>, #<imm> {, <shift>}" },
        { 0xff000000, 0x31000000, No_VFP, &EmulateInstructionARM64::Emulate_addsub_imm, "ADDS  <Wd>, <Wn|WSP>, #<imm> {, <shift>}" },
        
        { 0xffc00000, 0x29000000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_off, "STP  <Wt>, <Wt2>, [<Xn|SP>{, #<imm>}]" },
        { 0xffc00000, 0xa9000000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_off, "STP  <Xt>, <Xt2>, [<Xn|SP>{, #<imm>}]" },
        { 0xffc00000, 0x2d000000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_off, "STP  <St>, <St2>, [<Xn|SP>{, #<imm>}]" },
        { 0xffc00000, 0x6d000000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_off, "STP  <Dt>, <Dt2>, [<Xn|SP>{, #<imm>}]" },
        { 0xffc00000, 0xad000000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_off, "STP  <Qt>, <Qt2>, [<Xn|SP>{, #<imm>}]" },

        { 0xffc00000, 0xad800000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_pre, "STP  <Qt>, <Qt2>, [<Xn|SP>, #<imm>]!" },
        { 0xffc00000, 0x2d800000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_pre, "STP  <St>, <St2>, [<Xn|SP>, #<imm>]!" },
        { 0xffc00000, 0x29800000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_pre, "STP  <Wt>, <Wt2>, [<Xn|SP>, #<imm>]!" },
        { 0xffc00000, 0x6d800000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_pre, "STP  <Dt>, <Dt2>, [<Xn|SP>, #<imm>]!" },
        { 0xffc00000, 0xa9800000, No_VFP, &EmulateInstructionARM64::Emulate_ldstpair_pre, "STP  <Xt>, <Xt2>, [<Xn|SP>, #<imm>]!" },

    };
    static const size_t k_num_arm_opcodes = llvm::array_lengthof(g_opcodes);
                  
    for (size_t i=0; i<k_num_arm_opcodes; ++i)
    {
        if ((g_opcodes[i].mask & opcode) == g_opcodes[i].value)
            return &g_opcodes[i];
    }
    return NULL;
}

bool 
EmulateInstructionARM64::ReadInstruction ()
{
    bool success = false;
    m_addr = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_ADDRESS, &success);
    if (success)
    {
        Context read_inst_context;
        read_inst_context.type = eContextReadOpcode;
        read_inst_context.SetNoArgs ();
        m_opcode.SetOpcode32 (ReadMemoryUnsigned (read_inst_context, m_addr, 4, 0, &success), GetByteOrder());
    }
    if (!success)
        m_addr = LLDB_INVALID_ADDRESS;
    return success;
}


bool
EmulateInstructionARM64::EvaluateInstruction (uint32_t evaluate_options)
{
    const uint32_t opcode = m_opcode.GetOpcode32();
    Opcode *opcode_data = GetOpcodeForInstruction(opcode);
    if (opcode_data == NULL)
        return false;
    
    //printf ("opcode template for 0x%8.8x: %s\n", opcode, opcode_data->name);
    const bool auto_advance_pc = evaluate_options & eEmulateInstructionOptionAutoAdvancePC;
    m_ignore_conditions = evaluate_options & eEmulateInstructionOptionIgnoreConditions;
                 
    bool success = false;
//    if (m_opcode_cpsr == 0 || m_ignore_conditions == false)
//    {
//        m_opcode_cpsr = ReadRegisterUnsigned (eRegisterKindGeneric,         // use eRegisterKindDWARF is we ever get a cpsr DWARF register number
//                                              LLDB_REGNUM_GENERIC_FLAGS,    // use arm64_dwarf::cpsr if we ever get one
//                                              0,
//                                              &success);
//    }

    // Only return false if we are unable to read the CPSR if we care about conditions
    if (success == false && m_ignore_conditions == false)
        return false;
    
    uint32_t orig_pc_value = 0;
    if (auto_advance_pc)
    {
        orig_pc_value = ReadRegisterUnsigned (eRegisterKindDWARF, arm64_dwarf::pc, 0, &success);
        if (!success)
            return false;
    }
    
    // Call the Emulate... function.
    success = (this->*opcode_data->callback) (opcode);  
    if (!success)
        return false;
        
    if (auto_advance_pc)
    {
        uint32_t new_pc_value = ReadRegisterUnsigned (eRegisterKindDWARF, arm64_dwarf::pc, 0, &success);
        if (!success)
            return false;
            
        if (auto_advance_pc && (new_pc_value == orig_pc_value))
        {
            EmulateInstruction::Context context;
            context.type = eContextAdvancePC;
            context.SetNoArgs();
            if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, arm64_dwarf::pc, orig_pc_value + 4))
                return false;
        }
    }
    return true;
}

bool
EmulateInstructionARM64::CreateFunctionEntryUnwind (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    UnwindPlan::RowSP row(new UnwindPlan::Row);
    const bool can_replace = false;

    // Our previous Call Frame Address is the stack pointer
    row->SetCFARegister (arm64_dwarf::sp);
    
    // Our previous PC is in the LR
    row->SetRegisterLocationToRegister(arm64_dwarf::pc, arm64_dwarf::lr, can_replace);

    unwind_plan.AppendRow (row);
    
    // All other registers are the same.
    
    unwind_plan.SetSourceName ("EmulateInstructionARM64");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolYes);
    return true;
}



bool
EmulateInstructionARM64::Emulate_addsub_imm (const uint32_t opcode)
{
    // integer d = UInt(Rd);
    // integer n = UInt(Rn);
    // integer datasize = if sf == 1 then 64 else 32;
    // boolean sub_op = (op == 1);
    // boolean setflags = (S == 1);
    // bits(datasize) imm;
    //
    // case shift of
    //     when '00' imm = ZeroExtend(imm12, datasize);
    //     when '01' imm = ZeroExtend(imm12 : Zeros(12), datasize);
    //    when '1x' UNDEFINED;
    //
    //
    // bits(datasize) result;
    // bits(datasize) operand1 = if n == 31 then SP[] else X[n];
    // bits(datasize) operand2 = imm;
    // bits(4) nzcv;
    // bit carry_in;
    //
    // if sub_op then
    //     operand2 = NOT(operand2);
    //     carry_in = 1;
    // else
    //     carry_in = 0;
    //
    // (result, nzcv) = AddWithCarry(operand1, operand2, carry_in);
    //
    // if setflags then 
    //     PSTATE.NZCV = nzcv;
    //
    // if d == 31 && !setflags then
    //     SP[] = result;
    // else
    //     X[d] = result;
    
    const uint32_t sf = Bit32(opcode, 31);
    const uint32_t op = Bit32(opcode, 30);
    const uint32_t S = Bit32(opcode, 29);
    const uint32_t shift = Bits32(opcode, 23, 22);
    const uint32_t imm12 = Bits32(opcode, 21, 10);
    const uint32_t Rn = Bits32(opcode, 9, 5);
    const uint32_t Rd = Bits32(opcode, 4, 0);
    
    bool success = false;
    
    const uint32_t d = UInt(Rd);
    const uint32_t n = UInt(Rn);
    const uint32_t datasize = (sf == 1) ? 64 : 32;
    boolean sub_op = op == 1;
    boolean setflags = S == 1;
    uint64_t imm;

    switch (shift)
    {
        case 0: imm = imm12; break;
        case 1: imm = imm12 << 12; break;
        default: return false;  // UNDEFINED;
    }
    uint64_t result;
    uint64_t operand1 = ReadRegisterUnsigned (eRegisterKindDWARF, arm64_dwarf::x0 + n, 0, &success);
    uint64_t operand2 = imm;
    bit carry_in;
    
    if (sub_op)
    {
        operand2 = NOT(operand2);
        carry_in = 1;
        imm = -imm; // For the Register plug offset context below
    }
    else
    {
        carry_in = 0;
    }
    
    ProcState proc_state;
    
    result = AddWithCarry (datasize, operand1, operand2, carry_in, proc_state);

    if (setflags)
    {
        m_emulated_pstate.N = proc_state.N;
        m_emulated_pstate.Z = proc_state.Z;
        m_emulated_pstate.C = proc_state.C;
        m_emulated_pstate.V = proc_state.V;
    }
    
    Context context;
    RegisterInfo reg_info_Rn;
    if (arm64_dwarf::GetRegisterInfo (n, reg_info_Rn))
        context.SetRegisterPlusOffset (reg_info_Rn, imm);

    if ((n == arm64_dwarf::sp || n == arm64_dwarf::fp) &&
        d == arm64_dwarf::sp &&
        !setflags)
    {
        context.type = EmulateInstruction::eContextAdjustStackPointer;
    }
    else if (d == arm64_dwarf::fp &&
             n == arm64_dwarf::sp &&
             !setflags)
    {
        context.type = EmulateInstruction::eContextSetFramePointer;
    }
    else
    {
        context.type = EmulateInstruction::eContextImmediate;
    }
    WriteRegisterUnsigned (context, eRegisterKindDWARF, arm64_dwarf::x0 + d, result);
    
    return false;
}

bool
EmulateInstructionARM64::Emulate_ldstpair_off (const uint32_t opcode)
{
    return Emulate_ldstpair (opcode, AddrMode_OFF);
}


bool
EmulateInstructionARM64::Emulate_ldstpair_pre (const uint32_t opcode)
{
    return Emulate_ldstpair (opcode, AddrMode_PRE);
}

bool
EmulateInstructionARM64::Emulate_ldstpair (const uint32_t opcode, AddrMode a_mode)
{
    uint32_t opc = Bits32(opcode, 31, 30);
    uint32_t V = Bit32(opcode, 26);
    uint32_t L = Bit32(opcode, 22);
    uint32_t imm7 = Bits32(opcode, 21, 15);
    uint32_t Rt2 = Bits32(opcode, 14, 10);
    uint32_t Rn = Bits32(opcode, 9, 5);
    uint32_t Rt = Bits32(opcode, 4, 0);
    
    integer n = UInt(Rn);
    integer t = UInt(Rt);
    integer t2 = UInt(Rt2);
    uint64_t idx;
    
    MemOp memop = L == 1 ? MemOp_LOAD : MemOp_STORE;
    boolean vector = (V == 1);
    //AccType acctype = AccType_NORMAL;
    boolean is_signed = false;
    boolean wback = a_mode != AddrMode_OFF;
    boolean wb_unknown = false;
    boolean rt_unknown = false;
    integer scale;
    integer size;
    
    if (opc == 3)
        return false; // UNDEFINED
    
    if (vector) 
    {
        scale = 2 + UInt(opc);
    }
    else
    {
        scale = (opc & 2) ? 3 : 2;
        is_signed = (opc & 1) != 0;
        if (is_signed && memop == MemOp_STORE)
            return false; // UNDEFINED
    }
    
    if (!vector && wback && ((t == n) || (t2 == n)))
    {
        switch (ConstrainUnpredictable(Unpredictable_WBOVERLAP))
        {
            case Constraint_UNKNOWN:
                wb_unknown = true;  // writeback is UNKNOWN
                break;
                
            case Constraint_SUPPRESSWB:
                wback = false;      // writeback is suppressed
                break;
                
            case Constraint_NOP:
                memop = MemOp_NOP;  // do nothing
                wback = false;
                break;

            case Constraint_NONE:
                break;
        }
    }

    if (memop == MemOp_LOAD && t == t2)
    {
        switch (ConstrainUnpredictable(Unpredictable_LDPOVERLAP))
        {
            case Constraint_UNKNOWN:
                rt_unknown = true;  // result is UNKNOWN
                break;
                
            case Constraint_NOP:
                memop = MemOp_NOP;  // do nothing 
                wback = false;
                break;
                
            default:
                break;
        }
    }
    
    idx = LSL(llvm::SignExtend64<7>(imm7), scale);
    size = (integer)1 << scale;
    uint64_t datasize = size * 8;
    uint64_t address;
    uint64_t wb_address;
    
    RegisterValue data_Rt;
    RegisterValue data_Rt2;
    
    //    if (vector)
    //        CheckFPEnabled(false);
    
    RegisterInfo reg_info_base;
    RegisterInfo reg_info_Rt;
    RegisterInfo reg_info_Rt2;
    if (!GetRegisterInfo (eRegisterKindDWARF, arm64_dwarf::x0 + n, reg_info_base))
        return false;
    
    if (vector)
    {
        if (!GetRegisterInfo (eRegisterKindDWARF, arm64_dwarf::v0 + n, reg_info_Rt))
            return false;
        if (!GetRegisterInfo (eRegisterKindDWARF, arm64_dwarf::v0 + n, reg_info_Rt2))
            return false;
    }
    else
    {
        if (!GetRegisterInfo (eRegisterKindDWARF, arm64_dwarf::x0 + t, reg_info_Rt))
            return false;
        if (!GetRegisterInfo (eRegisterKindDWARF, arm64_dwarf::x0 + t2, reg_info_Rt2))
            return false;
    }
    
    bool success = false;
    if (n == 31)
    {
        //CheckSPAlignment();
        address = ReadRegisterUnsigned (eRegisterKindDWARF, arm64_dwarf::sp, 0, &success);
    }
    else
        address = ReadRegisterUnsigned (eRegisterKindDWARF, arm64_dwarf::x0 + n, 0, &success);
    
    wb_address = address + idx;
    if (a_mode != AddrMode_POST)
        address = wb_address;
    
    Context context_t;
    Context context_t2;
    
    if (n == 31 || n == 29) // if this store is based off of the sp or fp register
    {
        context_t.type = eContextPushRegisterOnStack;
        context_t2.type = eContextPushRegisterOnStack;
    }
    else
    {
        context_t.type = eContextRegisterPlusOffset;
        context_t2.type = eContextRegisterPlusOffset;
    }
    context_t.SetRegisterToRegisterPlusOffset (reg_info_Rt, reg_info_base, 0);
    context_t2.SetRegisterToRegisterPlusOffset (reg_info_Rt2, reg_info_base, size);
    uint8_t buffer [RegisterValue::kMaxRegisterByteSize];
    Error error;
    
    switch (memop)
    {
        case MemOp_STORE:
        {
            if (!ReadRegister (&reg_info_Rt, data_Rt))
                return false;
            
            if (data_Rt.GetAsMemoryData(&reg_info_Rt, buffer, reg_info_Rt.byte_size, eByteOrderLittle, error) == 0)
                return false;
            
            if (!WriteMemory(context_t, address + 0, buffer, reg_info_Rt.byte_size))
                return false;
            
            if (!ReadRegister (&reg_info_Rt2, data_Rt2))
                return false;
            
            if (data_Rt2.GetAsMemoryData(&reg_info_Rt2, buffer, reg_info_Rt2.byte_size, eByteOrderLittle, error) == 0)
                return false;
            
            if (!WriteMemory(context_t2, address + size, buffer, reg_info_Rt2.byte_size))
                return false;
        }
            break;
            
        case MemOp_LOAD:
        {
            if (rt_unknown)
                memset (buffer, 'U', reg_info_Rt.byte_size);
            else
            {
                if (!ReadMemory (context_t, address, buffer, reg_info_Rt.byte_size))
                    return false;
            }
            
            if (data_Rt.SetFromMemoryData(&reg_info_Rt, buffer, reg_info_Rt.byte_size, eByteOrderLittle, error) == 0)
                return false;
            
            if (!vector && is_signed && !data_Rt.SignExtend (datasize))
                return false;
            
            if (!WriteRegister (context_t, &reg_info_Rt, data_Rt))
                return false;
            
            if (!rt_unknown)
            {
                if (!ReadMemory (context_t2, address + size, buffer, reg_info_Rt2.byte_size))
                    return false;
            }
            
            if (data_Rt2.SetFromMemoryData(&reg_info_Rt2, buffer, reg_info_Rt2.byte_size, eByteOrderLittle, error) == 0)
                return false;
            
            if (!vector && is_signed && !data_Rt2.SignExtend (datasize))
                return false;
            
            if (!WriteRegister (context_t2, &reg_info_Rt2, data_Rt2))
                return false;
        }
            break;
            
        default:
            break;
    }
    
    if (wback)
    {
        if (wb_unknown)
            wb_address = LLDB_INVALID_ADDRESS;
        Context context;
        context.SetImmediateSigned (idx);
        if (n == 31)
            context.type = eContextAdjustStackPointer;
        else
            context.type = eContextAdjustBaseRegister;
        WriteRegisterUnsigned (context, &reg_info_base, wb_address);
    }    
    return true;
}