aboutsummaryrefslogtreecommitdiff
path: root/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
blob: e5b347c9f72db999175827ab7a4a1e15b7809ecd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "GDBRemoteRegisterContext.h"

// C Includes
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/Utils.h"
// Project includes
#include "Utility/StringExtractorGDBRemote.h"
#include "ProcessGDBRemote.h"
#include "ProcessGDBRemoteLog.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "Utility/ARM_ehframe_Registers.h"

using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_gdb_remote;

//----------------------------------------------------------------------
// GDBRemoteRegisterContext constructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::GDBRemoteRegisterContext
(
    ThreadGDBRemote &thread,
    uint32_t concrete_frame_idx,
    GDBRemoteDynamicRegisterInfo &reg_info,
    bool read_all_at_once
) :
    RegisterContext (thread, concrete_frame_idx),
    m_reg_info (reg_info),
    m_reg_valid (),
    m_reg_data (),
    m_read_all_at_once (read_all_at_once)
{
    // Resize our vector of bools to contain one bool for every register.
    // We will use these boolean values to know when a register value
    // is valid in m_reg_data.
    m_reg_valid.resize (reg_info.GetNumRegisters());

    // Make a heap based buffer that is big enough to store all registers
    DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
    m_reg_data.SetData (reg_data_sp);
    m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
}

//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
{
}

void
GDBRemoteRegisterContext::InvalidateAllRegisters ()
{
    SetAllRegisterValid (false);
}

void
GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
{
    std::vector<bool>::iterator pos, end = m_reg_valid.end();
    for (pos = m_reg_valid.begin(); pos != end; ++pos)
        *pos = b;
}

size_t
GDBRemoteRegisterContext::GetRegisterCount ()
{
    return m_reg_info.GetNumRegisters ();
}

const RegisterInfo *
GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
{
    return m_reg_info.GetRegisterInfoAtIndex (reg);
}

size_t
GDBRemoteRegisterContext::GetRegisterSetCount ()
{
    return m_reg_info.GetNumRegisterSets ();
}



const RegisterSet *
GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
{
    return m_reg_info.GetRegisterSet (reg_set);
}



bool
GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
{
    // Read the register
    if (ReadRegisterBytes (reg_info, m_reg_data))
    {
        const bool partial_data_ok = false;
        Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
        return error.Success();
    }
    return false;
}

bool
GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
{
    const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
    if (reg_info == NULL)
        return false;

    // Invalidate if needed
    InvalidateIfNeeded(false);

    const uint32_t reg_byte_size = reg_info->byte_size;
    const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
    bool success = bytes_copied == reg_byte_size;
    if (success)
    {
        SetRegisterIsValid(reg, true);
    }
    else if (bytes_copied > 0)
    {
        // Only set register is valid to false if we copied some bytes, else
        // leave it as it was.
        SetRegisterIsValid(reg, false);
    }
    return success;
}

bool
GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, uint64_t new_reg_val)
{
    const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
    if (reg_info == NULL)
        return false;

    // Early in process startup, we can get a thread that has an invalid byte order
    // because the process hasn't been completely set up yet (see the ctor where the
    // byte order is setfrom the process).  If that's the case, we can't set the
    // value here.
    if (m_reg_data.GetByteOrder() == eByteOrderInvalid)
    {
        return false;
    }

    // Invalidate if needed
    InvalidateIfNeeded (false);

    DataBufferSP buffer_sp (new DataBufferHeap (&new_reg_val, sizeof (new_reg_val)));
    DataExtractor data (buffer_sp, endian::InlHostByteOrder(), sizeof (void*));

    // If our register context and our register info disagree, which should never happen, don't
    // overwrite past the end of the buffer.
    if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
        return false;

    // Grab a pointer to where we are going to put this register
    uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));

    if (dst == NULL)
        return false;


    if (data.CopyByteOrderedData (0,                            // src offset
                                  reg_info->byte_size,          // src length
                                  dst,                          // dst
                                  reg_info->byte_size,          // dst length
                                  m_reg_data.GetByteOrder()))   // dst byte order
    {
        SetRegisterIsValid (reg, true);
        return true;
    }
    return false;
}

// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
bool
GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info,
                                                GDBRemoteCommunicationClient &gdb_comm)
{
    const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
    const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
    StringExtractorGDBRemote response;
    if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg, response))
        return PrivateSetRegisterValue (lldb_reg, response);
    return false;
}

bool
GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
{
    ExecutionContext exe_ctx (CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == NULL || thread == NULL)
        return false;

    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());

    InvalidateIfNeeded(false);

    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

    if (!GetRegisterIsValid(reg))
    {
        if (m_read_all_at_once)
        {
            StringExtractorGDBRemote response;
            if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response))
                return false;
            if (response.IsNormalResponse())
                if (response.GetHexBytes(const_cast<void *>(reinterpret_cast<const void *>(m_reg_data.GetDataStart())),
                                         m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
                    SetAllRegisterValid (true);
        }
        else if (reg_info->value_regs)
        {
            // Process this composite register request by delegating to the constituent
            // primordial registers.
            
            // Index of the primordial register.
            bool success = true;
            for (uint32_t idx = 0; success; ++idx)
            {
                const uint32_t prim_reg = reg_info->value_regs[idx];
                if (prim_reg == LLDB_INVALID_REGNUM)
                    break;
                // We have a valid primordial register as our constituent.
                // Grab the corresponding register info.
                const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
                if (prim_reg_info == NULL)
                    success = false;
                else
                {
                    // Read the containing register if it hasn't already been read
                    if (!GetRegisterIsValid(prim_reg))
                        success = GetPrimordialRegister(prim_reg_info, gdb_comm);
                }
            }

            if (success)
            {
                // If we reach this point, all primordial register requests have succeeded.
                // Validate this composite register.
                SetRegisterIsValid (reg_info, true);
            }
        }
        else
        {
            // Get each register individually
            GetPrimordialRegister(reg_info, gdb_comm);
        }

        // Make sure we got a valid register value after reading it
        if (!GetRegisterIsValid(reg))
            return false;
    }

    if (&data != &m_reg_data)
    {
#if defined (LLDB_CONFIGURATION_DEBUG)
        assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
#endif  
        // If our register context and our register info disagree, which should never happen, don't
        // read past the end of the buffer.
        if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
            return false;

        // If we aren't extracting into our own buffer (which
        // only happens when this function is called from
        // ReadRegisterValue(uint32_t, Scalar&)) then
        // we transfer bytes from our buffer into the data
        // buffer that was passed in

        data.SetByteOrder (m_reg_data.GetByteOrder());
        data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
    }
    return true;
}

bool
GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
                                         const RegisterValue &value)
{
    DataExtractor data;
    if (value.GetData (data))
        return WriteRegisterBytes (reg_info, data, 0);
    return false;
}

// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
bool
GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info,
                                                GDBRemoteCommunicationClient &gdb_comm)
{
    StreamString packet;
    StringExtractorGDBRemote response;
    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
    packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
    packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
                              reg_info->byte_size,
                              endian::InlHostByteOrder(),
                              endian::InlHostByteOrder());

    if (gdb_comm.GetThreadSuffixSupported())
        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());

    // Invalidate just this register
    SetRegisterIsValid(reg, false);
    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                              packet.GetString().size(),
                                              response,
                                              false) == GDBRemoteCommunication::PacketResult::Success)
    {
        if (response.IsOKResponse())
            return true;
    }
    return false;
}

void
GDBRemoteRegisterContext::SyncThreadState(Process *process)
{
    // NB.  We assume our caller has locked the sequence mutex.
    
    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
    if (!gdb_comm.GetSyncThreadStateSupported())
        return;

    StreamString packet;
    StringExtractorGDBRemote response;
    packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                              packet.GetString().size(),
                                              response,
                                              false) == GDBRemoteCommunication::PacketResult::Success)
    {
        if (response.IsOKResponse())
            InvalidateAllRegisters();
    }
}

bool
GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
{
    ExecutionContext exe_ctx (CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == NULL || thread == NULL)
        return false;

    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
// FIXME: This check isn't right because IsRunning checks the Public state, but this
// is work you need to do - for instance in ShouldStop & friends - before the public
// state has been changed.
//    if (gdb_comm.IsRunning())
//        return false;


#if defined (LLDB_CONFIGURATION_DEBUG)
    assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
#endif

    // If our register context and our register info disagree, which should never happen, don't
    // overwrite past the end of the buffer.
    if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
        return false;

    // Grab a pointer to where we are going to put this register
    uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));

    if (dst == NULL)
        return false;


    if (data.CopyByteOrderedData (data_offset,                  // src offset
                                  reg_info->byte_size,          // src length
                                  dst,                          // dst
                                  reg_info->byte_size,          // dst length
                                  m_reg_data.GetByteOrder()))   // dst byte order
    {
        Mutex::Locker locker;
        if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
        {
            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
            ProcessSP process_sp (m_thread.GetProcess());
            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
            {
                StreamString packet;
                StringExtractorGDBRemote response;
                
                if (m_read_all_at_once)
                {
                    // Set all registers in one packet
                    packet.PutChar ('G');
                    packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
                                              m_reg_data.GetByteSize(),
                                              endian::InlHostByteOrder(),
                                              endian::InlHostByteOrder());

                    if (thread_suffix_supported)
                        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());

                    // Invalidate all register values
                    InvalidateIfNeeded (true);

                    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                                              packet.GetString().size(),
                                                              response,
                                                              false) == GDBRemoteCommunication::PacketResult::Success)
                    {
                        SetAllRegisterValid (false);
                        if (response.IsOKResponse())
                        {
                            return true;
                        }
                    }
                }
                else
                {
                    bool success = true;

                    if (reg_info->value_regs)
                    {
                        // This register is part of another register. In this case we read the actual
                        // register data for any "value_regs", and once all that data is read, we will
                        // have enough data in our register context bytes for the value of this register
                        
                        // Invalidate this composite register first.
                        
                        for (uint32_t idx = 0; success; ++idx)
                        {
                            const uint32_t reg = reg_info->value_regs[idx];
                            if (reg == LLDB_INVALID_REGNUM)
                                break;
                            // We have a valid primordial register as our constituent.
                            // Grab the corresponding register info.
                            const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
                            if (value_reg_info == NULL)
                                success = false;
                            else
                                success = SetPrimordialRegister(value_reg_info, gdb_comm);
                        }
                    }
                    else
                    {
                        // This is an actual register, write it
                        success = SetPrimordialRegister(reg_info, gdb_comm);
                    }

                    // Check if writing this register will invalidate any other register values?
                    // If so, invalidate them
                    if (reg_info->invalidate_regs)
                    {
                        for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
                             reg != LLDB_INVALID_REGNUM;
                             reg = reg_info->invalidate_regs[++idx])
                        {
                            SetRegisterIsValid(reg, false);
                        }
                    }
                    
                    return success;
                }
            }
        }
        else
        {
            Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
            if (log)
            {
                if (log->GetVerbose())
                {
                    StreamString strm;
                    gdb_comm.DumpHistory(strm);
                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
                }
                else
                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
            }
        }
    }
    return false;
}

bool
GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint &reg_checkpoint)
{
    ExecutionContext exe_ctx (CalculateThread());
    
    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == NULL || thread == NULL)
        return false;
    
    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());

    uint32_t save_id = 0;
    if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id))
    {
        reg_checkpoint.SetID(save_id);
        reg_checkpoint.GetData().reset();
        return true;
    }
    else
    {
        reg_checkpoint.SetID(0); // Invalid save ID is zero
        return ReadAllRegisterValues(reg_checkpoint.GetData());
    }
}

bool
GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint &reg_checkpoint)
{
    uint32_t save_id = reg_checkpoint.GetID();
    if (save_id != 0)
    {
        ExecutionContext exe_ctx (CalculateThread());
        
        Process *process = exe_ctx.GetProcessPtr();
        Thread *thread = exe_ctx.GetThreadPtr();
        if (process == NULL || thread == NULL)
            return false;
        
        GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
        
        return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
    }
    else
    {
        return WriteAllRegisterValues(reg_checkpoint.GetData());
    }
}

bool
GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
{
    ExecutionContext exe_ctx (CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == NULL || thread == NULL)
        return false;

    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());

    StringExtractorGDBRemote response;

    const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;

    Mutex::Locker locker;
    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
    {
        SyncThreadState(process);
        
        char packet[32];
        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
        ProcessSP process_sp (m_thread.GetProcess());
        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
        {
            int packet_len = 0;
            if (thread_suffix_supported)
                packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
            else
                packet_len = ::snprintf (packet, sizeof(packet), "g");
            assert (packet_len < ((int)sizeof(packet) - 1));

            if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
            {
                int packet_len = 0;
                if (thread_suffix_supported)
                    packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
                else
                    packet_len = ::snprintf (packet, sizeof(packet), "g");
                assert (packet_len < ((int)sizeof(packet) - 1));
    
                if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
                {
                    if (response.IsErrorResponse())
                        return false;
    
                    std::string &response_str = response.GetStringRef();
                    if (isxdigit(response_str[0]))
                    {
                        response_str.insert(0, 1, 'G');
                        if (thread_suffix_supported)
                        {
                            char thread_id_cstr[64];
                            ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
                            response_str.append (thread_id_cstr);
                        }
                        data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
                        return true;
                    }
                }
            }
            else
            {
                // For the use_g_packet == false case, we're going to read each register 
                // individually and store them as binary data in a buffer instead of as ascii
                // characters.
                const RegisterInfo *reg_info;

                // data_sp will take ownership of this DataBufferHeap pointer soon.
                DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0));

                for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
                {
                    if (reg_info->value_regs) // skip registers that are slices of real registers
                        continue;
                    ReadRegisterBytes (reg_info, m_reg_data);
                    // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer
                }
                memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());

                data_sp = reg_ctx;
                return true;
            }
        }
    }
    else
    {

        Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
        if (log)
        {
            if (log->GetVerbose())
            {
                StreamString strm;
                gdb_comm.DumpHistory(strm);
                log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
            }
            else
                log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
        }
    }

    data_sp.reset();
    return false;
}

bool
GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
{
    if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
        return false;

    ExecutionContext exe_ctx (CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == NULL || thread == NULL)
        return false;

    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());

    const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;

    StringExtractorGDBRemote response;
    Mutex::Locker locker;
    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
    {
        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
        ProcessSP process_sp (m_thread.GetProcess());
        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
        {
            // The data_sp contains the entire G response packet including the
            // G, and if the thread suffix is supported, it has the thread suffix
            // as well.
            const char *G_packet = (const char *)data_sp->GetBytes();
            size_t G_packet_len = data_sp->GetByteSize();
            if (use_g_packet
                && gdb_comm.SendPacketAndWaitForResponse (G_packet,
                                                          G_packet_len,
                                                          response,
                                                          false) == GDBRemoteCommunication::PacketResult::Success)
            {
                // The data_sp contains the entire G response packet including the
                // G, and if the thread suffix is supported, it has the thread suffix
                // as well.
                const char *G_packet = (const char *)data_sp->GetBytes();
                size_t G_packet_len = data_sp->GetByteSize();
                if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
                                                           G_packet_len,
                                                           response,
                                                           false) == GDBRemoteCommunication::PacketResult::Success)
                {
                    if (response.IsOKResponse())
                        return true;
                    else if (response.IsErrorResponse())
                    {
                        uint32_t num_restored = 0;
                        // We need to manually go through all of the registers and
                        // restore them manually
    
                        response.GetStringRef().assign (G_packet, G_packet_len);
                        response.SetFilePos(1); // Skip the leading 'G'

                        // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier.
                        // This means buffer will be a little more than 2x larger than necessary but we resize
                        // it down once we've extracted all hex ascii chars from the packet.
                        DataBufferHeap buffer (G_packet_len, 0);

                        const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(),
                                                                               buffer.GetByteSize(),
                                                                               '\xcc');

                        DataExtractor restore_data (buffer.GetBytes(),
                                                    buffer.GetByteSize(),
                                                    m_reg_data.GetByteOrder(),
                                                    m_reg_data.GetAddressByteSize());

                        if (bytes_extracted < restore_data.GetByteSize())
                            restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
    
                        const RegisterInfo *reg_info;

                        // The g packet contents may either include the slice registers (registers defined in
                        // terms of other registers, e.g. eax is a subset of rax) or not.  The slice registers 
                        // should NOT be in the g packet, but some implementations may incorrectly include them.
                        // 
                        // If the slice registers are included in the packet, we must step over the slice registers 
                        // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect.
                        // If the slice registers are not included, then using the byte_offset values into the
                        // data buffer is the best way to find individual register values.

                        uint64_t size_including_slice_registers = 0;
                        uint64_t size_not_including_slice_registers = 0;
                        uint64_t size_by_highest_offset = 0;

                        for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx)
                        {
                            size_including_slice_registers += reg_info->byte_size;
                            if (reg_info->value_regs == NULL)
                                size_not_including_slice_registers += reg_info->byte_size;
                            if (reg_info->byte_offset >= size_by_highest_offset)
                                size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
                        }

                        bool use_byte_offset_into_buffer;
                        if (size_by_highest_offset == restore_data.GetByteSize())
                        {
                            // The size of the packet agrees with the highest offset: + size in the register file
                            use_byte_offset_into_buffer = true;
                        }
                        else if (size_not_including_slice_registers == restore_data.GetByteSize())
                        {
                            // The size of the packet is the same as concatenating all of the registers sequentially,
                            // skipping the slice registers
                            use_byte_offset_into_buffer = true;
                        }
                        else if (size_including_slice_registers == restore_data.GetByteSize())
                        {
                            // The slice registers are present in the packet (when they shouldn't be).
                            // Don't try to use the RegisterInfo byte_offset into the restore_data, it will
                            // point to the wrong place.
                            use_byte_offset_into_buffer = false;
                        }
                        else {
                            // None of our expected sizes match the actual g packet data we're looking at.
                            // The most conservative approach here is to use the running total byte offset.
                            use_byte_offset_into_buffer = false;
                        }

                        // In case our register definitions don't include the correct offsets,
                        // keep track of the size of each reg & compute offset based on that.
                        uint32_t running_byte_offset = 0;
                        for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size)
                        {
                            // Skip composite aka slice registers (e.g. eax is a slice of rax).
                            if (reg_info->value_regs)
                                continue;

                            const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

                            uint32_t register_offset;
                            if (use_byte_offset_into_buffer)
                            {
                                register_offset = reg_info->byte_offset;
                            }
                            else
                            {
                                register_offset = running_byte_offset;
                            }

                            // Only write down the registers that need to be written
                            // if we are going to be doing registers individually.
                            bool write_reg = true;
                            const uint32_t reg_byte_size = reg_info->byte_size;
    
                            const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size);
                            if (restore_src)
                            {
                                StreamString packet;
                                packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
                                packet.PutBytesAsRawHex8 (restore_src,
                                                          reg_byte_size,
                                                          endian::InlHostByteOrder(),
                                                          endian::InlHostByteOrder());

                                if (thread_suffix_supported)
                                    packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());

                                SetRegisterIsValid(reg, false);
                                if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                                                          packet.GetString().size(),
                                                                          response,
                                                                          false) == GDBRemoteCommunication::PacketResult::Success)
                                {
                                    const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size);
                                    if (current_src)
                                        write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
                                }
    
                                if (write_reg)
                                {
                                    StreamString packet;
                                    packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
                                    packet.PutBytesAsRawHex8 (restore_src,
                                                              reg_byte_size,
                                                              endian::InlHostByteOrder(),
                                                              endian::InlHostByteOrder());
    
                                    if (thread_suffix_supported)
                                        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
    
                                    SetRegisterIsValid(reg, false);
                                    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                                                              packet.GetString().size(),
                                                                              response,
                                                                              false) == GDBRemoteCommunication::PacketResult::Success)
                                    {
                                        if (response.IsOKResponse())
                                            ++num_restored;
                                    }
                                }
                            }
                        }
                        return num_restored > 0;
                    }
                }
            }
            else
            {
                // For the use_g_packet == false case, we're going to write each register 
                // individually.  The data buffer is binary data in this case, instead of 
                // ascii characters.

                bool arm64_debugserver = false;
                if (m_thread.GetProcess().get())
                {
                    const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
                    if (arch.IsValid()
                        && arch.GetMachine() == llvm::Triple::aarch64
                        && arch.GetTriple().getVendor() == llvm::Triple::Apple
                        && arch.GetTriple().getOS() == llvm::Triple::IOS)
                    {
                        arm64_debugserver = true;
                    }
                }
                uint32_t num_restored = 0;
                const RegisterInfo *reg_info;
                for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
                {
                    if (reg_info->value_regs) // skip registers that are slices of real registers
                        continue;
                    // Skip the fpsr and fpcr floating point status/control register writing to
                    // work around a bug in an older version of debugserver that would lead to
                    // register context corruption when writing fpsr/fpcr.
                    if (arm64_debugserver &&
                        (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0))
                    {
                        continue;
                    }
                    StreamString packet;
                    packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
                    packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder());
                    if (thread_suffix_supported)
                        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());

                    SetRegisterIsValid(reg_info, false);
                    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                                              packet.GetString().size(),
                                                              response,
                                                              false) == GDBRemoteCommunication::PacketResult::Success)
                    {
                        if (response.IsOKResponse())
                            ++num_restored;
                    }
                }
                return num_restored > 0;
            }
        }
    }
    else
    {
        Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
        if (log)
        {
            if (log->GetVerbose())
            {
                StreamString strm;
                gdb_comm.DumpHistory(strm);
                log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
            }
            else
                log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
        }
    }
    return false;
}


uint32_t
GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num)
{
    return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
}


void
GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
{
    // For Advanced SIMD and VFP register mapping.
    static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
    static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
    static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
    static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
    static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
    static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
    static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
    static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
    static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
    static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
    static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
    static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
    static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
    static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
    static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
    static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
    static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
    static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
    static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
    static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
    static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
    static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
    static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
    static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
    static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
    static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
    static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
    static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
    static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
    static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
    static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
    static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)

    // This is our array of composite registers, with each element coming from the above register mappings.
    static uint32_t *g_composites[] = {
        g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
        g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
        g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
        g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
    };

    static RegisterInfo g_register_infos[] = {
//   NAME    ALT    SZ  OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB      VALUE REGS    INVALIDATE REGS
//   ======  ====== === ===  =============     ============    ===================  ===================  ======================  =============   ====      ==========    ===============
    { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },        NULL,              NULL},
    { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },        NULL,              NULL},
    { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },        NULL,              NULL},
    { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },        NULL,              NULL},
    { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },        NULL,              NULL},
    { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },        NULL,              NULL},
    { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },        NULL,              NULL},
    { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },        NULL,              NULL},
    { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },        NULL,              NULL},
    { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },        NULL,              NULL},
    { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },        NULL,              NULL},
    { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },        NULL,              NULL},
    { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },        NULL,              NULL},
    { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },        NULL,              NULL},
    { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },        NULL,              NULL},
    { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },        NULL,              NULL},
    { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },        NULL,              NULL},
    { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },        NULL,              NULL},
    { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },        NULL,              NULL},
    { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },        NULL,              NULL},
    { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },        NULL,              NULL},
    { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },        NULL,              NULL},
    { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },        NULL,              NULL},
    { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },        NULL,              NULL},
    { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },        NULL,              NULL},
    { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },        NULL,              NULL},
    { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },        NULL,              NULL},
    { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },        NULL,              NULL},
    { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },        NULL,              NULL},
    { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },        NULL,              NULL},
    { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },        NULL,              NULL},
    { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },        NULL,              NULL},
    { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },        NULL,              NULL},
    { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },        NULL,              NULL},
    { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },        NULL,              NULL},
    { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },        NULL,              NULL},
    { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },        NULL,              NULL},
    { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },        NULL,              NULL},
    { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },        NULL,              NULL},
    { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },        NULL,              NULL},
    { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },        NULL,              NULL},
    { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },        NULL,              NULL},
    { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },        NULL,              NULL},
    { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },        NULL,              NULL},
    { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },        NULL,              NULL},
    { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },        NULL,              NULL},
    { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },        NULL,              NULL},
    { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },        NULL,              NULL},
    { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },        NULL,              NULL},
    { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },        NULL,              NULL},
    { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },        NULL,              NULL},
    { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },        NULL,              NULL},
    { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },        NULL,              NULL},
    { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },        NULL,              NULL},
    { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },        NULL,              NULL},
    { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },        NULL,              NULL},
    { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },        NULL,              NULL},
    { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },        NULL,              NULL},
    { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },        NULL,              NULL},
    { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },        NULL,              NULL},
    { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },        NULL,              NULL},
    { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },        NULL,              NULL},
    { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },        NULL,              NULL},
    { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },        NULL,              NULL},
    { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },        NULL,              NULL},
    { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },        NULL,              NULL},
    { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },        NULL,              NULL},
    { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },        NULL,              NULL},
    { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },        NULL,              NULL},
    { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },        NULL,              NULL},
    { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },        NULL,              NULL},
    { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },        NULL,              NULL},
    { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },        NULL,              NULL},
    { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },        NULL,              NULL},
    { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },        NULL,              NULL},
    { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,              NULL},
    { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,              NULL},
    { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,              NULL},
    { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,              NULL},
    { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,              NULL},
    { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,              NULL},
    { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,              NULL},
    { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,              NULL},
    { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,              NULL},
    { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,              NULL},
    { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,              NULL},
    { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,              NULL},
    { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,              NULL},
    { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,              NULL},
    { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,              NULL},
    { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,              NULL},
    { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,              NULL},
    { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,              NULL},
    { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,              NULL},
    { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,              NULL},
    { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,              NULL},
    { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,              NULL},
    { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,              NULL},
    { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,              NULL},
    { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,              NULL},
    { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,              NULL},
    { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,              NULL},
    { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,              NULL},
    { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,              NULL},
    { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,              NULL},
    { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,              NULL},
    { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,              NULL}
    };

    static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
    static ConstString gpr_reg_set ("General Purpose Registers");
    static ConstString sfp_reg_set ("Software Floating Point Registers");
    static ConstString vfp_reg_set ("Floating Point Registers");
    size_t i;
    if (from_scratch)
    {
        // Calculate the offsets of the registers
        // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
        // "primordial" registers is important.  This enables us to calculate the offset of the composite
        // register by using the offset of its first primordial register.  For example, to calculate the
        // offset of q0, use s0's offset.
        if (g_register_infos[2].byte_offset == 0)
        {
            uint32_t byte_offset = 0;
            for (i=0; i<num_registers; ++i)
            {
                // For primordial registers, increment the byte_offset by the byte_size to arrive at the
                // byte_offset for the next register.  Otherwise, we have a composite register whose
                // offset can be calculated by consulting the offset of its first primordial register.
                if (!g_register_infos[i].value_regs)
                {
                    g_register_infos[i].byte_offset = byte_offset;
                    byte_offset += g_register_infos[i].byte_size;
                }
                else
                {
                    const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
                    g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
                }
            }
        }
        for (i=0; i<num_registers; ++i)
        {
            ConstString name;
            ConstString alt_name;
            if (g_register_infos[i].name && g_register_infos[i].name[0])
                name.SetCString(g_register_infos[i].name);
            if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
                alt_name.SetCString(g_register_infos[i].alt_name);

            if (i <= 15 || i == 25)
                AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
            else if (i <= 24)
                AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
            else
                AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
        }
    }
    else
    {
        // Add composite registers to our primordial registers, then.
        const size_t num_composites = llvm::array_lengthof(g_composites);
        const size_t num_dynamic_regs = GetNumRegisters();
        const size_t num_common_regs = num_registers - num_composites;
        RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;

        // First we need to validate that all registers that we already have match the non composite regs.
        // If so, then we can add the registers, else we need to bail
        bool match = true;
        if (num_dynamic_regs == num_common_regs)
        {
            for (i=0; match && i<num_dynamic_regs; ++i)
            {
                // Make sure all register names match
                if (m_regs[i].name && g_register_infos[i].name)
                {
                    if (strcmp(m_regs[i].name, g_register_infos[i].name))
                    {
                        match = false;
                        break;
                    }
                }
                
                // Make sure all register byte sizes match
                if (m_regs[i].byte_size != g_register_infos[i].byte_size)
                {
                    match = false;
                    break;
                }
            }
        }
        else
        {
            // Wrong number of registers.
            match = false;
        }
        // If "match" is true, then we can add extra registers.
        if (match)
        {
            for (i=0; i<num_composites; ++i)
            {
                ConstString name;
                ConstString alt_name;
                const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
                const char *reg_name = g_register_infos[first_primordial_reg].name;
                if (reg_name && reg_name[0])
                {
                    for (uint32_t j = 0; j < num_dynamic_regs; ++j)
                    {
                        const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
                        // Find a matching primordial register info entry.
                        if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
                        {
                            // The name matches the existing primordial entry.
                            // Find and assign the offset, and then add this composite register entry.
                            g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
                            name.SetCString(g_comp_register_infos[i].name);
                            AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
                        }
                    }
                }
            }
        }
    }
}