aboutsummaryrefslogtreecommitdiff
path: root/source/Plugins/Process/minidump/MinidumpParser.cpp
blob: 37b3709c09c1684af1304a94b3a003911af7ad6c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//===-- MinidumpParser.cpp ---------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// Project includes
#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"

// Other libraries and framework includes
#include "lldb/Target/MemoryRegionInfo.h"

// C includes
// C++ includes
#include <map>

using namespace lldb_private;
using namespace minidump;

llvm::Optional<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_buf_sp) {
  if (data_buf_sp->GetByteSize() < sizeof(MinidumpHeader)) {
    return llvm::None;
  }

  llvm::ArrayRef<uint8_t> header_data(data_buf_sp->GetBytes(),
                                      sizeof(MinidumpHeader));
  const MinidumpHeader *header = MinidumpHeader::Parse(header_data);

  if (header == nullptr) {
    return llvm::None;
  }

  lldb::offset_t directory_list_offset = header->stream_directory_rva;
  // check if there is enough data for the parsing of the directory list
  if ((directory_list_offset +
       sizeof(MinidumpDirectory) * header->streams_count) >
      data_buf_sp->GetByteSize()) {
    return llvm::None;
  }

  const MinidumpDirectory *directory = nullptr;
  Error error;
  llvm::ArrayRef<uint8_t> directory_data(
      data_buf_sp->GetBytes() + directory_list_offset,
      sizeof(MinidumpDirectory) * header->streams_count);
  llvm::DenseMap<uint32_t, MinidumpLocationDescriptor> directory_map;

  for (uint32_t i = 0; i < header->streams_count; ++i) {
    error = consumeObject(directory_data, directory);
    if (error.Fail()) {
      return llvm::None;
    }
    directory_map[static_cast<const uint32_t>(directory->stream_type)] =
        directory->location;
  }

  return MinidumpParser(data_buf_sp, header, std::move(directory_map));
}

MinidumpParser::MinidumpParser(
    const lldb::DataBufferSP &data_buf_sp, const MinidumpHeader *header,
    llvm::DenseMap<uint32_t, MinidumpLocationDescriptor> &&directory_map)
    : m_data_sp(data_buf_sp), m_header(header), m_directory_map(directory_map) {
}

llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
  return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
                                 m_data_sp->GetByteSize());
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetStream(MinidumpStreamType stream_type) {
  auto iter = m_directory_map.find(static_cast<uint32_t>(stream_type));
  if (iter == m_directory_map.end())
    return {};

  // check if there is enough data
  if (iter->second.rva + iter->second.data_size > m_data_sp->GetByteSize())
    return {};

  return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes() + iter->second.rva,
                                 iter->second.data_size);
}

llvm::Optional<std::string> MinidumpParser::GetMinidumpString(uint32_t rva) {
  auto arr_ref = m_data_sp->GetData();
  if (rva > arr_ref.size())
    return llvm::None;
  arr_ref = arr_ref.drop_front(rva);
  return parseMinidumpString(arr_ref);
}

llvm::ArrayRef<MinidumpThread> MinidumpParser::GetThreads() {
  llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ThreadList);

  if (data.size() == 0)
    return llvm::None;

  return MinidumpThread::ParseThreadList(data);
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const MinidumpThread &td) {
  if (td.thread_context.rva + td.thread_context.data_size > GetData().size())
    return {};

  return GetData().slice(td.thread_context.rva, td.thread_context.data_size);
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const MinidumpThread &td) {
  // On Windows, a 32-bit process can run on a 64-bit machine under
  // WOW64. If the minidump was captured with a 64-bit debugger, then
  // the CONTEXT we just grabbed from the mini_dump_thread is the one
  // for the 64-bit "native" process rather than the 32-bit "guest"
  // process we care about.  In this case, we can get the 32-bit CONTEXT
  // from the TEB (Thread Environment Block) of the 64-bit process.
  auto teb_mem = GetMemory(td.teb, sizeof(TEB64));
  if (teb_mem.empty())
    return {};

  const TEB64 *wow64teb;
  Error error = consumeObject(teb_mem, wow64teb);
  if (error.Fail())
    return {};

  // Slot 1 of the thread-local storage in the 64-bit TEB points to a
  // structure that includes the 32-bit CONTEXT (after a ULONG).
  // See:  https://msdn.microsoft.com/en-us/library/ms681670.aspx
  auto context =
      GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
  if (context.size() < sizeof(MinidumpContext_x86_32))
    return {};

  return context;
  // NOTE:  We don't currently use the TEB for anything else.  If we
  // need it in the future, the 32-bit TEB is located according to the address
  // stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}

const MinidumpSystemInfo *MinidumpParser::GetSystemInfo() {
  llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::SystemInfo);

  if (data.size() == 0)
    return nullptr;

  return MinidumpSystemInfo::Parse(data);
}

ArchSpec MinidumpParser::GetArchitecture() {
  ArchSpec arch_spec;
  const MinidumpSystemInfo *system_info = GetSystemInfo();

  if (!system_info)
    return arch_spec;

  // TODO what to do about big endiand flavors of arm ?
  // TODO set the arm subarch stuff if the minidump has info about it

  llvm::Triple triple;
  triple.setVendor(llvm::Triple::VendorType::UnknownVendor);

  const MinidumpCPUArchitecture arch =
      static_cast<const MinidumpCPUArchitecture>(
          static_cast<const uint32_t>(system_info->processor_arch));

  switch (arch) {
  case MinidumpCPUArchitecture::X86:
    triple.setArch(llvm::Triple::ArchType::x86);
    break;
  case MinidumpCPUArchitecture::AMD64:
    triple.setArch(llvm::Triple::ArchType::x86_64);
    break;
  case MinidumpCPUArchitecture::ARM:
    triple.setArch(llvm::Triple::ArchType::arm);
    break;
  case MinidumpCPUArchitecture::ARM64:
    triple.setArch(llvm::Triple::ArchType::aarch64);
    break;
  default:
    triple.setArch(llvm::Triple::ArchType::UnknownArch);
    break;
  }

  const MinidumpOSPlatform os = static_cast<const MinidumpOSPlatform>(
      static_cast<const uint32_t>(system_info->platform_id));

  // TODO add all of the OSes that Minidump/breakpad distinguishes?
  switch (os) {
  case MinidumpOSPlatform::Win32S:
  case MinidumpOSPlatform::Win32Windows:
  case MinidumpOSPlatform::Win32NT:
  case MinidumpOSPlatform::Win32CE:
    triple.setOS(llvm::Triple::OSType::Win32);
    break;
  case MinidumpOSPlatform::Linux:
    triple.setOS(llvm::Triple::OSType::Linux);
    break;
  case MinidumpOSPlatform::MacOSX:
    triple.setOS(llvm::Triple::OSType::MacOSX);
    break;
  case MinidumpOSPlatform::Android:
    triple.setOS(llvm::Triple::OSType::Linux);
    triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
    break;
  default:
    triple.setOS(llvm::Triple::OSType::UnknownOS);
    break;
  }

  arch_spec.SetTriple(triple);

  return arch_spec;
}

const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
  llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MiscInfo);

  if (data.size() == 0)
    return nullptr;

  return MinidumpMiscInfo::Parse(data);
}

llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
  llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::LinuxProcStatus);

  if (data.size() == 0)
    return llvm::None;

  return LinuxProcStatus::Parse(data);
}

llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
  const MinidumpMiscInfo *misc_info = GetMiscInfo();
  if (misc_info != nullptr) {
    return misc_info->GetPid();
  }

  llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
  if (proc_status.hasValue()) {
    return proc_status->GetPid();
  }

  return llvm::None;
}

llvm::ArrayRef<MinidumpModule> MinidumpParser::GetModuleList() {
  llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ModuleList);

  if (data.size() == 0)
    return {};

  return MinidumpModule::ParseModuleList(data);
}

std::vector<const MinidumpModule *> MinidumpParser::GetFilteredModuleList() {
  llvm::ArrayRef<MinidumpModule> modules = GetModuleList();
  // map module_name -> pair(load_address, pointer to module struct in memory)
  llvm::StringMap<std::pair<uint64_t, const MinidumpModule *>> lowest_addr;

  std::vector<const MinidumpModule *> filtered_modules;

  llvm::Optional<std::string> name;
  std::string module_name;

  for (const auto &module : modules) {
    name = GetMinidumpString(module.module_name_rva);

    if (!name)
      continue;

    module_name = name.getValue();

    auto iter = lowest_addr.end();
    bool exists;
    std::tie(iter, exists) = lowest_addr.try_emplace(
        module_name, std::make_pair(module.base_of_image, &module));

    if (exists && module.base_of_image < iter->second.first)
      iter->second = std::make_pair(module.base_of_image, &module);
  }

  filtered_modules.reserve(lowest_addr.size());
  for (const auto &module : lowest_addr) {
    filtered_modules.push_back(module.second.second);
  }

  return filtered_modules;
}

const MinidumpExceptionStream *MinidumpParser::GetExceptionStream() {
  llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::Exception);

  if (data.size() == 0)
    return nullptr;

  return MinidumpExceptionStream::Parse(data);
}

llvm::Optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
  llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryList);
  llvm::ArrayRef<uint8_t> data64 = GetStream(MinidumpStreamType::Memory64List);

  if (data.empty() && data64.empty())
    return llvm::None;

  if (!data.empty()) {
    llvm::ArrayRef<MinidumpMemoryDescriptor> memory_list =
        MinidumpMemoryDescriptor::ParseMemoryList(data);

    if (memory_list.empty())
      return llvm::None;

    for (const auto &memory_desc : memory_list) {
      const MinidumpLocationDescriptor &loc_desc = memory_desc.memory;
      const lldb::addr_t range_start = memory_desc.start_of_memory_range;
      const size_t range_size = loc_desc.data_size;

      if (loc_desc.rva + loc_desc.data_size > GetData().size())
        return llvm::None;

      if (range_start <= addr && addr < range_start + range_size) {
        return minidump::Range(range_start,
                               GetData().slice(loc_desc.rva, range_size));
      }
    }
  }

  // Some Minidumps have a Memory64ListStream that captures all the heap
  // memory (full-memory Minidumps).  We can't exactly use the same loop as
  // above, because the Minidump uses slightly different data structures to
  // describe those

  if (!data64.empty()) {
    llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
    uint64_t base_rva;
    std::tie(memory64_list, base_rva) =
        MinidumpMemoryDescriptor64::ParseMemory64List(data64);

    if (memory64_list.empty())
      return llvm::None;

    for (const auto &memory_desc64 : memory64_list) {
      const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
      const size_t range_size = memory_desc64.data_size;

      if (base_rva + range_size > GetData().size())
        return llvm::None;

      if (range_start <= addr && addr < range_start + range_size) {
        return minidump::Range(range_start,
                               GetData().slice(base_rva, range_size));
      }
      base_rva += range_size;
    }
  }

  return llvm::None;
}

llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
                                                  size_t size) {
  // I don't have a sense of how frequently this is called or how many memory
  // ranges a Minidump typically has, so I'm not sure if searching for the
  // appropriate range linearly each time is stupid.  Perhaps we should build
  // an index for faster lookups.
  llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
  if (!range)
    return {};

  // There's at least some overlap between the beginning of the desired range
  // (addr) and the current range.  Figure out where the overlap begins and
  // how much overlap there is.

  const size_t offset = addr - range->start;

  if (addr < range->start || offset >= range->range_ref.size())
    return {};

  const size_t overlap = std::min(size, range->range_ref.size() - offset);
  return range->range_ref.slice(offset, overlap);
}

llvm::Optional<MemoryRegionInfo>
MinidumpParser::GetMemoryRegionInfo(lldb::addr_t load_addr) {
  MemoryRegionInfo info;
  llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryInfoList);
  if (data.empty())
    return llvm::None;

  std::vector<const MinidumpMemoryInfo *> mem_info_list =
      MinidumpMemoryInfo::ParseMemoryInfoList(data);
  if (mem_info_list.empty())
    return llvm::None;

  const auto yes = MemoryRegionInfo::eYes;
  const auto no = MemoryRegionInfo::eNo;

  const MinidumpMemoryInfo *next_entry = nullptr;
  for (const auto &entry : mem_info_list) {
    const auto head = entry->base_address;
    const auto tail = head + entry->region_size;

    if (head <= load_addr && load_addr < tail) {
      info.GetRange().SetRangeBase(
          (entry->state != uint32_t(MinidumpMemoryInfoState::MemFree))
              ? head
              : load_addr);
      info.GetRange().SetRangeEnd(tail);

      const uint32_t PageNoAccess =
          static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageNoAccess);
      info.SetReadable((entry->protect & PageNoAccess) == 0 ? yes : no);

      const uint32_t PageWritable =
          static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageWritable);
      info.SetWritable((entry->protect & PageWritable) != 0 ? yes : no);

      const uint32_t PageExecutable = static_cast<uint32_t>(
          MinidumpMemoryProtectionContants::PageExecutable);
      info.SetExecutable((entry->protect & PageExecutable) != 0 ? yes : no);

      const uint32_t MemFree =
          static_cast<uint32_t>(MinidumpMemoryInfoState::MemFree);
      info.SetMapped((entry->state != MemFree) ? yes : no);

      return info;
    } else if (head > load_addr &&
               (next_entry == nullptr || head < next_entry->base_address)) {
      // In case there is no region containing load_addr keep track of the
      // nearest region after load_addr so we can return the distance to it.
      next_entry = entry;
    }
  }

  // No containing region found. Create an unmapped region that extends to the
  // next region or LLDB_INVALID_ADDRESS
  info.GetRange().SetRangeBase(load_addr);
  info.GetRange().SetRangeEnd((next_entry != nullptr) ? next_entry->base_address
                                                      : LLDB_INVALID_ADDRESS);
  info.SetReadable(no);
  info.SetWritable(no);
  info.SetExecutable(no);
  info.SetMapped(no);

  // Note that the memory info list doesn't seem to contain ranges in kernel
  // space, so if you're walking a stack that has kernel frames, the stack may
  // appear truncated.
  return info;
}