aboutsummaryrefslogtreecommitdiff
path: root/source/Symbol/ArmUnwindInfo.cpp
blob: 95207cbe320d2ccf51be3237a5348718da577ceb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
//===-- ArmUnwindInfo.cpp ---------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include <vector>

#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Host/Endian.h"
#include "lldb/Symbol/ArmUnwindInfo.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "Utility/ARM_DWARF_Registers.h"

/*
 * Unwind information reader and parser for the ARM exception handling ABI
 *
 * Implemented based on:
 *     Exception Handling ABI for the ARM Architecture
 *     Document number: ARM IHI 0038A (current through ABI r2.09)
 *     Date of Issue: 25th January 2007, reissued 30th November 2012
 *     http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038a/IHI0038A_ehabi.pdf
 */

using namespace lldb;
using namespace lldb_private;

// Converts a prel31 avlue to lldb::addr_t with sign extension
static addr_t
Prel31ToAddr(uint32_t prel31)
{
    addr_t res = prel31;
    if (prel31 & (1<<30))
        res |= 0xffffffff80000000ULL;
    return res;
}

ArmUnwindInfo::ArmExidxEntry::ArmExidxEntry(uint32_t f, lldb::addr_t a, uint32_t d) :
    file_address(f), address(a), data(d)
{
}

bool
ArmUnwindInfo::ArmExidxEntry::operator<(const ArmExidxEntry& other) const
{
    return address < other.address;
}

ArmUnwindInfo::ArmUnwindInfo(const ObjectFile& objfile,
                             SectionSP& arm_exidx,
                             SectionSP& arm_extab) :
    m_byte_order(objfile.GetByteOrder()),
    m_arm_exidx_sp(arm_exidx),
    m_arm_extab_sp(arm_extab)
{
    objfile.ReadSectionData(arm_exidx.get(), m_arm_exidx_data);
    objfile.ReadSectionData(arm_extab.get(), m_arm_extab_data);

    addr_t exidx_base_addr = m_arm_exidx_sp->GetFileAddress();

    offset_t offset = 0;
    while (m_arm_exidx_data.ValidOffset(offset))
    {
        lldb::addr_t file_addr = exidx_base_addr + offset;
        lldb::addr_t addr = exidx_base_addr +
                            (addr_t)offset +
                            Prel31ToAddr(m_arm_exidx_data.GetU32(&offset));
        uint32_t data = m_arm_exidx_data.GetU32(&offset);
        m_exidx_entries.emplace_back(file_addr, addr, data);
    }

    // Sort the entries in the exidx section. The entries should be sorted inside the section but
    // some old compiler isn't sorted them.
    std::sort(m_exidx_entries.begin(), m_exidx_entries.end());
}

ArmUnwindInfo::~ArmUnwindInfo()
{
}

// Read a byte from the unwind instruction stream with the given offset.
// Custom function is required because have to red in order of significance within their containing
// word (most significant byte first) and in increasing word address order.
uint8_t
ArmUnwindInfo::GetByteAtOffset(const uint32_t* data, uint16_t offset) const
{
    uint32_t value = data[offset / 4];
    if (m_byte_order != endian::InlHostByteOrder())
        value = llvm::ByteSwap_32(value);
    return (value >> ((3 - (offset % 4)) * 8)) & 0xff;
}

uint64_t
ArmUnwindInfo::GetULEB128(const uint32_t* data, uint16_t& offset, uint16_t max_offset) const
{
    uint64_t result = 0;
    uint8_t shift = 0;
    while (offset < max_offset)
    {
        uint8_t byte = GetByteAtOffset(data, offset++);
        result |= (uint64_t)(byte & 0x7f) << shift;
        if ((byte & 0x80) == 0)
            break;
        shift += 7;
    }
    return result;
}

bool
ArmUnwindInfo::GetUnwindPlan(Target &target, const Address& addr, UnwindPlan& unwind_plan)
{
    const uint32_t* data = (const uint32_t*)GetExceptionHandlingTableEntry(addr);
    if (data == nullptr)
        return false; // No unwind information for the function

    if (data[0] == 0x1)
        return false; // EXIDX_CANTUNWIND

    uint16_t byte_count = 0;
    uint16_t byte_offset = 0;
    if (data[0] & 0x80000000)
    {
        switch ((data[0] >> 24) & 0x0f)
        {
            case 0:
                byte_count = 4;
                byte_offset = 1;
                break;
            case 1:
            case 2:
                byte_count = 4 * ((data[0] >> 16) & 0xff) + 4;
                byte_offset = 2;
                break;
            default:
                // Unhandled personality routine index
                return false;
        }
    }
    else
    {
        byte_count = 4 * ((data[1] >> 24) & 0xff) + 8;
        byte_offset = 5;
    }

    uint8_t vsp_reg = dwarf_sp;
    int32_t vsp = 0;
    std::vector<std::pair<uint32_t, int32_t>> register_offsets; // register -> (offset from vsp_reg)

    while (byte_offset < byte_count)
    {
        uint8_t byte1 = GetByteAtOffset(data, byte_offset++);
        if ((byte1&0xc0) == 0x00)
        {
            // 00xxxxxx
            // vsp = vsp + (xxxxxx << 2) + 4. Covers range 0x04-0x100 inclusive
            vsp += ((byte1 & 0x3f) << 2) + 4;
        }
        else if ((byte1&0xc0) == 0x40)
        {
            // 01xxxxxx
            // vsp = vsp – (xxxxxx << 2) - 4. Covers range 0x04-0x100 inclusive
            vsp -= ((byte1 & 0x3f) << 2) + 4;
        }
        else if ((byte1&0xf0) == 0x80)
        {
            if (byte_offset >= byte_count)
                return false;

            uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
            if (byte1 == 0x80 && byte2 == 0)
            {
                // 10000000 00000000
                // Refuse to unwind (for example, out of a cleanup) (see remark a)
                return false;
            }
            else
            {
                // 1000iiii iiiiiiii (i not all 0)
                // Pop up to 12 integer registers under masks {r15-r12}, {r11-r4} (see remark b)
                uint16_t regs = ((byte1&0x0f) << 8) | byte2;
                for (uint8_t i = 0; i < 12; ++i)
                {
                    if (regs & (1<<i))
                    {
                        register_offsets.emplace_back(dwarf_r4 + i, vsp);
                        vsp += 4;
                    }
                }
            }
        }
        else if ((byte1&0xff) == 0x9d)
        {
            // 10011101
            // Reserved as prefix for ARM register to register moves
            return false;
        }
        else if ((byte1&0xff) == 0x9f)
        {
            // 10011111
            // Reserved as prefix for Intel Wireless MMX register to register moves
            return false;
        }
        else if ((byte1&0xf0) == 0x90)
        {
            // 1001nnnn (nnnn != 13,15)
            // Set vsp = r[nnnn]
            vsp_reg = dwarf_r0 + (byte1&0x0f);
        }
        else if ((byte1&0xf8) == 0xa0)
        {
            // 10100nnn
            // Pop r4-r[4+nnn]
            uint8_t n = byte1&0x7;
            for (uint8_t i = 0; i <= n; ++i)
            {
                register_offsets.emplace_back(dwarf_r4 + i, vsp);
                vsp += 4;
            }
        }
        else if ((byte1&0xf8) == 0xa8)
        {
            // 10101nnn
            // Pop r4-r[4+nnn], r14
            uint8_t n = byte1&0x7;
            for (uint8_t i = 0; i <= n; ++i)
            {
                register_offsets.emplace_back(dwarf_r4 + i, vsp);
                vsp += 4;
            }

            register_offsets.emplace_back(dwarf_lr, vsp);
            vsp += 4;
        }
        else if ((byte1&0xff) == 0xb0)
        {
            // 10110000
            // Finish (see remark c)
            break;
        }
        else if ((byte1&0xff) == 0xb1)
        {
            if (byte_offset >= byte_count)
                return false;

            uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
            if ((byte2&0xff) == 0x00)
            {
                // 10110001 00000000
                // Spare (see remark f)
                return false;
            }
            else if ((byte2&0xf0) == 0x00)
            {
                // 10110001 0000iiii (i not all 0)
                // Pop integer registers under mask {r3, r2, r1, r0}
                for (uint8_t i = 0; i < 4; ++i)
                {
                    if (byte2 & (1<<i))
                    {
                        register_offsets.emplace_back(dwarf_r0 + i, vsp);
                        vsp += 4;
                    }
                }
            }
            else
            {
                // 10110001 xxxxyyyy
                // Spare (xxxx != 0000)
                return false;
            }
        }
        else if ((byte1&0xff) == 0xb2)
        {
            // 10110010 uleb128
            // vsp = vsp + 0x204+ (uleb128 << 2)
            uint64_t uleb128 = GetULEB128(data, byte_offset, byte_count);
            vsp += 0x204 + (uleb128 << 2);
        }
        else if ((byte1&0xff) == 0xb3)
        {
            // 10110011 sssscccc
            // Pop VFP double-precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDX (see remark d)
            if (byte_offset >= byte_count)
                return false;

            uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
            uint8_t s = (byte2&0xf0) >> 4;
            uint8_t c = (byte2&0x0f) >> 0;
            for (uint8_t i = 0; i <= c; ++i)
            {
                register_offsets.emplace_back(dwarf_d0 + s + i, vsp);
                vsp += 8;
            }
            vsp += 4;
        }
        else if ((byte1&0xfc) == 0xb4)
        {
            // 101101nn
            // Spare (was Pop FPA)
            return false;
        }
        else if ((byte1&0xf8) == 0xb8)
        {
            // 10111nnn
            // Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDX (see remark d)
            uint8_t n = byte1&0x07;
            for (uint8_t i = 0; i <= n; ++i)
            {
                register_offsets.emplace_back(dwarf_d8 + i, vsp);
                vsp += 8;
            }
            vsp += 4;
        }
        else if ((byte1&0xf8) == 0xc0)
        {
            // 11000nnn (nnn != 6,7)
            // Intel Wireless MMX pop wR[10]-wR[10+nnn]

            // 11000110 sssscccc
            // Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc] (see remark e)

            // 11000111 00000000
            // Spare

            // 11000111 0000iiii
            // Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}

            // 11000111 xxxxyyyy
            // Spare (xxxx != 0000)

            return false;
        }
        else if ((byte1&0xff) == 0xc8)
        {
            // 11001000 sssscccc
            // Pop VFP double precision registers D[16+ssss]-D[16+ssss+cccc] saved (as if) by FSTMFDD (see remarks d,e)
            if (byte_offset >= byte_count)
                return false;

            uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
            uint8_t s = (byte2&0xf0) >> 4;
            uint8_t c = (byte2&0x0f) >> 0;
            for (uint8_t i = 0; i <= c; ++i)
            {
                register_offsets.emplace_back(dwarf_d16 + s + i, vsp);
                vsp += 8;
            }
        }
        else if ((byte1&0xff) == 0xc9)
        {
            // 11001001 sssscccc
            // Pop VFP double precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDD (see remark d)
            if (byte_offset >= byte_count)
                return false;

            uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
            uint8_t s = (byte2&0xf0) >> 4;
            uint8_t c = (byte2&0x0f) >> 0;
            for (uint8_t i = 0; i <= c; ++i)
            {
                register_offsets.emplace_back(dwarf_d0 + s + i, vsp);
                vsp += 8;
            }
        }
        else if ((byte1&0xf8) == 0xc8)
        {
            // 11001yyy
            // Spare (yyy != 000, 001)
            return false;
        }
        else if ((byte1&0xf8) == 0xc0)
        {
            // 11010nnn
            // Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDD (see remark d)
            uint8_t n = byte1&0x07;
            for (uint8_t i = 0; i <= n; ++i)
            {
                register_offsets.emplace_back(dwarf_d8 + i, vsp);
                vsp += 8;
            }
        }
        else if ((byte1&0xc0) == 0xc0)
        {
            // 11xxxyyy Spare (xxx != 000, 001, 010)
            return false;
        }
        else
        {
            return false;
        }
    }

    UnwindPlan::RowSP row = std::make_shared<UnwindPlan::Row>();
    row->SetOffset(0);
    row->GetCFAValue().SetIsRegisterPlusOffset(vsp_reg, vsp);
    
    bool have_location_for_pc = false;
    for (const auto& offset : register_offsets)
    {
        have_location_for_pc |= offset.first == dwarf_pc;
        row->SetRegisterLocationToAtCFAPlusOffset(offset.first, offset.second - vsp, true);
    }
    
    if (!have_location_for_pc)
    {
        UnwindPlan::Row::RegisterLocation lr_location;
        if (row->GetRegisterInfo(dwarf_lr, lr_location))
            row->SetRegisterInfo(dwarf_pc, lr_location);
        else
            row->SetRegisterLocationToRegister(dwarf_pc, dwarf_lr, false);
    }

    unwind_plan.AppendRow(row);
    unwind_plan.SetSourceName ("ARM.exidx unwind info");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    return true;
}

const uint8_t*
ArmUnwindInfo::GetExceptionHandlingTableEntry(const Address& addr)
{
    auto it = std::upper_bound(m_exidx_entries.begin(),
                               m_exidx_entries.end(),
                               ArmExidxEntry{0, addr.GetFileAddress(), 0});
    if (it == m_exidx_entries.begin())
        return nullptr;
    --it;

    if (it->data == 0x1)
        return nullptr; // EXIDX_CANTUNWIND

    if (it->data & 0x80000000)
        return (const uint8_t*)&it->data;

    addr_t data_file_addr = it->file_address + 4 + Prel31ToAddr(it->data);
    return m_arm_extab_data.GetDataStart() + (data_file_addr - m_arm_extab_sp->GetFileAddress());
}