aboutsummaryrefslogtreecommitdiff
path: root/source/Plugins/Process/POSIX/RegisterContext_x86_64.cpp
blob: 617b18484e5aaf9ecc8b2268d0f28a8b0303a851 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
//===-- RegisterContext_x86_64.cpp -------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include <cstring>
#include <errno.h>
#include <stdint.h>

#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Host/Endian.h"
#include "llvm/Support/Compiler.h"

#include "ProcessPOSIX.h"
#if defined(__linux__) or defined(__FreeBSD__)
#include "ProcessMonitor.h"
#endif
#include "RegisterContext_i386.h"
#include "RegisterContext_x86.h"
#include "RegisterContext_x86_64.h"
#include "Plugins/Process/elf-core/ProcessElfCore.h"

using namespace lldb_private;
using namespace lldb;

// Support ptrace extensions even when compiled without required kernel support
#ifndef NT_X86_XSTATE
  #define NT_X86_XSTATE 0x202
#endif

enum
{
    gcc_dwarf_gpr_rax = 0,
    gcc_dwarf_gpr_rdx,
    gcc_dwarf_gpr_rcx,
    gcc_dwarf_gpr_rbx,
    gcc_dwarf_gpr_rsi,
    gcc_dwarf_gpr_rdi,
    gcc_dwarf_gpr_rbp,
    gcc_dwarf_gpr_rsp,
    gcc_dwarf_gpr_r8,
    gcc_dwarf_gpr_r9,
    gcc_dwarf_gpr_r10,
    gcc_dwarf_gpr_r11,
    gcc_dwarf_gpr_r12,
    gcc_dwarf_gpr_r13,
    gcc_dwarf_gpr_r14,
    gcc_dwarf_gpr_r15,
    gcc_dwarf_gpr_rip,
    gcc_dwarf_fpu_xmm0,
    gcc_dwarf_fpu_xmm1,
    gcc_dwarf_fpu_xmm2,
    gcc_dwarf_fpu_xmm3,
    gcc_dwarf_fpu_xmm4,
    gcc_dwarf_fpu_xmm5,
    gcc_dwarf_fpu_xmm6,
    gcc_dwarf_fpu_xmm7,
    gcc_dwarf_fpu_xmm8,
    gcc_dwarf_fpu_xmm9,
    gcc_dwarf_fpu_xmm10,
    gcc_dwarf_fpu_xmm11,
    gcc_dwarf_fpu_xmm12,
    gcc_dwarf_fpu_xmm13,
    gcc_dwarf_fpu_xmm14,
    gcc_dwarf_fpu_xmm15,
    gcc_dwarf_fpu_stmm0,
    gcc_dwarf_fpu_stmm1,
    gcc_dwarf_fpu_stmm2,
    gcc_dwarf_fpu_stmm3,
    gcc_dwarf_fpu_stmm4,
    gcc_dwarf_fpu_stmm5,
    gcc_dwarf_fpu_stmm6,
    gcc_dwarf_fpu_stmm7,
    gcc_dwarf_fpu_ymm0,
    gcc_dwarf_fpu_ymm1,
    gcc_dwarf_fpu_ymm2,
    gcc_dwarf_fpu_ymm3,
    gcc_dwarf_fpu_ymm4,
    gcc_dwarf_fpu_ymm5,
    gcc_dwarf_fpu_ymm6,
    gcc_dwarf_fpu_ymm7,
    gcc_dwarf_fpu_ymm8,
    gcc_dwarf_fpu_ymm9,
    gcc_dwarf_fpu_ymm10,
    gcc_dwarf_fpu_ymm11,
    gcc_dwarf_fpu_ymm12,
    gcc_dwarf_fpu_ymm13,
    gcc_dwarf_fpu_ymm14,
    gcc_dwarf_fpu_ymm15
};

enum
{
    gdb_gpr_rax     =   0,
    gdb_gpr_rbx     =   1,
    gdb_gpr_rcx     =   2,
    gdb_gpr_rdx     =   3,
    gdb_gpr_rsi     =   4,
    gdb_gpr_rdi     =   5,
    gdb_gpr_rbp     =   6,
    gdb_gpr_rsp     =   7,
    gdb_gpr_r8      =   8,
    gdb_gpr_r9      =   9,
    gdb_gpr_r10     =  10,
    gdb_gpr_r11     =  11,
    gdb_gpr_r12     =  12,
    gdb_gpr_r13     =  13,
    gdb_gpr_r14     =  14,
    gdb_gpr_r15     =  15,
    gdb_gpr_rip     =  16,
    gdb_gpr_rflags  =  17,
    gdb_gpr_cs      =  18,
    gdb_gpr_ss      =  19,
    gdb_gpr_ds      =  20,
    gdb_gpr_es      =  21,
    gdb_gpr_fs      =  22,
    gdb_gpr_gs      =  23,
    gdb_fpu_stmm0   =  24,
    gdb_fpu_stmm1   =  25,
    gdb_fpu_stmm2   =  26,
    gdb_fpu_stmm3   =  27,
    gdb_fpu_stmm4   =  28,
    gdb_fpu_stmm5   =  29,
    gdb_fpu_stmm6   =  30,
    gdb_fpu_stmm7   =  31,
    gdb_fpu_fcw     =  32,
    gdb_fpu_fsw     =  33,
    gdb_fpu_ftw     =  34,
    gdb_fpu_cs_64   =  35,
    gdb_fpu_ip      =  36,
    gdb_fpu_ds_64   =  37,
    gdb_fpu_dp      =  38,
    gdb_fpu_fop     =  39,
    gdb_fpu_xmm0    =  40,
    gdb_fpu_xmm1    =  41,
    gdb_fpu_xmm2    =  42,
    gdb_fpu_xmm3    =  43,
    gdb_fpu_xmm4    =  44,
    gdb_fpu_xmm5    =  45,
    gdb_fpu_xmm6    =  46,
    gdb_fpu_xmm7    =  47,
    gdb_fpu_xmm8    =  48,
    gdb_fpu_xmm9    =  49,
    gdb_fpu_xmm10   =  50,
    gdb_fpu_xmm11   =  51,
    gdb_fpu_xmm12   =  52,
    gdb_fpu_xmm13   =  53,
    gdb_fpu_xmm14   =  54,
    gdb_fpu_xmm15   =  55,
    gdb_fpu_mxcsr   =  56,
    gdb_fpu_ymm0    =  57,
    gdb_fpu_ymm1    =  58,
    gdb_fpu_ymm2    =  59,
    gdb_fpu_ymm3    =  60,
    gdb_fpu_ymm4    =  61,
    gdb_fpu_ymm5    =  62,
    gdb_fpu_ymm6    =  63,
    gdb_fpu_ymm7    =  64,
    gdb_fpu_ymm8    =  65,
    gdb_fpu_ymm9    =  66,
    gdb_fpu_ymm10   =  67,
    gdb_fpu_ymm11   =  68,
    gdb_fpu_ymm12   =  69,
    gdb_fpu_ymm13   =  70,
    gdb_fpu_ymm14   =  71,
    gdb_fpu_ymm15   =  72
};

static const
uint32_t g_gpr_regnums[k_num_gpr_registers] =
{
    gpr_rax,
    gpr_rbx,
    gpr_rcx,
    gpr_rdx,
    gpr_rdi,
    gpr_rsi,
    gpr_rbp,
    gpr_rsp,
    gpr_r8,
    gpr_r9,
    gpr_r10,
    gpr_r11,
    gpr_r12,
    gpr_r13,
    gpr_r14,
    gpr_r15,
    gpr_rip,
    gpr_rflags,
    gpr_cs,
    gpr_fs,
    gpr_gs,
    gpr_ss,
    gpr_ds,
    gpr_es,
    gpr_eax,
    gpr_ebx,
    gpr_ecx,
    gpr_edx,
    gpr_edi,
    gpr_esi,
    gpr_ebp,
    gpr_esp,
    gpr_eip,
    gpr_eflags
};

static const uint32_t
g_fpu_regnums[k_num_fpr_registers] =
{
    fpu_fcw,
    fpu_fsw,
    fpu_ftw,
    fpu_fop,
    fpu_ip,
    fpu_cs,
    fpu_dp,
    fpu_ds,
    fpu_mxcsr,
    fpu_mxcsrmask,
    fpu_stmm0,
    fpu_stmm1,
    fpu_stmm2,
    fpu_stmm3,
    fpu_stmm4,
    fpu_stmm5,
    fpu_stmm6,
    fpu_stmm7,
    fpu_xmm0,
    fpu_xmm1,
    fpu_xmm2,
    fpu_xmm3,
    fpu_xmm4,
    fpu_xmm5,
    fpu_xmm6,
    fpu_xmm7,
    fpu_xmm8,
    fpu_xmm9,
    fpu_xmm10,
    fpu_xmm11,
    fpu_xmm12,
    fpu_xmm13,
    fpu_xmm14,
    fpu_xmm15
};

static const uint32_t
g_avx_regnums[k_num_avx_registers] =
{
    fpu_ymm0,
    fpu_ymm1,
    fpu_ymm2,
    fpu_ymm3,
    fpu_ymm4,
    fpu_ymm5,
    fpu_ymm6,
    fpu_ymm7,
    fpu_ymm8,
    fpu_ymm9,
    fpu_ymm10,
    fpu_ymm11,
    fpu_ymm12,
    fpu_ymm13,
    fpu_ymm14,
    fpu_ymm15
};

// Number of register sets provided by this context.
enum
{
    k_num_extended_register_sets = 1,
    k_num_register_sets = 3
};

static const RegisterSet
g_reg_sets[k_num_register_sets] =
{
    { "General Purpose Registers",  "gpr", k_num_gpr_registers, g_gpr_regnums },
    { "Floating Point Registers",   "fpu", k_num_fpr_registers, g_fpu_regnums },
    { "Advanced Vector Extensions", "avx", k_num_avx_registers, g_avx_regnums }
};

// Computes the offset of the given FPR in the extended data area.
#define FPR_OFFSET(regname) \
    (offsetof(RegisterContext_x86_64::FPR, xstate) + \
     offsetof(RegisterContext_x86_64::FXSAVE, regname))

// Computes the offset of the YMM register assembled from register halves.
#define YMM_OFFSET(regname) \
    (offsetof(RegisterContext_x86_64::YMM, regname))

// Number of bytes needed to represent a i386 GPR
#define GPR_i386_SIZE(reg) sizeof(((RegisterContext_i386::GPR*)NULL)->reg)

// Number of bytes needed to represent a FPR.
#define FPR_SIZE(reg) sizeof(((RegisterContext_x86_64::FXSAVE*)NULL)->reg)

// Number of bytes needed to represent the i'th FP register.
#define FP_SIZE sizeof(((RegisterContext_x86_64::MMSReg*)NULL)->bytes)

// Number of bytes needed to represent an XMM register.
#define XMM_SIZE sizeof(RegisterContext_x86_64::XMMReg)

// Number of bytes needed to represent a YMM register.
#define YMM_SIZE sizeof(RegisterContext_x86_64::YMMReg)

// Note that the size and offset will be updated by platform-specific classes.
#define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4)           \
    { #reg, alt, 0, 0, eEncodingUint,                              \
      eFormatHex, { kind1, kind2, kind3, kind4, gpr_##reg }, NULL, NULL }

// Dummy data for RegisterInfo::value_regs as expected by DumpRegisterSet. 
static uint32_t value_regs = LLDB_INVALID_REGNUM;

#define DEFINE_GPR_i386(reg_i386, reg_x86_64, alt, kind1, kind2, kind3, kind4) \
    { #reg_i386, alt, GPR_i386_SIZE(reg_i386), 0, eEncodingUint,   \
      eFormatHex, { kind1, kind2, kind3, kind4, gpr_##reg_i386 }, &value_regs, NULL }

#define DEFINE_FPR(reg, kind1, kind2, kind3, kind4)                \
    { #reg, NULL, FPR_SIZE(reg), FPR_OFFSET(reg), eEncodingUint,   \
      eFormatHex, { kind1, kind2, kind3, kind4, fpu_##reg }, NULL, NULL }

#define DEFINE_FP(reg, i)                                          \
    { #reg#i, NULL, FP_SIZE, LLVM_EXTENSION FPR_OFFSET(reg[i]),    \
      eEncodingVector, eFormatVectorOfUInt8,                       \
      { gcc_dwarf_fpu_##reg##i, gcc_dwarf_fpu_##reg##i,            \
        LLDB_INVALID_REGNUM, gdb_fpu_##reg##i, fpu_##reg##i }, NULL, NULL }

#define DEFINE_XMM(reg, i)                                         \
    { #reg#i, NULL, XMM_SIZE, LLVM_EXTENSION FPR_OFFSET(reg[i]),   \
      eEncodingVector, eFormatVectorOfUInt8,                       \
      { gcc_dwarf_fpu_##reg##i, gcc_dwarf_fpu_##reg##i,            \
        LLDB_INVALID_REGNUM, gdb_fpu_##reg##i, fpu_##reg##i }, NULL, NULL }

#define DEFINE_YMM(reg, i)                                         \
    { #reg#i, NULL, YMM_SIZE, LLVM_EXTENSION YMM_OFFSET(reg[i]),   \
      eEncodingVector, eFormatVectorOfUInt8,                       \
      { gcc_dwarf_fpu_##reg##i, gcc_dwarf_fpu_##reg##i,            \
        LLDB_INVALID_REGNUM, gdb_fpu_##reg##i, fpu_##reg##i }, NULL, NULL }

#define DEFINE_DR(reg, i)                                              \
    { #reg#i, NULL, 0, 0, eEncodingUint, eFormatHex,                   \
      { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, \
      LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL }

#define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(RegisterContext_x86_64::FPR))

static RegisterInfo
g_register_infos[k_num_registers] =
{
    // General purpose registers.
    DEFINE_GPR(rax,    NULL,    gcc_dwarf_gpr_rax,   gcc_dwarf_gpr_rax,   LLDB_INVALID_REGNUM,       gdb_gpr_rax),
    DEFINE_GPR(rbx,    NULL,    gcc_dwarf_gpr_rbx,   gcc_dwarf_gpr_rbx,   LLDB_INVALID_REGNUM,       gdb_gpr_rbx),
    DEFINE_GPR(rcx,    NULL,    gcc_dwarf_gpr_rcx,   gcc_dwarf_gpr_rcx,   LLDB_INVALID_REGNUM,       gdb_gpr_rcx),
    DEFINE_GPR(rdx,    NULL,    gcc_dwarf_gpr_rdx,   gcc_dwarf_gpr_rdx,   LLDB_INVALID_REGNUM,       gdb_gpr_rdx),
    DEFINE_GPR(rdi,    NULL,    gcc_dwarf_gpr_rdi,   gcc_dwarf_gpr_rdi,   LLDB_INVALID_REGNUM,       gdb_gpr_rdi),
    DEFINE_GPR(rsi,    NULL,    gcc_dwarf_gpr_rsi,   gcc_dwarf_gpr_rsi,   LLDB_INVALID_REGNUM,       gdb_gpr_rsi),
    DEFINE_GPR(rbp,    "fp",    gcc_dwarf_gpr_rbp,   gcc_dwarf_gpr_rbp,   LLDB_REGNUM_GENERIC_FP,    gdb_gpr_rbp),
    DEFINE_GPR(rsp,    "sp",    gcc_dwarf_gpr_rsp,   gcc_dwarf_gpr_rsp,   LLDB_REGNUM_GENERIC_SP,    gdb_gpr_rsp),
    DEFINE_GPR(r8,     NULL,    gcc_dwarf_gpr_r8,    gcc_dwarf_gpr_r8,    LLDB_INVALID_REGNUM,       gdb_gpr_r8),
    DEFINE_GPR(r9,     NULL,    gcc_dwarf_gpr_r9,    gcc_dwarf_gpr_r9,    LLDB_INVALID_REGNUM,       gdb_gpr_r9),
    DEFINE_GPR(r10,    NULL,    gcc_dwarf_gpr_r10,   gcc_dwarf_gpr_r10,   LLDB_INVALID_REGNUM,       gdb_gpr_r10),
    DEFINE_GPR(r11,    NULL,    gcc_dwarf_gpr_r11,   gcc_dwarf_gpr_r11,   LLDB_INVALID_REGNUM,       gdb_gpr_r11),
    DEFINE_GPR(r12,    NULL,    gcc_dwarf_gpr_r12,   gcc_dwarf_gpr_r12,   LLDB_INVALID_REGNUM,       gdb_gpr_r12),
    DEFINE_GPR(r13,    NULL,    gcc_dwarf_gpr_r13,   gcc_dwarf_gpr_r13,   LLDB_INVALID_REGNUM,       gdb_gpr_r13),
    DEFINE_GPR(r14,    NULL,    gcc_dwarf_gpr_r14,   gcc_dwarf_gpr_r14,   LLDB_INVALID_REGNUM,       gdb_gpr_r14),
    DEFINE_GPR(r15,    NULL,    gcc_dwarf_gpr_r15,   gcc_dwarf_gpr_r15,   LLDB_INVALID_REGNUM,       gdb_gpr_r15),
    DEFINE_GPR(rip,    "pc",    gcc_dwarf_gpr_rip,   gcc_dwarf_gpr_rip,   LLDB_REGNUM_GENERIC_PC,    gdb_gpr_rip),
    DEFINE_GPR(rflags, "flags", LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_REGNUM_GENERIC_FLAGS, gdb_gpr_rflags),
    DEFINE_GPR(cs,     NULL,    LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,       gdb_gpr_cs),
    DEFINE_GPR(fs,     NULL,    LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,       gdb_gpr_fs),
    DEFINE_GPR(gs,     NULL,    LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,       gdb_gpr_gs),
    DEFINE_GPR(ss,     NULL,    LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,       gdb_gpr_ss),
    DEFINE_GPR(ds,     NULL,    LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,       gdb_gpr_ds),
    DEFINE_GPR(es,     NULL,    LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,       gdb_gpr_es),
    // i386 registers
    DEFINE_GPR_i386(eax,    rax,    NULL,    gcc_eax,    dwarf_eax,    LLDB_INVALID_REGNUM,       gdb_eax),
    DEFINE_GPR_i386(ebx,    rbx,    NULL,    gcc_ebx,    dwarf_ebx,    LLDB_INVALID_REGNUM,       gdb_ebx),
    DEFINE_GPR_i386(ecx,    rcx,    NULL,    gcc_ecx,    dwarf_ecx,    LLDB_INVALID_REGNUM,       gdb_ecx),
    DEFINE_GPR_i386(edx,    rdx,    NULL,    gcc_edx,    dwarf_edx,    LLDB_INVALID_REGNUM,       gdb_edx),
    DEFINE_GPR_i386(edi,    rdi,    NULL,    gcc_edi,    dwarf_edi,    LLDB_INVALID_REGNUM,       gdb_edi),
    DEFINE_GPR_i386(esi,    rsi,    NULL,    gcc_esi,    dwarf_esi,    LLDB_INVALID_REGNUM,       gdb_esi),
    DEFINE_GPR_i386(ebp,    rbp,    "fp",    gcc_ebp,    dwarf_ebp,    LLDB_REGNUM_GENERIC_FP,    gdb_ebp),
    DEFINE_GPR_i386(esp,    rsp,    "sp",    gcc_esp,    dwarf_esp,    LLDB_REGNUM_GENERIC_SP,    gdb_esp),
    DEFINE_GPR_i386(eip,    rip,    "pc",    gcc_eip,    dwarf_eip,    LLDB_REGNUM_GENERIC_PC,    gdb_eip),
    DEFINE_GPR_i386(eflags, rflags, "flags", gcc_eflags, dwarf_eflags, LLDB_REGNUM_GENERIC_FLAGS, gdb_eflags),
    // i387 Floating point registers.
    DEFINE_FPR(fcw,       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, gdb_fpu_fcw),
    DEFINE_FPR(fsw,       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, gdb_fpu_fsw),
    DEFINE_FPR(ftw,       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, gdb_fpu_ftw),
    DEFINE_FPR(fop,       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, gdb_fpu_fop),
    DEFINE_FPR(ip,        LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, gdb_fpu_ip),
    // FIXME: Extract segment from ip.
    DEFINE_FPR(ip,        LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, gdb_fpu_cs_64),
    DEFINE_FPR(dp,        LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, gdb_fpu_dp),
    // FIXME: Extract segment from dp.
    DEFINE_FPR(dp,        LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, gdb_fpu_ds_64),
    DEFINE_FPR(mxcsr,     LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, gdb_fpu_mxcsr),
    DEFINE_FPR(mxcsrmask, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),

    // FP registers.
    DEFINE_FP(stmm, 0),
    DEFINE_FP(stmm, 1),
    DEFINE_FP(stmm, 2),
    DEFINE_FP(stmm, 3),
    DEFINE_FP(stmm, 4),
    DEFINE_FP(stmm, 5),
    DEFINE_FP(stmm, 6),
    DEFINE_FP(stmm, 7),

    // XMM registers
    DEFINE_XMM(xmm, 0),
    DEFINE_XMM(xmm, 1),
    DEFINE_XMM(xmm, 2),
    DEFINE_XMM(xmm, 3),
    DEFINE_XMM(xmm, 4),
    DEFINE_XMM(xmm, 5),
    DEFINE_XMM(xmm, 6),
    DEFINE_XMM(xmm, 7),
    DEFINE_XMM(xmm, 8),
    DEFINE_XMM(xmm, 9),
    DEFINE_XMM(xmm, 10),
    DEFINE_XMM(xmm, 11),
    DEFINE_XMM(xmm, 12),
    DEFINE_XMM(xmm, 13),
    DEFINE_XMM(xmm, 14),
    DEFINE_XMM(xmm, 15),

    // Copy of YMM registers assembled from xmm and ymmh
    DEFINE_YMM(ymm, 0),
    DEFINE_YMM(ymm, 1),
    DEFINE_YMM(ymm, 2),
    DEFINE_YMM(ymm, 3),
    DEFINE_YMM(ymm, 4),
    DEFINE_YMM(ymm, 5),
    DEFINE_YMM(ymm, 6),
    DEFINE_YMM(ymm, 7),
    DEFINE_YMM(ymm, 8),
    DEFINE_YMM(ymm, 9),
    DEFINE_YMM(ymm, 10),
    DEFINE_YMM(ymm, 11),
    DEFINE_YMM(ymm, 12),
    DEFINE_YMM(ymm, 13),
    DEFINE_YMM(ymm, 14),
    DEFINE_YMM(ymm, 15),

    // Debug registers for lldb internal use
    DEFINE_DR(dr, 0),
    DEFINE_DR(dr, 1),
    DEFINE_DR(dr, 2),
    DEFINE_DR(dr, 3),
    DEFINE_DR(dr, 4),
    DEFINE_DR(dr, 5),
    DEFINE_DR(dr, 6),
    DEFINE_DR(dr, 7)
};

static bool IsGPR(unsigned reg)
{
    return reg <= k_last_gpr;   // GPR's come first.
}

static bool IsAVX(unsigned reg)
{
    return (k_first_avx <= reg && reg <= k_last_avx);
}
static bool IsFPR(unsigned reg)
{
    return (k_first_fpr <= reg && reg <= k_last_fpr);
}


bool RegisterContext_x86_64::IsFPR(unsigned reg, FPRType fpr_type)
{
    bool generic_fpr = ::IsFPR(reg);
    if (fpr_type == eXSAVE)
      return generic_fpr || IsAVX(reg);

    return generic_fpr;
}

RegisterContext_x86_64::RegisterContext_x86_64(Thread &thread,
                                               uint32_t concrete_frame_idx)
    : RegisterContextPOSIX(thread, concrete_frame_idx)
{
    // Initialize m_iovec to point to the buffer and buffer size
    // using the conventions of Berkeley style UIO structures, as required
    // by PTRACE extensions.
    m_iovec.iov_base = &m_fpr.xstate.xsave;
    m_iovec.iov_len = sizeof(m_fpr.xstate.xsave);

    ::memset(&m_fpr, 0, sizeof(RegisterContext_x86_64::FPR));

    // elf-core yet to support ReadFPR()
    ProcessSP base = CalculateProcess();
    if (base.get()->GetPluginName() ==  ProcessElfCore::GetPluginNameStatic())
        return;
    
    // TODO: Use assembly to call cpuid on the inferior and query ebx or ecx
    m_fpr_type = eXSAVE; // extended floating-point registers, if available
    if (false == ReadFPR())
        m_fpr_type = eFXSAVE; // assume generic floating-point registers
}

RegisterContext_x86_64::~RegisterContext_x86_64()
{
}

void
RegisterContext_x86_64::Invalidate()
{
}

void
RegisterContext_x86_64::InvalidateAllRegisters()
{
}

unsigned
RegisterContext_x86_64::GetRegisterOffset(unsigned reg)
{
    assert(reg < k_num_registers && "Invalid register number.");
    return GetRegisterInfo()[reg].byte_offset;
}

unsigned
RegisterContext_x86_64::GetRegisterSize(unsigned reg)
{
    assert(reg < k_num_registers && "Invalid register number.");
    return GetRegisterInfo()[reg].byte_size;
}

size_t
RegisterContext_x86_64::GetRegisterCount()
{
    size_t num_registers = k_num_gpr_registers + k_num_fpr_registers;
    if (m_fpr_type == eXSAVE)
      return num_registers + k_num_avx_registers;
    return num_registers;
}

const RegisterInfo *
RegisterContext_x86_64::GetRegisterInfo()
{
    // Commonly, this method is overridden and g_register_infos is copied and specialized.
    // So, use GetRegisterInfo() rather than g_register_infos in this scope.
    return g_register_infos;
}

const RegisterInfo *
RegisterContext_x86_64::GetRegisterInfoAtIndex(size_t reg)
{
    if (reg < k_num_registers)
        return &GetRegisterInfo()[reg];
    else
        return NULL;
}

size_t
RegisterContext_x86_64::GetRegisterSetCount()
{
    size_t sets = 0;
    for (size_t set = 0; set < k_num_register_sets; ++set)
        if (IsRegisterSetAvailable(set))
            ++sets;

    return sets;
}

const RegisterSet *
RegisterContext_x86_64::GetRegisterSet(size_t set)
{
    if (IsRegisterSetAvailable(set))
        return &g_reg_sets[set];
    else
        return NULL;
}

unsigned
RegisterContext_x86_64::GetRegisterIndexFromOffset(unsigned offset)
{
    unsigned reg;
    for (reg = 0; reg < k_num_registers; reg++)
    {
        if (GetRegisterInfo()[reg].byte_offset == offset)
            break;
    }
    assert(reg < k_num_registers && "Invalid register offset.");
    return reg;
}

const char *
RegisterContext_x86_64::GetRegisterName(unsigned reg)
{
    assert(reg < k_num_registers && "Invalid register offset.");
    return GetRegisterInfo()[reg].name;
}

lldb::ByteOrder
RegisterContext_x86_64::GetByteOrder()
{
    // Get the target process whose privileged thread was used for the register read.
    lldb::ByteOrder byte_order = eByteOrderInvalid;
    Process *process = CalculateProcess().get();

    if (process)
        byte_order = process->GetByteOrder();
    return byte_order;
}

// Parse ymm registers and into xmm.bytes and ymmh.bytes.
bool RegisterContext_x86_64::CopyYMMtoXSTATE(uint32_t reg, lldb::ByteOrder byte_order)
{
    if (!IsAVX(reg))
        return false;

    if (byte_order == eByteOrderLittle) {
      ::memcpy(m_fpr.xstate.fxsave.xmm[reg - fpu_ymm0].bytes,
               m_ymm_set.ymm[reg - fpu_ymm0].bytes,
               sizeof(RegisterContext_x86_64::XMMReg));
      ::memcpy(m_fpr.xstate.xsave.ymmh[reg - fpu_ymm0].bytes,
               m_ymm_set.ymm[reg - fpu_ymm0].bytes + sizeof(RegisterContext_x86_64::XMMReg),
               sizeof(RegisterContext_x86_64::YMMHReg));
      return true;
    }

    if (byte_order == eByteOrderBig) {
      ::memcpy(m_fpr.xstate.fxsave.xmm[reg - fpu_ymm0].bytes,
               m_ymm_set.ymm[reg - fpu_ymm0].bytes + sizeof(RegisterContext_x86_64::XMMReg),
               sizeof(RegisterContext_x86_64::XMMReg));
      ::memcpy(m_fpr.xstate.xsave.ymmh[reg - fpu_ymm0].bytes,
               m_ymm_set.ymm[reg - fpu_ymm0].bytes,
               sizeof(RegisterContext_x86_64::YMMHReg));
      return true;
    }
    return false; // unsupported or invalid byte order
}

// Concatenate xmm.bytes with ymmh.bytes
bool RegisterContext_x86_64::CopyXSTATEtoYMM(uint32_t reg, lldb::ByteOrder byte_order)
{
    if (!IsAVX(reg))
        return false;

    if (byte_order == eByteOrderLittle) {
      ::memcpy(m_ymm_set.ymm[reg - fpu_ymm0].bytes,
               m_fpr.xstate.fxsave.xmm[reg - fpu_ymm0].bytes,
               sizeof(RegisterContext_x86_64::XMMReg));
      ::memcpy(m_ymm_set.ymm[reg - fpu_ymm0].bytes + sizeof(RegisterContext_x86_64::XMMReg),
               m_fpr.xstate.xsave.ymmh[reg - fpu_ymm0].bytes,
               sizeof(RegisterContext_x86_64::YMMHReg));
      return true;
    }
    if (byte_order == eByteOrderBig) {
      ::memcpy(m_ymm_set.ymm[reg - fpu_ymm0].bytes + sizeof(RegisterContext_x86_64::XMMReg),
               m_fpr.xstate.fxsave.xmm[reg - fpu_ymm0].bytes,
               sizeof(RegisterContext_x86_64::XMMReg));
      ::memcpy(m_ymm_set.ymm[reg - fpu_ymm0].bytes,
               m_fpr.xstate.xsave.ymmh[reg - fpu_ymm0].bytes,
               sizeof(RegisterContext_x86_64::YMMHReg));
      return true;
    }
    return false; // unsupported or invalid byte order
}

bool
RegisterContext_x86_64::IsRegisterSetAvailable(size_t set_index)
{
    // Note: Extended register sets are assumed to be at the end of g_reg_sets...
    size_t num_sets = k_num_register_sets - k_num_extended_register_sets;
    if (m_fpr_type == eXSAVE) // ...and to start with AVX registers.
        ++num_sets;

    return (set_index < num_sets);
}   

bool
RegisterContext_x86_64::ReadRegister(const RegisterInfo *reg_info, RegisterValue &value)
{
    if (!reg_info)
        return false;

    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

    if (IsFPR(reg, m_fpr_type)) {
        if (!ReadFPR())
            return false;
    }
    else {
        bool success = ReadRegister(reg, value);

        // If an i386 register should be parsed from an x86_64 register...
        if (success && reg >= k_first_i386 && reg <= k_last_i386)
            if (value.GetByteSize() > reg_info->byte_size)
                value.SetType(reg_info); // ...use the type specified by reg_info rather than the uint64_t default
        return success; 
    }

    if (reg_info->encoding == eEncodingVector) {
        ByteOrder byte_order = GetByteOrder();

        if (byte_order != ByteOrder::eByteOrderInvalid) {
            if (reg >= fpu_stmm0 && reg <= fpu_stmm7) {
               value.SetBytes(m_fpr.xstate.fxsave.stmm[reg - fpu_stmm0].bytes, reg_info->byte_size, byte_order);
            }
            if (reg >= fpu_xmm0 && reg <= fpu_xmm15) {
                value.SetBytes(m_fpr.xstate.fxsave.xmm[reg - fpu_xmm0].bytes, reg_info->byte_size, byte_order);
            }
            if (reg >= fpu_ymm0 && reg <= fpu_ymm15) {
                // Concatenate ymm using the register halves in xmm.bytes and ymmh.bytes
                if (m_fpr_type == eXSAVE && CopyXSTATEtoYMM(reg, byte_order))
                    value.SetBytes(m_ymm_set.ymm[reg - fpu_ymm0].bytes, reg_info->byte_size, byte_order);
                else
                    return false;
            }
            return value.GetType() == RegisterValue::eTypeBytes;
        }
        return false;
    }

    // Note that lldb uses slightly different naming conventions from sys/user.h
    switch (reg)
    {
    default:
        return false;
    case fpu_dp:
        value = m_fpr.xstate.fxsave.dp;
        break;
    case fpu_fcw:
        value = m_fpr.xstate.fxsave.fcw;
        break;
    case fpu_fsw:
        value = m_fpr.xstate.fxsave.fsw;
        break;
    case fpu_ip:
        value = m_fpr.xstate.fxsave.ip;
        break;
    case fpu_fop:
        value = m_fpr.xstate.fxsave.fop;
        break;
    case fpu_ftw:
        value = m_fpr.xstate.fxsave.ftw;
        break;
    case fpu_mxcsr:
        value = m_fpr.xstate.fxsave.mxcsr;
        break;
    case fpu_mxcsrmask:
        value = m_fpr.xstate.fxsave.mxcsrmask;
        break;
    }
    return true;
}

bool
RegisterContext_x86_64::ReadAllRegisterValues(DataBufferSP &data_sp)
{
    bool success = false;
    data_sp.reset (new DataBufferHeap (REG_CONTEXT_SIZE, 0));
    if (data_sp && ReadGPR () && ReadFPR ())
    {
        uint8_t *dst = data_sp->GetBytes();
        success = dst != 0;

        if (success) {
            ::memcpy (dst, &m_gpr, GetGPRSize());
            dst += GetGPRSize();
        }
        if (m_fpr_type == eFXSAVE)
            ::memcpy (dst, &m_fpr.xstate.fxsave, sizeof(m_fpr.xstate.fxsave));
        
        if (m_fpr_type == eXSAVE) {
            ByteOrder byte_order = GetByteOrder();

            // Assemble the YMM register content from the register halves.
            for (uint32_t reg = fpu_ymm0; success && reg <= fpu_ymm15; ++reg)
                success = CopyXSTATEtoYMM(reg, byte_order);

            if (success) {
                // Copy the extended register state including the assembled ymm registers.
                ::memcpy (dst, &m_fpr, sizeof(m_fpr));
            }
        }
    }
    return success;
}

bool
RegisterContext_x86_64::WriteRegister(const lldb_private::RegisterInfo *reg_info,
                                      const lldb_private::RegisterValue &value)
{
    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
    if (IsGPR(reg)) {
        return WriteRegister(reg, value);
    }

    if (IsFPR(reg, m_fpr_type)) {
        switch (reg)
        {
        default:
            if (reg_info->encoding != eEncodingVector)
                return false;

            if (reg >= fpu_stmm0 && reg <= fpu_stmm7)
               ::memcpy (m_fpr.xstate.fxsave.stmm[reg - fpu_stmm0].bytes, value.GetBytes(), value.GetByteSize());
            
            if (reg >= fpu_xmm0 && reg <= fpu_xmm15)
               ::memcpy (m_fpr.xstate.fxsave.xmm[reg - fpu_xmm0].bytes, value.GetBytes(), value.GetByteSize());
            
            if (reg >= fpu_ymm0 && reg <= fpu_ymm15) {
               if (m_fpr_type != eXSAVE)
                   return false; // the target processor does not support AVX

               // Store ymm register content, and split into the register halves in xmm.bytes and ymmh.bytes
               ::memcpy (m_ymm_set.ymm[reg - fpu_ymm0].bytes, value.GetBytes(), value.GetByteSize());
               if (false == CopyYMMtoXSTATE(reg, GetByteOrder()))
                   return false;
            }
            break;
        case fpu_dp:
            m_fpr.xstate.fxsave.dp = value.GetAsUInt64();
            break;
        case fpu_fcw:
            m_fpr.xstate.fxsave.fcw = value.GetAsUInt16();
            break;
        case fpu_fsw:
            m_fpr.xstate.fxsave.fsw = value.GetAsUInt16();
            break;
        case fpu_ip:
            m_fpr.xstate.fxsave.ip = value.GetAsUInt64();
            break;
        case fpu_fop:
            m_fpr.xstate.fxsave.fop = value.GetAsUInt16();
            break;
        case fpu_ftw:
            m_fpr.xstate.fxsave.ftw = value.GetAsUInt16();
            break;
        case fpu_mxcsr:
            m_fpr.xstate.fxsave.mxcsr = value.GetAsUInt32();
            break;
        case fpu_mxcsrmask:
            m_fpr.xstate.fxsave.mxcsrmask = value.GetAsUInt32();
            break;
        }
        if (WriteFPR()) {
            if (IsAVX(reg))
                return CopyYMMtoXSTATE(reg, GetByteOrder());
            return true;
        }
    }
    return false;
}

bool
RegisterContext_x86_64::WriteAllRegisterValues(const DataBufferSP &data_sp)
{
    bool success = false;
    if (data_sp && data_sp->GetByteSize() == REG_CONTEXT_SIZE)
    {
        uint8_t *src = data_sp->GetBytes();
        if (src) {
            ::memcpy (&m_gpr, src, GetGPRSize());

            if (WriteGPR()) {
                src += GetGPRSize();
                if (m_fpr_type == eFXSAVE)
                    ::memcpy (&m_fpr.xstate.fxsave, src, sizeof(m_fpr.xstate.fxsave));
                if (m_fpr_type == eXSAVE)
                    ::memcpy (&m_fpr.xstate.xsave, src, sizeof(m_fpr.xstate.xsave));

                success = WriteFPR();
                if (success) {
                    success = true;

                    if (m_fpr_type == eXSAVE) {
                        ByteOrder byte_order = GetByteOrder();

                        // Parse the YMM register content from the register halves.
                        for (uint32_t reg = fpu_ymm0; success && reg <= fpu_ymm15; ++reg)
                            success = CopyYMMtoXSTATE(reg, byte_order);
                    }
                }
            }
        }
    }
    return success;
}

bool
RegisterContext_x86_64::UpdateAfterBreakpoint()
{
    // PC points one byte past the int3 responsible for the breakpoint.
    lldb::addr_t pc;

    if ((pc = GetPC()) == LLDB_INVALID_ADDRESS)
        return false;

    SetPC(pc - 1);
    return true;
}

uint32_t
RegisterContext_x86_64::ConvertRegisterKindToRegisterNumber(uint32_t kind,
                                                                 uint32_t num)
{
    const Process *process = CalculateProcess().get();
    if (process)
    {
        const ArchSpec arch = process->GetTarget().GetArchitecture();;
        switch (arch.GetCore())
        {
        default:
            assert(false && "CPU type not supported!");
            break;

        case ArchSpec::eCore_x86_32_i386:
        case ArchSpec::eCore_x86_32_i486:
        case ArchSpec::eCore_x86_32_i486sx:
        {
            if (kind == eRegisterKindGeneric)
            {
                switch (num)
                {
                case LLDB_REGNUM_GENERIC_PC:    return gpr_eip;
                case LLDB_REGNUM_GENERIC_SP:    return gpr_esp;
                case LLDB_REGNUM_GENERIC_FP:    return gpr_ebp;
                case LLDB_REGNUM_GENERIC_FLAGS: return gpr_eflags;
                case LLDB_REGNUM_GENERIC_RA:
                default:
                    return LLDB_INVALID_REGNUM;
                }
            }

            if (kind == eRegisterKindGCC || kind == eRegisterKindDWARF)
            {
                switch (num)
                {
                case dwarf_eax:  return gpr_eax;
                case dwarf_edx:  return gpr_edx;
                case dwarf_ecx:  return gpr_ecx;
                case dwarf_ebx:  return gpr_ebx;
                case dwarf_esi:  return gpr_esi;
                case dwarf_edi:  return gpr_edi;
                case dwarf_ebp:  return gpr_ebp;
                case dwarf_esp:  return gpr_esp;
                case dwarf_eip:  return gpr_eip;
                case dwarf_xmm0: return fpu_xmm0;
                case dwarf_xmm1: return fpu_xmm1;
                case dwarf_xmm2: return fpu_xmm2;
                case dwarf_xmm3: return fpu_xmm3;
                case dwarf_xmm4: return fpu_xmm4;
                case dwarf_xmm5: return fpu_xmm5;
                case dwarf_xmm6: return fpu_xmm6;
                case dwarf_xmm7: return fpu_xmm7;
                case dwarf_stmm0: return fpu_stmm0;
                case dwarf_stmm1: return fpu_stmm1;
                case dwarf_stmm2: return fpu_stmm2;
                case dwarf_stmm3: return fpu_stmm3;
                case dwarf_stmm4: return fpu_stmm4;
                case dwarf_stmm5: return fpu_stmm5;
                case dwarf_stmm6: return fpu_stmm6;
                case dwarf_stmm7: return fpu_stmm7;
                default:
                    return LLDB_INVALID_REGNUM;
                }
            }

            if (kind == eRegisterKindGDB)
            {
                switch (num)
                {
                case gdb_eax     : return gpr_eax;
                case gdb_ebx     : return gpr_ebx;
                case gdb_ecx     : return gpr_ecx;
                case gdb_edx     : return gpr_edx;
                case gdb_esi     : return gpr_esi;
                case gdb_edi     : return gpr_edi;
                case gdb_ebp     : return gpr_ebp;
                case gdb_esp     : return gpr_esp;
                case gdb_eip     : return gpr_eip;
                case gdb_eflags  : return gpr_eflags;
                case gdb_cs      : return gpr_cs;
                case gdb_ss      : return gpr_ss;
                case gdb_ds      : return gpr_ds;
                case gdb_es      : return gpr_es;
                case gdb_fs      : return gpr_fs;
                case gdb_gs      : return gpr_gs;
                case gdb_stmm0   : return fpu_stmm0;
                case gdb_stmm1   : return fpu_stmm1;
                case gdb_stmm2   : return fpu_stmm2;
                case gdb_stmm3   : return fpu_stmm3;
                case gdb_stmm4   : return fpu_stmm4;
                case gdb_stmm5   : return fpu_stmm5;
                case gdb_stmm6   : return fpu_stmm6;
                case gdb_stmm7   : return fpu_stmm7;
                case gdb_fcw     : return fpu_fcw;
                case gdb_fsw     : return fpu_fsw;
                case gdb_ftw     : return fpu_ftw;
                case gdb_fpu_cs  : return fpu_cs;
                case gdb_ip      : return fpu_ip;
                case gdb_fpu_ds  : return fpu_ds; //fpu_fos
                case gdb_dp      : return fpu_dp; //fpu_foo
                case gdb_fop     : return fpu_fop;
                case gdb_xmm0    : return fpu_xmm0;
                case gdb_xmm1    : return fpu_xmm1;
                case gdb_xmm2    : return fpu_xmm2;
                case gdb_xmm3    : return fpu_xmm3;
                case gdb_xmm4    : return fpu_xmm4;
                case gdb_xmm5    : return fpu_xmm5;
                case gdb_xmm6    : return fpu_xmm6;
                case gdb_xmm7    : return fpu_xmm7;
                case gdb_mxcsr   : return fpu_mxcsr;
                default:
                    return LLDB_INVALID_REGNUM;
                }
            }
            else if (kind == eRegisterKindLLDB)
            {
                return num;
            }

            break;
        }

        case ArchSpec::eCore_x86_64_x86_64:
        {
            if (kind == eRegisterKindGeneric)
            {
                switch (num)
                {
                case LLDB_REGNUM_GENERIC_PC:    return gpr_rip;
                case LLDB_REGNUM_GENERIC_SP:    return gpr_rsp;
                case LLDB_REGNUM_GENERIC_FP:    return gpr_rbp;
                case LLDB_REGNUM_GENERIC_FLAGS: return gpr_rflags;
                case LLDB_REGNUM_GENERIC_RA:
                default:
                    return LLDB_INVALID_REGNUM;
                }
            }

            if (kind == eRegisterKindGCC || kind == eRegisterKindDWARF)
            {
                switch (num)
                {
                case gcc_dwarf_gpr_rax:  return gpr_rax;
                case gcc_dwarf_gpr_rdx:  return gpr_rdx;
                case gcc_dwarf_gpr_rcx:  return gpr_rcx;
                case gcc_dwarf_gpr_rbx:  return gpr_rbx;
                case gcc_dwarf_gpr_rsi:  return gpr_rsi;
                case gcc_dwarf_gpr_rdi:  return gpr_rdi;
                case gcc_dwarf_gpr_rbp:  return gpr_rbp;
                case gcc_dwarf_gpr_rsp:  return gpr_rsp;
                case gcc_dwarf_gpr_r8:   return gpr_r8;
                case gcc_dwarf_gpr_r9:   return gpr_r9;
                case gcc_dwarf_gpr_r10:  return gpr_r10;
                case gcc_dwarf_gpr_r11:  return gpr_r11;
                case gcc_dwarf_gpr_r12:  return gpr_r12;
                case gcc_dwarf_gpr_r13:  return gpr_r13;
                case gcc_dwarf_gpr_r14:  return gpr_r14;
                case gcc_dwarf_gpr_r15:  return gpr_r15;
                case gcc_dwarf_gpr_rip:  return gpr_rip;
                case gcc_dwarf_fpu_xmm0: return fpu_xmm0;
                case gcc_dwarf_fpu_xmm1: return fpu_xmm1;
                case gcc_dwarf_fpu_xmm2: return fpu_xmm2;
                case gcc_dwarf_fpu_xmm3: return fpu_xmm3;
                case gcc_dwarf_fpu_xmm4: return fpu_xmm4;
                case gcc_dwarf_fpu_xmm5: return fpu_xmm5;
                case gcc_dwarf_fpu_xmm6: return fpu_xmm6;
                case gcc_dwarf_fpu_xmm7: return fpu_xmm7;
                case gcc_dwarf_fpu_xmm8: return fpu_xmm8;
                case gcc_dwarf_fpu_xmm9: return fpu_xmm9;
                case gcc_dwarf_fpu_xmm10: return fpu_xmm10;
                case gcc_dwarf_fpu_xmm11: return fpu_xmm11;
                case gcc_dwarf_fpu_xmm12: return fpu_xmm12;
                case gcc_dwarf_fpu_xmm13: return fpu_xmm13;
                case gcc_dwarf_fpu_xmm14: return fpu_xmm14;
                case gcc_dwarf_fpu_xmm15: return fpu_xmm15;
                case gcc_dwarf_fpu_stmm0: return fpu_stmm0;
                case gcc_dwarf_fpu_stmm1: return fpu_stmm1;
                case gcc_dwarf_fpu_stmm2: return fpu_stmm2;
                case gcc_dwarf_fpu_stmm3: return fpu_stmm3;
                case gcc_dwarf_fpu_stmm4: return fpu_stmm4;
                case gcc_dwarf_fpu_stmm5: return fpu_stmm5;
                case gcc_dwarf_fpu_stmm6: return fpu_stmm6;
                case gcc_dwarf_fpu_stmm7: return fpu_stmm7;
                case gcc_dwarf_fpu_ymm0: return fpu_ymm0;
                case gcc_dwarf_fpu_ymm1: return fpu_ymm1;
                case gcc_dwarf_fpu_ymm2: return fpu_ymm2;
                case gcc_dwarf_fpu_ymm3: return fpu_ymm3;
                case gcc_dwarf_fpu_ymm4: return fpu_ymm4;
                case gcc_dwarf_fpu_ymm5: return fpu_ymm5;
                case gcc_dwarf_fpu_ymm6: return fpu_ymm6;
                case gcc_dwarf_fpu_ymm7: return fpu_ymm7;
                case gcc_dwarf_fpu_ymm8: return fpu_ymm8;
                case gcc_dwarf_fpu_ymm9: return fpu_ymm9;
                case gcc_dwarf_fpu_ymm10: return fpu_ymm10;
                case gcc_dwarf_fpu_ymm11: return fpu_ymm11;
                case gcc_dwarf_fpu_ymm12: return fpu_ymm12;
                case gcc_dwarf_fpu_ymm13: return fpu_ymm13;
                case gcc_dwarf_fpu_ymm14: return fpu_ymm14;
                case gcc_dwarf_fpu_ymm15: return fpu_ymm15;
                default:
                    return LLDB_INVALID_REGNUM;
                }
            }

            if (kind == eRegisterKindGDB)
            {
                switch (num)
                {
                case gdb_gpr_rax     : return gpr_rax;
                case gdb_gpr_rbx     : return gpr_rbx;
                case gdb_gpr_rcx     : return gpr_rcx;
                case gdb_gpr_rdx     : return gpr_rdx;
                case gdb_gpr_rsi     : return gpr_rsi;
                case gdb_gpr_rdi     : return gpr_rdi;
                case gdb_gpr_rbp     : return gpr_rbp;
                case gdb_gpr_rsp     : return gpr_rsp;
                case gdb_gpr_r8      : return gpr_r8;
                case gdb_gpr_r9      : return gpr_r9;
                case gdb_gpr_r10     : return gpr_r10;
                case gdb_gpr_r11     : return gpr_r11;
                case gdb_gpr_r12     : return gpr_r12;
                case gdb_gpr_r13     : return gpr_r13;
                case gdb_gpr_r14     : return gpr_r14;
                case gdb_gpr_r15     : return gpr_r15;
                case gdb_gpr_rip     : return gpr_rip;
                case gdb_gpr_rflags  : return gpr_rflags;
                case gdb_gpr_cs      : return gpr_cs;
                case gdb_gpr_ss      : return gpr_ss;
                case gdb_gpr_ds      : return gpr_ds;
                case gdb_gpr_es      : return gpr_es;
                case gdb_gpr_fs      : return gpr_fs;
                case gdb_gpr_gs      : return gpr_gs;
                case gdb_fpu_stmm0   : return fpu_stmm0;
                case gdb_fpu_stmm1   : return fpu_stmm1;
                case gdb_fpu_stmm2   : return fpu_stmm2;
                case gdb_fpu_stmm3   : return fpu_stmm3;
                case gdb_fpu_stmm4   : return fpu_stmm4;
                case gdb_fpu_stmm5   : return fpu_stmm5;
                case gdb_fpu_stmm6   : return fpu_stmm6;
                case gdb_fpu_stmm7   : return fpu_stmm7;
                case gdb_fpu_fcw     : return fpu_fcw;
                case gdb_fpu_fsw     : return fpu_fsw;
                case gdb_fpu_ftw     : return fpu_ftw;
                case gdb_fpu_cs_64   : return fpu_cs;
                case gdb_fpu_ip      : return fpu_ip;
                case gdb_fpu_ds_64   : return fpu_ds;
                case gdb_fpu_dp      : return fpu_dp;
                case gdb_fpu_fop     : return fpu_fop;
                case gdb_fpu_xmm0    : return fpu_xmm0;
                case gdb_fpu_xmm1    : return fpu_xmm1;
                case gdb_fpu_xmm2    : return fpu_xmm2;
                case gdb_fpu_xmm3    : return fpu_xmm3;
                case gdb_fpu_xmm4    : return fpu_xmm4;
                case gdb_fpu_xmm5    : return fpu_xmm5;
                case gdb_fpu_xmm6    : return fpu_xmm6;
                case gdb_fpu_xmm7    : return fpu_xmm7;
                case gdb_fpu_xmm8    : return fpu_xmm8;
                case gdb_fpu_xmm9    : return fpu_xmm9;
                case gdb_fpu_xmm10   : return fpu_xmm10;
                case gdb_fpu_xmm11   : return fpu_xmm11;
                case gdb_fpu_xmm12   : return fpu_xmm12;
                case gdb_fpu_xmm13   : return fpu_xmm13;
                case gdb_fpu_xmm14   : return fpu_xmm14;
                case gdb_fpu_xmm15   : return fpu_xmm15;
                case gdb_fpu_mxcsr   : return fpu_mxcsr;
                case gdb_fpu_ymm0    : return fpu_ymm0;
                case gdb_fpu_ymm1    : return fpu_ymm1;
                case gdb_fpu_ymm2    : return fpu_ymm2;
                case gdb_fpu_ymm3    : return fpu_ymm3;
                case gdb_fpu_ymm4    : return fpu_ymm4;
                case gdb_fpu_ymm5    : return fpu_ymm5;
                case gdb_fpu_ymm6    : return fpu_ymm6;
                case gdb_fpu_ymm7    : return fpu_ymm7;
                case gdb_fpu_ymm8    : return fpu_ymm8;
                case gdb_fpu_ymm9    : return fpu_ymm9;
                case gdb_fpu_ymm10   : return fpu_ymm10;
                case gdb_fpu_ymm11   : return fpu_ymm11;
                case gdb_fpu_ymm12   : return fpu_ymm12;
                case gdb_fpu_ymm13   : return fpu_ymm13;
                case gdb_fpu_ymm14   : return fpu_ymm14;
                case gdb_fpu_ymm15   : return fpu_ymm15;
                default:
                    return LLDB_INVALID_REGNUM;
                }
            }
            else if (kind == eRegisterKindLLDB)
            {
                return num;
            }
        }
        }
    }

    return LLDB_INVALID_REGNUM;
}

uint32_t
RegisterContext_x86_64::NumSupportedHardwareWatchpoints()
{
    // Available debug address registers: dr0, dr1, dr2, dr3
    return 4;
}

bool
RegisterContext_x86_64::IsWatchpointVacant(uint32_t hw_index)
{
    bool is_vacant = false;
    RegisterValue value;

    assert(hw_index < NumSupportedHardwareWatchpoints());

    if (m_watchpoints_initialized == false)
    {
        // Reset the debug status and debug control registers
        RegisterValue zero_bits = RegisterValue(uint64_t(0));
        if (!WriteRegister(dr6, zero_bits) || !WriteRegister(dr7, zero_bits))
            assert(false && "Could not initialize watchpoint registers");
        m_watchpoints_initialized = true;
    }

    if (ReadRegister(dr7, value))
    {
        uint64_t val = value.GetAsUInt64();
        is_vacant = (val & (3 << 2*hw_index)) == 0;
    }

    return is_vacant;
}

static uint32_t
size_and_rw_bits(size_t size, bool read, bool write)
{
    uint32_t rw;
    if (read) {
        rw = 0x3; // READ or READ/WRITE
    } else if (write) {
        rw = 0x1; // WRITE
    } else {
        assert(0 && "read and write cannot both be false");
    }

    switch (size) {
    case 1:
        return rw;
    case 2:
        return (0x1 << 2) | rw;
    case 4:
        return (0x3 << 2) | rw;
    case 8:
        return (0x2 << 2) | rw;
    default:
        assert(0 && "invalid size, must be one of 1, 2, 4, or 8");
    }
}

uint32_t
RegisterContext_x86_64::SetHardwareWatchpoint(addr_t addr, size_t size,
                                              bool read, bool write)
{
    const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
    uint32_t hw_index;

    for (hw_index = 0; hw_index < num_hw_watchpoints; ++hw_index)
    {
        if (IsWatchpointVacant(hw_index))
            return SetHardwareWatchpointWithIndex(addr, size,
                                                  read, write,
                                                  hw_index);
    }

    return LLDB_INVALID_INDEX32;
}

bool
RegisterContext_x86_64::SetHardwareWatchpointWithIndex(addr_t addr, size_t size,
                                                       bool read, bool write,
                                                       uint32_t hw_index)
{
    const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();

    if (num_hw_watchpoints == 0 || hw_index >= num_hw_watchpoints)
        return false;

    if (!(size == 1 || size == 2 || size == 4 || size == 8))
        return false;

    if (read == false && write == false)
        return false;

    if (!IsWatchpointVacant(hw_index))
        return false;

    // Set both dr7 (debug control register) and dri (debug address register).

    // dr7{7-0} encodes the local/gloabl enable bits:
    //  global enable --. .-- local enable
    //                  | |
    //                  v v
    //      dr0 -> bits{1-0}
    //      dr1 -> bits{3-2}
    //      dr2 -> bits{5-4}
    //      dr3 -> bits{7-6}
    //
    // dr7{31-16} encodes the rw/len bits:
    //  b_x+3, b_x+2, b_x+1, b_x
    //      where bits{x+1, x} => rw
    //            0b00: execute, 0b01: write, 0b11: read-or-write,
    //            0b10: io read-or-write (unused)
    //      and bits{x+3, x+2} => len
    //            0b00: 1-byte, 0b01: 2-byte, 0b11: 4-byte, 0b10: 8-byte
    //
    //      dr0 -> bits{19-16}
    //      dr1 -> bits{23-20}
    //      dr2 -> bits{27-24}
    //      dr3 -> bits{31-28}
    if (hw_index < num_hw_watchpoints)
    {
        RegisterValue current_dr7_bits;

        if (ReadRegister(dr7, current_dr7_bits))
        {
            uint64_t new_dr7_bits = current_dr7_bits.GetAsUInt64() |
                                    (1 << (2*hw_index) |
                                    size_and_rw_bits(size, read, write) <<
                                    (16+4*hw_index));

            if (WriteRegister(dr0 + hw_index, RegisterValue(addr)) &&
                WriteRegister(dr7, RegisterValue(new_dr7_bits)))
                return true;
        }
    }

    return false;
}

bool
RegisterContext_x86_64::ClearHardwareWatchpoint(uint32_t hw_index)
{
    if (hw_index < NumSupportedHardwareWatchpoints())
    {
        RegisterValue current_dr7_bits;

        if (ReadRegister(dr7, current_dr7_bits))
        {
            uint64_t new_dr7_bits = current_dr7_bits.GetAsUInt64() & ~(3 << (2*hw_index));

            if (WriteRegister(dr7, RegisterValue(new_dr7_bits)))
                return true;
        }
    }

    return false;
}

bool
RegisterContext_x86_64::IsWatchpointHit(uint32_t hw_index)
{
    bool is_hit = false;

    if (m_watchpoints_initialized == false)
    {
        // Reset the debug status and debug control registers
        RegisterValue zero_bits = RegisterValue(uint64_t(0));
        if (!WriteRegister(dr6, zero_bits) || !WriteRegister(dr7, zero_bits))
            assert(false && "Could not initialize watchpoint registers");
        m_watchpoints_initialized = true;
    }

    if (hw_index < NumSupportedHardwareWatchpoints())
    {
        RegisterValue value;

        if (ReadRegister(dr6, value))
        {
            uint64_t val = value.GetAsUInt64();
            is_hit = val & (1 << hw_index);
        }
    }

    return is_hit;
}

addr_t
RegisterContext_x86_64::GetWatchpointAddress(uint32_t hw_index)
{
    addr_t wp_monitor_addr = LLDB_INVALID_ADDRESS;

    if (hw_index < NumSupportedHardwareWatchpoints())
    {
        if (!IsWatchpointVacant(hw_index))
        {
            RegisterValue value;

            if (ReadRegister(dr0 + hw_index, value))
                wp_monitor_addr = value.GetAsUInt64();
        }
    }

    return wp_monitor_addr;
}


bool
RegisterContext_x86_64::ClearWatchpointHits()
{
    return WriteRegister(dr6, RegisterValue((uint64_t)0));
}

bool
RegisterContext_x86_64::HardwareSingleStep(bool enable)
{
    enum { TRACE_BIT = 0x100 };
    uint64_t rflags;

    if ((rflags = ReadRegisterAsUnsigned(gpr_rflags, -1UL)) == -1UL)
        return false;
    
    if (enable)
    {
        if (rflags & TRACE_BIT)
            return true;

        rflags |= TRACE_BIT;
    }
    else
    {
        if (!(rflags & TRACE_BIT))
            return false;

        rflags &= ~TRACE_BIT;
    }

    return WriteRegisterFromUnsigned(gpr_rflags, rflags);
}

#if defined(__linux__) or defined(__FreeBSD__)

ProcessMonitor &
RegisterContext_x86_64::GetMonitor()
{
    ProcessSP base = CalculateProcess();
    ProcessPOSIX *process = static_cast<ProcessPOSIX*>(base.get());
    return process->GetMonitor();
}

bool
RegisterContext_x86_64::ReadGPR()
{
     ProcessMonitor &monitor = GetMonitor();
     return monitor.ReadGPR(m_thread.GetID(), &m_gpr, GetGPRSize());
}

bool
RegisterContext_x86_64::ReadFPR()
{
    ProcessMonitor &monitor = GetMonitor();
    if (m_fpr_type == eFXSAVE)
        return monitor.ReadFPR(m_thread.GetID(), &m_fpr.xstate.fxsave, sizeof(m_fpr.xstate.fxsave));

    if (m_fpr_type == eXSAVE)
        return monitor.ReadRegisterSet(m_thread.GetID(), &m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE);
    return false;
}

bool
RegisterContext_x86_64::WriteGPR()
{
    ProcessMonitor &monitor = GetMonitor();
    return monitor.WriteGPR(m_thread.GetID(), &m_gpr, GetGPRSize());
}

bool
RegisterContext_x86_64::WriteFPR()
{
    ProcessMonitor &monitor = GetMonitor();
    if (m_fpr_type == eFXSAVE)
        return monitor.WriteFPR(m_thread.GetID(), &m_fpr.xstate.fxsave, sizeof(m_fpr.xstate.fxsave));

    if (m_fpr_type == eXSAVE)
        return monitor.WriteRegisterSet(m_thread.GetID(), &m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE);
    return false;
}

bool
RegisterContext_x86_64::ReadRegister(const unsigned reg,
                                     RegisterValue &value)
{
    ProcessMonitor &monitor = GetMonitor();
    return monitor.ReadRegisterValue(m_thread.GetID(),
                                     GetRegisterOffset(reg),
                                     GetRegisterName(reg),
                                     GetRegisterSize(reg),
                                     value);
}

bool
RegisterContext_x86_64::WriteRegister(const unsigned reg,
                                      const RegisterValue &value)
{
    ProcessMonitor &monitor = GetMonitor();
    return monitor.WriteRegisterValue(m_thread.GetID(),
                                      GetRegisterOffset(reg),
                                      GetRegisterName(reg),
                                      value);
}

#else

bool
RegisterContext_x86_64::ReadGPR()
{
    llvm_unreachable("not implemented");
    return false;
}

bool
RegisterContext_x86_64::ReadFPR()
{
    llvm_unreachable("not implemented");
    return false;
}

bool
RegisterContext_x86_64::WriteGPR()
{
    llvm_unreachable("not implemented");
    return false;
}

bool
RegisterContext_x86_64::WriteFPR()
{
    llvm_unreachable("not implemented");
    return false;
}

bool
RegisterContext_x86_64::ReadRegister(const unsigned reg,
                                     RegisterValue &value)
{
    llvm_unreachable("not implemented");
    return false;
}

bool
RegisterContext_x86_64::WriteRegister(const unsigned reg,
                                      const RegisterValue &value)
{
    llvm_unreachable("not implemented");
    return false;
}

#endif