aboutsummaryrefslogtreecommitdiff
path: root/sys/alpha/alpha/machdep.c
blob: f1c21bb58712b87a2370951300ca89cbc5ed7c10 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
/*-
 * Copyright (c) 1998 Doug Rabson
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD$
 */
/*-
 * Copyright (c) 1998 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
 * NASA Ames Research Center and by Chris G. Demetriou.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the NetBSD
 *	Foundation, Inc. and its contributors.
 * 4. Neither the name of The NetBSD Foundation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
/*
 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: Chris G. Demetriou
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_simos.h"
#include "opt_msgbuf.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/sysproto.h>
#include <sys/mutex.h>
#include <sys/ktr.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/lock.h>
#include <sys/pcpu.h>
#include <sys/malloc.h>
#include <sys/reboot.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/mbuf.h>
#include <sys/vmmeter.h>
#include <sys/msgbuf.h>
#include <sys/exec.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <sys/linker.h>
#include <net/netisr.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <sys/user.h>
#include <sys/ptrace.h>
#include <machine/clock.h>
#include <machine/md_var.h>
#include <machine/reg.h>
#include <machine/fpu.h>
#include <machine/pal.h>
#include <machine/cpuconf.h>
#include <machine/bootinfo.h>
#include <machine/rpb.h>
#include <machine/prom.h>
#include <machine/chipset.h>
#include <machine/vmparam.h>
#include <machine/elf.h>
#include <ddb/ddb.h>
#include <alpha/alpha/db_instruction.h>
#include <sys/vnode.h>
#include <fs/procfs/procfs.h>
#include <machine/sigframe.h>

u_int64_t cycles_per_usec;
u_int32_t cycles_per_sec;
int cold = 1;
struct platform platform;
alpha_chipset_t chipset;
struct bootinfo_kernel bootinfo;

struct mtx sched_lock;
struct mtx Giant;

struct	user *proc0paddr;

char machine[] = "alpha";
SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");

static char cpu_model[128];
SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD, cpu_model, 0, "");

#ifdef DDB
/* start and end of kernel symbol table */
void	*ksym_start, *ksym_end;
#endif

int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */

SYSCTL_INT(_machdep, CPU_UNALIGNED_PRINT, unaligned_print,
	CTLFLAG_RW, &alpha_unaligned_print, 0, "");

SYSCTL_INT(_machdep, CPU_UNALIGNED_FIX, unaligned_fix,
	CTLFLAG_RW, &alpha_unaligned_fix, 0, "");

SYSCTL_INT(_machdep, CPU_UNALIGNED_SIGBUS, unaligned_sigbus,
	CTLFLAG_RW, &alpha_unaligned_sigbus, 0, "");

static void cpu_startup __P((void *));
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)

struct msgbuf *msgbufp=0;

int Maxmem = 0;
long dumplo;

int	totalphysmem;		/* total amount of physical memory in system */
int	physmem;		/* physical memory used by NetBSD + some rsvd */
int	resvmem;		/* amount of memory reserved for PROM */
int	unusedmem;		/* amount of memory for OS that we don't use */
int	unknownmem;		/* amount of memory with an unknown use */
int	ncpus;			/* number of cpus */

vm_offset_t phys_avail[10];

static int
sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
{
	int error = sysctl_handle_int(oidp, 0, alpha_ptob(physmem), req);
	return (error);
}

SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
	0, 0, sysctl_hw_physmem, "I", "");

static int
sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
{
	int error = sysctl_handle_int(oidp, 0,
		alpha_ptob(physmem - cnt.v_wire_count), req);
	return (error);
}

SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
	0, 0, sysctl_hw_usermem, "I", "");

SYSCTL_INT(_hw, OID_AUTO, availpages, CTLFLAG_RD, &physmem, 0, "");

/* must be 2 less so 0 0 can signal end of chunks */
#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)

void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code);

static void identifycpu __P((void));

static vm_offset_t buffer_sva, buffer_eva;
vm_offset_t clean_sva, clean_eva;
static vm_offset_t pager_sva, pager_eva;

/*
 * Hooked into the shutdown chain; if the system is to be halted,
 * unconditionally drop back to the SRM console.
 */
static void
alpha_srm_shutdown(void *junk, int howto)
{
	if (howto & RB_HALT) {
		cpu_halt();
	}
}

static void
cpu_startup(dummy)
	void *dummy;
{
	register unsigned i;
	register caddr_t v;
	vm_offset_t maxaddr;
	vm_size_t size = 0;
	vm_offset_t firstaddr;
	vm_offset_t minaddr;

	/*
	 * Good {morning,afternoon,evening,night}.
	 */
	identifycpu();

	/* startrtclock(); */
#ifdef PERFMON
	perfmon_init();
#endif
	printf("real memory  = %ld (%ldK bytes)\n", alpha_ptob(Maxmem), alpha_ptob(Maxmem) / 1024);

	/*
	 * Display any holes after the first chunk of extended memory.
	 */
	if (bootverbose) {
		int indx;

		printf("Physical memory chunk(s):\n");
		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
			int size1 = phys_avail[indx + 1] - phys_avail[indx];

			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
			    phys_avail[indx + 1] - 1, size1, size1 / PAGE_SIZE);
		}
	}

	/*
	 * Calculate callout wheel size
	 */
	for (callwheelsize = 1, callwheelbits = 0;
	     callwheelsize < ncallout;
	     callwheelsize <<= 1, ++callwheelbits)
		;
	callwheelmask = callwheelsize - 1;

	/*
	 * Allocate space for system data structures.
	 * The first available kernel virtual address is in "v".
	 * As pages of kernel virtual memory are allocated, "v" is incremented.
	 * As pages of memory are allocated and cleared,
	 * "firstaddr" is incremented.
	 * An index into the kernel page table corresponding to the
	 * virtual memory address maintained in "v" is kept in "mapaddr".
	 */

	/*
	 * Make two passes.  The first pass calculates how much memory is
	 * needed and allocates it.  The second pass assigns virtual
	 * addresses to the various data structures.
	 */
	firstaddr = 0;
again:
	v = (caddr_t)firstaddr;

#define	valloc(name, type, num) \
	    (name) = (type *)v; v = (caddr_t)((name)+(num))
#define	valloclim(name, type, num, lim) \
	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))

	valloc(callout, struct callout, ncallout);
	valloc(callwheel, struct callout_tailq, callwheelsize);

	/*
	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
	 * For the first 64MB of ram nominally allocate sufficient buffers to
	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
	 * buffers to cover 1/20 of our ram over 64MB.
	 */

	if (nbuf == 0) {
		int factor = 4 * BKVASIZE / PAGE_SIZE;

		nbuf = 50;
		if (physmem > 1024)
			nbuf += min((physmem - 1024) / factor, 16384 / factor);
		if (physmem > 16384)
			nbuf += (physmem - 16384) * 2 / (factor * 5);
	}
	nswbuf = max(min(nbuf/4, 64), 16);

	valloc(swbuf, struct buf, nswbuf);
	valloc(buf, struct buf, nbuf);
	v = bufhashinit(v);

	/*
	 * End of first pass, size has been calculated so allocate memory
	 */
	if (firstaddr == 0) {
		size = (vm_size_t)(v - firstaddr);
		firstaddr = (vm_offset_t)kmem_alloc(kernel_map, round_page(size));
		if (firstaddr == 0)
			panic("startup: no room for tables");
		goto again;
	}

	/*
	 * End of second pass, addresses have been assigned
	 */
	if ((vm_size_t)(v - firstaddr) != size)
		panic("startup: table size inconsistency");

	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
				(nbuf*BKVASIZE));
	buffer_map->system_map = 1;
	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
				(nswbuf*MAXPHYS) + pager_map_size);
	pager_map->system_map = 1;
	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
				(16*(ARG_MAX+(PAGE_SIZE*3))));

	/*
	 * XXX: Mbuf system machine-specific initializations should
	 *      go here, if anywhere.
	 */

	/*
	 * Initialize callouts
	 */
	SLIST_INIT(&callfree);
	for (i = 0; i < ncallout; i++) {
		callout_init(&callout[i], 0);
		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
	}

	for (i = 0; i < callwheelsize; i++) {
		TAILQ_INIT(&callwheel[i]);
	}

	mtx_init(&callout_lock, "callout", MTX_SPIN | MTX_RECURSE);

#if defined(USERCONFIG)
#if defined(USERCONFIG_BOOT)
	if (1)
#else
        if (boothowto & RB_CONFIG)
#endif
	{
		userconfig();
		cninit();	/* the preferred console may have changed */
	}
#endif

	printf("avail memory = %ld (%ldK bytes)\n", ptoa(cnt.v_free_count),
	    ptoa(cnt.v_free_count) / 1024);

	/*
	 * Set up buffers, so they can be used to read disk labels.
	 */
	bufinit();
	vm_pager_bufferinit();
	EVENTHANDLER_REGISTER(shutdown_final, alpha_srm_shutdown, 0,
			      SHUTDOWN_PRI_LAST);
}

/*
 * Retrieve the platform name from the DSR.
 */
const char *
alpha_dsr_sysname()
{
	struct dsrdb *dsr;
	const char *sysname;

	/*
	 * DSR does not exist on early HWRPB versions.
	 */
	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
		return (NULL);

	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
	    sizeof(u_int64_t)));
	return (sysname);
}

/*
 * Lookup the system specified system variation in the provided table,
 * returning the model string on match.
 */
const char *
alpha_variation_name(u_int64_t variation,
		     const struct alpha_variation_table *avtp)
{
	int i;

	for (i = 0; avtp[i].avt_model != NULL; i++)
		if (avtp[i].avt_variation == variation)
			return (avtp[i].avt_model);
	return (NULL);
}

/*
 * Generate a default platform name based for unknown system variations.
 */
const char *
alpha_unknown_sysname()
{
	static char s[128];		/* safe size */

	snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx",
	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
	return ((const char *)s);
}

static void
identifycpu(void)
{
	u_int64_t type, major, minor;
	u_int64_t amask;
	struct pcs *pcsp;
	char *cpuname[] = {
		"unknown",		/* 0 */
		"EV3",			/* 1 */
		"EV4 (21064)",		/* 2 */
		"Simulation",		/* 3 */
		"LCA Family",		/* 4 */
		"EV5 (21164)",		/* 5 */
		"EV45 (21064A)",	/* 6 */
		"EV56 (21164A)",	/* 7 */
		"EV6 (21264)",		/* 8 */
		"PCA56 (21164PC)",	/* 9 */
		"PCA57 (21164PC)",	/* 10 */
		"EV67 (21264A)",	/* 11 */
		"EV68CB (21264C)"	/* 12 */
		"EV68AL (21264B)",	/* 13 */
		"EV68CX (21264D)"	/* 14 */
	};

	/*
	 * print out CPU identification information.
	 */
	printf("%s\n%s, %ldMHz\n", platform.family, platform.model,
	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
	printf("%ld byte page size, %d processor%s.\n",
	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
#if 0
	/* this isn't defined for any systems that we run on? */
	printf("serial number 0x%lx 0x%lx\n",
	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);

	/* and these aren't particularly useful! */
	printf("variation: 0x%lx, revision 0x%lx\n",
	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
#endif
 	pcsp = LOCATE_PCS(hwrpb, hwrpb->rpb_primary_cpu_id);
	/* cpu type */
	type = pcsp->pcs_proc_type;
	major = (type & PCS_PROC_MAJOR) >> PCS_PROC_MAJORSHIFT;
	minor = (type & PCS_PROC_MINOR) >> PCS_PROC_MINORSHIFT;
	if (major < sizeof(cpuname)/sizeof(char *))
		printf("CPU: %s major=%lu minor=%lu",
			cpuname[major], major, minor);
	else
		printf("CPU: major=%lu minor=%lu\n", major, minor);
	/* amask */
	if (major >= PCS_PROC_EV56) {
		amask = 0xffffffff; /* 32 bit for printf */
		amask = (~alpha_amask(amask)) & amask;
		printf(" extensions=0x%b\n", (u_int32_t) amask,
			"\020"
			"\001BWX"
			"\002FIX"
			"\003CIX"
			"\011MVI"
			"\012PRECISE"
		);
	} else
		printf("\n");	
	/* PAL code */
	printf("OSF PAL rev: 0x%lx\n", pcsp->pcs_palrevisions[PALvar_OSF1]);
}

extern char kernel_text[], _end[];

void
alpha_init(pfn, ptb, bim, bip, biv)
	u_long pfn;		/* first free PFN number */
	u_long ptb;		/* PFN of current level 1 page table */
	u_long bim;		/* bootinfo magic */
	u_long bip;		/* bootinfo pointer */
	u_long biv;		/* bootinfo version */
{
	int phys_avail_cnt;
	char *bootinfo_msg, *bootinfo_booted_kernel;
	vm_offset_t kernstart, kernend;
	vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
	struct mddt *mddtp;
	struct mddt_cluster *memc;
	int i, mddtweird;
	int cputype;
	char *p;

	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */

	/*
	 * Turn off interrupts (not mchecks) and floating point.
	 * Make sure the instruction and data streams are consistent.
	 */
	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
	/* alpha_pal_wrfen(0); */
	ALPHA_TBIA();
	alpha_pal_imb();

	/*
	 * Get critical system information (if possible, from the
	 * information provided by the boot program).
	 */
	bootinfo_msg = NULL;
	bootinfo_booted_kernel = NULL;
	if (bim == BOOTINFO_MAGIC) {
		if (biv == 0) {		/* backward compat */
			biv = *(u_long *)bip;
			bip += 8;
		}
		switch (biv) {
		case 1: {
			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;

			bootinfo.ssym = v1p->ssym;
			bootinfo.esym = v1p->esym;
			bootinfo.kernend = v1p->kernend;
			bootinfo.modptr = v1p->modptr;
			bootinfo.envp = v1p->envp;
			/* hwrpb may not be provided by boot block in v1 */
			if (v1p->hwrpb != NULL) {
				bootinfo.hwrpb_phys =
				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
				bootinfo.hwrpb_size = v1p->hwrpbsize;
			} else {
				bootinfo.hwrpb_phys =
				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
				bootinfo.hwrpb_size =
				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
			}
			bcopy(v1p->boot_flags, bootinfo.boot_flags,
			    min(sizeof v1p->boot_flags,
			      sizeof bootinfo.boot_flags));
			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
			    min(sizeof v1p->booted_kernel,
			      sizeof bootinfo.booted_kernel));
			bootinfo_booted_kernel = bootinfo.booted_kernel;
			/* booted dev not provided in bootinfo */
			init_prom_interface((struct rpb *)
			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
                	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
			    sizeof bootinfo.booted_dev);
			break;
		}
		default:
			bootinfo_msg = "unknown bootinfo version";
			goto nobootinfo;
		}
	} else {
		bootinfo_msg = "boot program did not pass bootinfo";
	nobootinfo:
		bootinfo.ssym = (u_long)&_end;
		bootinfo.esym = (u_long)&_end;
#ifdef SIMOS
		{
			char* p = (char*)bootinfo.ssym + 8;
			if (p[EI_MAG0] == ELFMAG0
			    && p[EI_MAG1] == ELFMAG1
			    && p[EI_MAG2] == ELFMAG2
			    && p[EI_MAG3] == ELFMAG3) {
				bootinfo.ssym = (u_long) p;
				bootinfo.esym = (u_long)p + *(u_long*)(p - 8);
			}
		}
#endif
		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
		init_prom_interface((struct rpb *)HWRPB_ADDR);
		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
			    sizeof bootinfo.boot_flags);
#ifndef SIMOS
		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
			    sizeof bootinfo.booted_kernel);
#endif
		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
			    sizeof bootinfo.booted_dev);
	}

	/*
	 * Initialize the kernel's mapping of the RPB.  It's needed for
	 * lots of things.
	 */
	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);

	/*
	 * Remember how many cycles there are per microsecond, 
	 * so that we can use delay().  Round up, for safety.
	 */
	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;

	/*
	 * Remember how many cycles per closk for coping with missed
	 * clock interrupts.
	 */
	cycles_per_sec = hwrpb->rpb_cc_freq;

	/* Get the loader(8) metadata */
	preload_metadata = (caddr_t)bootinfo.modptr;
	kern_envp = bootinfo.envp;

	/* Do basic tuning, hz etc */
	init_param();

	/*
	 * Initalize the (temporary) bootstrap console interface, so
	 * we can use printf until the VM system starts being setup.
	 * The real console is initialized before then.
	 */
	init_bootstrap_console();

	/* OUTPUT NOW ALLOWED */

	/* delayed from above */
	if (bootinfo_msg)
		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
		       bootinfo_msg, bim, bip, biv);

	/*
	 * Point interrupt/exception vectors to our own.
	 */
	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);

	/*
	 * Clear pending machine checks and error reports, and enable
	 * system- and processor-correctable error reporting.
	 */
	alpha_pal_wrmces(alpha_pal_rdmces() &
			 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));

	/*
	 * Find out what hardware we're on, and do basic initialization.
	 */
	cputype = hwrpb->rpb_type;
	if (cputype < 0) {
		/*
		 * At least some white-box (NT) systems have SRM which
		 * reports a systype that's the negative of their
		 * blue-box (UNIX/OVMS) counterpart.
		 */
		cputype = -cputype;
	}
	
	if (cputype >= API_ST_BASE) {
		if (cputype >= napi_cpuinit + API_ST_BASE) {
			platform_not_supported(cputype);
			/* NOTREACHED */
		}
		cputype -= API_ST_BASE;
		api_cpuinit[cputype].init(cputype);
	} else {
		if (cputype >= ncpuinit) {
			platform_not_supported(cputype);
			/* NOTREACHED */
		}	
		cpuinit[cputype].init(cputype);
	}
	snprintf(cpu_model, sizeof(cpu_model), "%s", platform.model);

	/*
	 * Initalize the real console, so the the bootstrap console is
	 * no longer necessary.
	 */
	if (platform.cons_init)
		platform.cons_init();

	/* NO MORE FIRMWARE ACCESS ALLOWED */
#ifdef _PMAP_MAY_USE_PROM_CONSOLE
	/*
	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
	 */
#endif

	/*
	 * find out this system's page size
	 */
	if (hwrpb->rpb_page_size != PAGE_SIZE)
		panic("page size %ld != 8192?!", hwrpb->rpb_page_size);


	/*
	 * Find the beginning and end of the kernel (and leave a
	 * bit of space before the beginning for the bootstrap
	 * stack).
	 */
	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
#ifdef DDB
	ksym_start = (void *)bootinfo.ssym;
	ksym_end   = (void *)bootinfo.esym;
	kernend = (vm_offset_t)round_page(ksym_end);
#else
	kernend = (vm_offset_t)round_page(_end);
#endif
	/* But if the bootstrap tells us otherwise, believe it! */
	if (bootinfo.kernend)
		kernend = round_page(bootinfo.kernend);
	if (preload_metadata == NULL)
		printf("WARNING: loader(8) metadata is missing!\n");

	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
#ifdef SIMOS
	/* 
	 * SimOS console puts the bootstrap stack after kernel
	 */
	kernendpfn += 4;
#endif

	/*
	 * Find out how much memory is available, by looking at
	 * the memory cluster descriptors.  This also tries to do
	 * its best to detect things things that have never been seen
	 * before...
	 */
	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);

	/* MDDT SANITY CHECKING */
	mddtweird = 0;
	if (mddtp->mddt_cluster_cnt < 2) {
		mddtweird = 1;
		printf("WARNING: weird number of mem clusters: %ld\n",
		       mddtp->mddt_cluster_cnt);
	}

#ifdef DEBUG_CLUSTER
	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
#endif

	phys_avail_cnt = 0;
	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
		memc = &mddtp->mddt_clusters[i];
#ifdef DEBUG_CLUSTER
		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
		       memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
#endif
		totalphysmem += memc->mddt_pg_cnt;

		if (memc->mddt_usage & MDDT_mbz) {
			mddtweird = 1;
			printf("WARNING: mem cluster %d has weird "
			       "usage 0x%lx\n", i, memc->mddt_usage);
			unknownmem += memc->mddt_pg_cnt;
			continue;
		}
		if (memc->mddt_usage & MDDT_NONVOLATILE) {
			/* XXX should handle these... */
			printf("WARNING: skipping non-volatile mem "
			       "cluster %d\n", i);
			unusedmem += memc->mddt_pg_cnt;
			continue;
		}
		if (memc->mddt_usage & MDDT_PALCODE) {
			resvmem += memc->mddt_pg_cnt;
			continue;
		}

		/*
		 * We have a memory cluster available for system
		 * software use.  We must determine if this cluster
		 * holds the kernel.
		 */
		/*
		 * XXX If the kernel uses the PROM console, we only use the
		 * XXX memory after the kernel in the first system segment,
		 * XXX to avoid clobbering prom mapping, data, etc.
		 */
		physmem += memc->mddt_pg_cnt;
		pfn0 = memc->mddt_pfn;
		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
		if (pfn0 <= kernendpfn && kernstartpfn <= pfn1) {
			/*
			 * Must compute the location of the kernel
			 * within the segment.
			 */
#ifdef DEBUG_CLUSTER
			printf("Cluster %d contains kernel\n", i);
#endif
			if (!pmap_uses_prom_console()) {
				if (pfn0 < kernstartpfn) {
					/*
					 * There is a chunk before the kernel.
					 */
#ifdef DEBUG_CLUSTER
					printf("Loading chunk before kernel: "
					       "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
#endif
					phys_avail[phys_avail_cnt] = alpha_ptob(pfn0);
					phys_avail[phys_avail_cnt+1] = alpha_ptob(kernstartpfn);
					phys_avail_cnt += 2;
				}
			}
			if (kernendpfn < pfn1) {
				/*
				 * There is a chunk after the kernel.
				 */
#ifdef DEBUG_CLUSTER
				printf("Loading chunk after kernel: "
				       "0x%lx / 0x%lx\n", kernendpfn, pfn1);
#endif
				phys_avail[phys_avail_cnt] = alpha_ptob(kernendpfn);
				phys_avail[phys_avail_cnt+1] = alpha_ptob(pfn1);
				phys_avail_cnt += 2;
			}
		} else {
			/*
			 * Just load this cluster as one chunk.
			 */
#ifdef DEBUG_CLUSTER
			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
			       pfn0, pfn1);
#endif
			phys_avail[phys_avail_cnt] = alpha_ptob(pfn0);
			phys_avail[phys_avail_cnt+1] = alpha_ptob(pfn1);
			phys_avail_cnt += 2;
			
		}
	}
	phys_avail[phys_avail_cnt] = 0;

	/*
	 * Dump out the MDDT if it looks odd...
	 */
	if (mddtweird) {
		printf("\n");
		printf("complete memory cluster information:\n");
		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
			printf("mddt %d:\n", i);
			printf("\tpfn %lx\n",
			       mddtp->mddt_clusters[i].mddt_pfn);
			printf("\tcnt %lx\n",
			       mddtp->mddt_clusters[i].mddt_pg_cnt);
			printf("\ttest %lx\n",
			       mddtp->mddt_clusters[i].mddt_pg_test);
			printf("\tbva %lx\n",
			       mddtp->mddt_clusters[i].mddt_v_bitaddr);
			printf("\tbpa %lx\n",
			       mddtp->mddt_clusters[i].mddt_p_bitaddr);
			printf("\tbcksum %lx\n",
			       mddtp->mddt_clusters[i].mddt_bit_cksum);
			printf("\tusage %lx\n",
			       mddtp->mddt_clusters[i].mddt_usage);
		}
		printf("\n");
	}

	Maxmem = physmem;

	/*
	 * Initialize error message buffer (at end of core).
	 */
	{
		size_t sz = round_page(MSGBUF_SIZE);
		int i = phys_avail_cnt - 2;

		/* shrink so that it'll fit in the last segment */
		if (phys_avail[i+1] - phys_avail[i] < sz)
			sz = phys_avail[i+1] - phys_avail[i];

		phys_avail[i+1] -= sz;
		msgbufp = (struct msgbuf*) ALPHA_PHYS_TO_K0SEG(phys_avail[i+1]);

		msgbufinit(msgbufp, sz);

		/* Remove the last segment if it now has no pages. */
		if (phys_avail[i] == phys_avail[i+1])
			phys_avail[i] = 0;

		/* warn if the message buffer had to be shrunk */
		if (sz != round_page(MSGBUF_SIZE))
			printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
			    round_page(MSGBUF_SIZE), sz);

	}

	/*
	 * Init mapping for u page(s) for proc 0
	 */
	proc0.p_addr = proc0paddr =
	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE);

	/*
	 * Setup the global data for the bootstrap cpu.
	 */
	{
		size_t sz = round_page(UPAGES * PAGE_SIZE);
		globalp = (struct globaldata *) pmap_steal_memory(sz);
		globaldata_init(globalp, alpha_pal_whami(), sz);
		alpha_pal_wrval((u_int64_t) globalp);
		PCPU_GET(next_asn) = 1;	/* 0 used for proc0 pmap */
#ifdef SMP
		proc0.p_md.md_kernnest = 1;
#endif
	}

	/*
	 * Initialize the virtual memory system, and set the
	 * page table base register in proc 0's PCB.
	 */
	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(alpha_ptob(ptb)),
	    hwrpb->rpb_max_asn);
	hwrpb->rpb_vptb = VPTBASE;
	hwrpb->rpb_checksum = hwrpb_checksum();


	/*
	 * Initialize the rest of proc 0's PCB, and cache its physical
	 * address.
	 */
	proc0.p_md.md_pcbpaddr =
	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);

	/*
	 * Set the kernel sp, reserving space for an (empty) trapframe,
	 * and make proc0's trapframe pointer point to it for sanity.
	 */
	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
	proc0.p_frame =
	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;

	/*
	 * Get the right value for the boot cpu's idle ptbr.
	 */
	globalp->gd_idlepcb.apcb_ptbr = proc0.p_addr->u_pcb.pcb_hw.apcb_ptbr;

	/* Setup curproc so that mutexes work */
	PCPU_SET(curproc, &proc0);
	PCPU_SET(spinlocks, NULL);

	LIST_INIT(&proc0.p_contested);

	/*
	 * Initialise mutexes.
	 */
	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
	mtx_init(&proc0.p_mtx, "process lock", MTX_DEF);
	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
	mtx_lock(&Giant);

	/*
	 * Look at arguments passed to us and compute boothowto.
	 */

#ifdef KADB
	boothowto |= RB_KDB;
#endif
/*	boothowto |= RB_KDB | RB_GDB; */
	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
		/*
		 * Note that we'd really like to differentiate case here,
		 * but the Alpha AXP Architecture Reference Manual
		 * says that we shouldn't.
		 */
		switch (*p) {
		case 'a': /* autoboot */
		case 'A':
			boothowto &= ~RB_SINGLE;
			break;

#ifdef DEBUG
		case 'c': /* crash dump immediately after autoconfig */
		case 'C':
			boothowto |= RB_DUMP;
			break;
#endif

#if defined(DDB)
		case 'd': /* break into the kernel debugger ASAP */
		case 'D':
			boothowto |= RB_KDB;
			break;
		case 'g': /* use kernel gdb */
		case 'G':
			boothowto |= RB_GDB;
			break;
#endif

		case 'h': /* always halt, never reboot */
		case 'H':
			boothowto |= RB_HALT;
			break;

#if 0
		case 'm': /* mini root present in memory */
		case 'M':
			boothowto |= RB_MINIROOT;
			break;
#endif

		case 'n': /* askname */
		case 'N':
			boothowto |= RB_ASKNAME;
			break;

		case 's': /* single-user (default, supported for sanity) */
		case 'S':
			boothowto |= RB_SINGLE;
			break;

		case 'v':
		case 'V':
			boothowto |= RB_VERBOSE;
			bootverbose = 1;
			break;

		default:
			printf("Unrecognized boot flag '%c'.\n", *p);
			break;
		}
	}

	/*
	 * Catch case of boot_verbose set in environment.
	 */
	if ((p = getenv("boot_verbose")) != NULL) {
		if (strcmp(p, "yes") == 0 || strcmp(p, "YES") == 0) {
			boothowto |= RB_VERBOSE;
			bootverbose = 1;
		}
	}

	/*
	 * Pick up kernelname.
	 */
	if (bootinfo_booted_kernel) {
		strncpy(kernelname, bootinfo_booted_kernel,
		   min(sizeof(kernelname), sizeof bootinfo.booted_kernel) - 1);
	} else if ((p = getenv("kernelname")) != NULL) {
		strncpy(kernelname, p, sizeof(kernelname) - 1);
	}

	/*
	 * Initialize debuggers, and break into them if appropriate.
	 */
#ifdef DDB
	kdb_init();
	if (boothowto & RB_KDB) {
		printf("Boot flags requested debugger\n");
		breakpoint();
	}
#endif

	/*
	 * Figure out the number of cpus in the box, from RPB fields.
	 * Really.  We mean it.
	 */
	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
		struct pcs *pcsp;

		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
		    (i * hwrpb->rpb_pcs_size));
		if ((pcsp->pcs_flags & PCS_PP) != 0)
			ncpus++;
	}

	/*
	 * Figure out our clock frequency, from RPB fields.
	 */
	hz = hwrpb->rpb_intr_freq >> 12;
	if (!(60 <= hz && hz <= 10240)) {
		hz = 1024;
#ifdef DIAGNOSTIC
		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
			hwrpb->rpb_intr_freq, hz);
#endif
	}

	hwrpb_restart_setup();

	alpha_pal_wrfen(0);
}

void
bzero(void *buf, size_t len)
{
	caddr_t p = buf;

	while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) {
		*p++ = 0;
		len--;
	}
	while (len >= sizeof(u_long) * 8) {
		*(u_long*) p = 0;
		*((u_long*) p + 1) = 0;
		*((u_long*) p + 2) = 0;
		*((u_long*) p + 3) = 0;
		len -= sizeof(u_long) * 8;
		*((u_long*) p + 4) = 0;
		*((u_long*) p + 5) = 0;
		*((u_long*) p + 6) = 0;
		*((u_long*) p + 7) = 0;
		p += sizeof(u_long) * 8;
	}
	while (len >= sizeof(u_long)) {
		*(u_long*) p = 0;
		len -= sizeof(u_long);
		p += sizeof(u_long);
	}
	while (len) {
		*p++ = 0;
		len--;
	}
}

void
DELAY(int n)
{
#ifndef	SIMOS
	unsigned long pcc0, pcc1, curcycle, cycles;
        int usec;

	if (n == 0)
		return;

        pcc0 = alpha_rpcc() & 0xffffffffUL;
	cycles = 0;
	usec = 0;

        while (usec <= n) {
		/*
		 * Get the next CPU cycle count. The assumption here
		 * is that we can't have wrapped twice past 32 bits worth
		 * of CPU cycles since we last checked.
		 */
		pcc1 = alpha_rpcc() & 0xffffffffUL;
		if (pcc1 < pcc0) {
			curcycle = (pcc1 + 0x100000000UL) - pcc0;
		} else {
			curcycle = pcc1 - pcc0;
		}

		/*
		 * We now have the number of processor cycles since we
		 * last checked. Add the current cycle count to the
		 * running total. If it's over cycles_per_usec, increment
		 * the usec counter.
		 */
		cycles += curcycle;
		while (cycles > cycles_per_usec) {
			usec++;
			cycles -= cycles_per_usec;
		}
		pcc0 = pcc1;
        }
#endif
}

/*
 * Send an interrupt to process.
 *
 * Stack is set up to allow sigcode stored
 * at top to call routine, followed by kcall
 * to sigreturn routine below.  After sigreturn
 * resets the signal mask, the stack, and the
 * frame pointer, it returns to the user
 * specified pc, psl.
 */
void
osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
{
	struct proc *p = curproc;
	osiginfo_t *sip, ksi;
	struct trapframe *frame;
	struct sigacts *psp;
	int oonstack, fsize, rndfsize;

	frame = p->p_frame;
	oonstack = sigonstack(alpha_pal_rdusp());
	fsize = sizeof ksi;
	rndfsize = ((fsize + 15) / 16) * 16;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	psp = p->p_sigacts;

	/*
	 * Allocate and validate space for the signal handler
	 * context. Note that if the stack is in P0 space, the
	 * call to grow() is a nop, and the useracc() check
	 * will fail if the process has not already allocated
	 * the space with a `brk'.
	 */
	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		sip = (osiginfo_t *)((caddr_t)p->p_sigstk.ss_sp +
		    p->p_sigstk.ss_size - rndfsize);
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
		p->p_sigstk.ss_flags |= SS_ONSTACK;
#endif
	} else
		sip = (osiginfo_t *)(alpha_pal_rdusp() - rndfsize);
	PROC_UNLOCK(p);

	(void)grow_stack(p, (u_long)sip);
	if (!useracc((caddr_t)sip, fsize, VM_PROT_WRITE)) {
		/*
		 * Process has trashed its stack; give it an illegal
		 * instruction to halt it in its tracks.
		 */
		PROC_LOCK(p);
		SIGACTION(p, SIGILL) = SIG_DFL;	
		SIGDELSET(p->p_sigignore, SIGILL);
		SIGDELSET(p->p_sigcatch, SIGILL);
		SIGDELSET(p->p_sigmask, SIGILL);
		psignal(p, SIGILL);
		PROC_UNLOCK(p);
		return;
	}

	/*
	 * Build the signal context to be used by sigreturn.
	 */
	ksi.si_sc.sc_onstack = (oonstack) ? 1 : 0;
	SIG2OSIG(*mask, ksi.si_sc.sc_mask);
	ksi.si_sc.sc_pc = frame->tf_regs[FRAME_PC];
	ksi.si_sc.sc_ps = frame->tf_regs[FRAME_PS];

	/* copy the registers. */
	fill_regs(p, (struct reg *)ksi.si_sc.sc_regs);
	ksi.si_sc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
	ksi.si_sc.sc_regs[R_SP] = alpha_pal_rdusp();

	/* save the floating-point state, if necessary, then copy it. */
	alpha_fpstate_save(p, 1);		/* XXX maybe write=0 */
	ksi.si_sc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksi.si_sc.sc_fpregs,
	    sizeof(struct fpreg));
	ksi.si_sc.sc_fp_control = p->p_addr->u_pcb.pcb_fp_control;
	bzero(ksi.si_sc.sc_reserved, sizeof ksi.si_sc.sc_reserved); /* XXX */
	ksi.si_sc.sc_xxx1[0] = 0;				/* XXX */
	ksi.si_sc.sc_xxx1[1] = 0;				/* XXX */
	ksi.si_sc.sc_traparg_a0 = frame->tf_regs[FRAME_TRAPARG_A0];
	ksi.si_sc.sc_traparg_a1 = frame->tf_regs[FRAME_TRAPARG_A1];
	ksi.si_sc.sc_traparg_a2 = frame->tf_regs[FRAME_TRAPARG_A2];
	ksi.si_sc.sc_xxx2[0] = 0;				/* XXX */
	ksi.si_sc.sc_xxx2[1] = 0;				/* XXX */
	ksi.si_sc.sc_xxx2[2] = 0;				/* XXX */
	/* Fill in POSIX parts */
	ksi.si_signo = sig;
	ksi.si_code = code;
	ksi.si_value.sigval_ptr = NULL;				/* XXX */

	/*
	 * copy the frame out to userland.
	 */
	(void) copyout((caddr_t)&ksi, (caddr_t)sip, fsize);

	/*
	 * Set up the registers to return to sigcode.
	 */
	frame->tf_regs[FRAME_PC] = PS_STRINGS - (esigcode - sigcode);
	frame->tf_regs[FRAME_A0] = sig;
	frame->tf_regs[FRAME_FLAGS] = 0; /* full restore */
	PROC_LOCK(p);
	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig))
		frame->tf_regs[FRAME_A1] = (u_int64_t)sip;
	else
		frame->tf_regs[FRAME_A1] = code;
	PROC_UNLOCK(p);
	frame->tf_regs[FRAME_A2] = (u_int64_t)&sip->si_sc;
	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;	/* t12 is pv */
	alpha_pal_wrusp((unsigned long)sip);
}

void
sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
{
	struct proc *p = curproc;
	struct trapframe *frame;
	struct sigacts *psp;
	struct sigframe sf, *sfp;
	int oonstack, rndfsize;

	PROC_LOCK(p);
	psp = p->p_sigacts;
	if (SIGISMEMBER(psp->ps_osigset, sig)) {
		osendsig(catcher, sig, mask, code);
		return;
	}

	frame = p->p_frame;
	oonstack = sigonstack(alpha_pal_rdusp());
	rndfsize = ((sizeof(sf) + 15) / 16) * 16;

	/* save user context */
	bzero(&sf, sizeof(struct sigframe));
	sf.sf_uc.uc_sigmask = *mask;
	sf.sf_uc.uc_stack = p->p_sigstk;
	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;

	fill_regs(p, (struct reg *)sf.sf_uc.uc_mcontext.mc_regs);
	sf.sf_uc.uc_mcontext.mc_regs[R_SP] = alpha_pal_rdusp();
	sf.sf_uc.uc_mcontext.mc_regs[R_ZERO] = 0xACEDBADE;   /* magic number */
	sf.sf_uc.uc_mcontext.mc_regs[R_PS] = frame->tf_regs[FRAME_PS];
	sf.sf_uc.uc_mcontext.mc_regs[R_PC] = frame->tf_regs[FRAME_PC];
	sf.sf_uc.uc_mcontext.mc_regs[R_TRAPARG_A0] =
	    frame->tf_regs[FRAME_TRAPARG_A0];
	sf.sf_uc.uc_mcontext.mc_regs[R_TRAPARG_A1] =
	    frame->tf_regs[FRAME_TRAPARG_A1];
	sf.sf_uc.uc_mcontext.mc_regs[R_TRAPARG_A2] =
	    frame->tf_regs[FRAME_TRAPARG_A2];

	/*
	 * Allocate and validate space for the signal handler
	 * context. Note that if the stack is in P0 space, the
	 * call to grow() is a nop, and the useracc() check
	 * will fail if the process has not already allocated
	 * the space with a `brk'.
	 */
	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		sfp = (struct sigframe *)((caddr_t)p->p_sigstk.ss_sp +
		    p->p_sigstk.ss_size - rndfsize);
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
		p->p_sigstk.ss_flags |= SS_ONSTACK;
#endif
	} else
		sfp = (struct sigframe *)(alpha_pal_rdusp() - rndfsize);
	PROC_UNLOCK(p);

	(void)grow_stack(p, (u_long)sfp);
#ifdef DEBUG
	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
		       sig, &sf, sfp);
#endif
	if (!useracc((caddr_t)sfp, sizeof(sf), VM_PROT_WRITE)) {
#ifdef DEBUG
		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
			printf("sendsig(%d): useracc failed on sig %d\n",
			       p->p_pid, sig);
#endif
		/*
		 * Process has trashed its stack; give it an illegal
		 * instruction to halt it in its tracks.
		 */
		PROC_LOCK(p);
		SIGACTION(p, SIGILL) = SIG_DFL;
		SIGDELSET(p->p_sigignore, SIGILL);
		SIGDELSET(p->p_sigcatch, SIGILL);
		SIGDELSET(p->p_sigmask, SIGILL);
		psignal(p, SIGILL);
		PROC_UNLOCK(p);
		return;
	}

	/* save the floating-point state, if necessary, then copy it. */
	alpha_fpstate_save(p, 1);
	sf.sf_uc.uc_mcontext.mc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
	bcopy(&p->p_addr->u_pcb.pcb_fp,
	      (struct fpreg *)sf.sf_uc.uc_mcontext.mc_fpregs,
	      sizeof(struct fpreg));
	sf.sf_uc.uc_mcontext.mc_fp_control = p->p_addr->u_pcb.pcb_fp_control;

#ifdef COMPAT_OSF1
	/*
	 * XXX Create an OSF/1-style sigcontext and associated goo.
	 */
#endif

	/*
	 * copy the frame out to userland.
	 */
	(void) copyout((caddr_t)&sf, (caddr_t)sfp, sizeof(sf));
#ifdef DEBUG
	if (sigdebug & SDB_FOLLOW)
		printf("sendsig(%d): sig %d sfp %p code %lx\n", p->p_pid, sig,
		    sfp, code);
#endif

	/*
	 * Set up the registers to return to sigcode.
	 */
	frame->tf_regs[FRAME_PC] = PS_STRINGS - (esigcode - sigcode);
	frame->tf_regs[FRAME_A0] = sig;
	PROC_LOCK(p);
	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
		frame->tf_regs[FRAME_A1] = (u_int64_t)&(sfp->sf_si);

		/* Fill in POSIX parts */
		sf.sf_si.si_signo = sig;
		sf.sf_si.si_code = code;
		sf.sf_si.si_addr = (void*)frame->tf_regs[FRAME_TRAPARG_A0];
	}
	else
		frame->tf_regs[FRAME_A1] = code;
	PROC_UNLOCK(p);

	frame->tf_regs[FRAME_A2] = (u_int64_t)&(sfp->sf_uc);
	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;	/* t12 is pv */
	frame->tf_regs[FRAME_FLAGS] = 0; /* full restore */
	alpha_pal_wrusp((unsigned long)sfp);

#ifdef DEBUG
	if (sigdebug & SDB_FOLLOW)
		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
		printf("sendsig(%d): sig %d returns\n",
		    p->p_pid, sig);
#endif
}

/*
 * System call to cleanup state after a signal
 * has been taken.  Reset signal mask and
 * stack state from context left by sendsig (above).
 * Return to previous pc and psl as specified by
 * context left by sendsig. Check carefully to
 * make sure that the user has not modified the
 * state to gain improper privileges.
 */
int
osigreturn(struct proc *p,
	struct osigreturn_args /* {
		struct osigcontext *sigcntxp;
	} */ *uap)
{
	struct osigcontext *scp, ksc;

	scp = uap->sigcntxp;

	/*
	 * Fetch the entire context structure at once for speed.
	 */
	if (copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
		return (EFAULT);

	/*
	 * XXX - Should we do this. What if we get a "handcrafted"
	 * but valid sigcontext that hasn't the magic number?
	 */
	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
		return (EINVAL);

	PROC_LOCK(p);
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
	/*
	 * Restore the user-supplied information
	 */
	if (ksc.sc_onstack)
		p->p_sigstk.ss_flags |= SS_ONSTACK;
	else
		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
#endif

	/*
	 * longjmp is still implemented by calling osigreturn. The new
	 * sigmask is stored in sc_reserved, sc_mask is only used for
	 * backward compatibility.
	 */
	SIGSETOLD(p->p_sigmask, ksc.sc_mask);
	SIG_CANTMASK(p->p_sigmask);
	PROC_UNLOCK(p);

	set_regs(p, (struct reg *)ksc.sc_regs);
	p->p_frame->tf_regs[FRAME_PC] = ksc.sc_pc;
	p->p_frame->tf_regs[FRAME_PS] =
	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
	p->p_frame->tf_regs[FRAME_FLAGS] = 0; /* full restore */

	alpha_pal_wrusp(ksc.sc_regs[R_SP]);

	/* XXX ksc.sc_ownedfp ? */
	alpha_fpstate_drop(p);
	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
	    sizeof(struct fpreg));
	p->p_addr->u_pcb.pcb_fp_control = ksc.sc_fp_control;
	return (EJUSTRETURN);
}

int
sigreturn(struct proc *p,
	struct sigreturn_args /* {
		ucontext_t *sigcntxp;
	} */ *uap)
{
	ucontext_t uc, *ucp;
	struct pcb *pcb;
	unsigned long val;

	if (((struct osigcontext*)uap->sigcntxp)->sc_regs[R_ZERO] == 0xACEDBADE)
		return osigreturn(p, (struct osigreturn_args *)uap);

	ucp = uap->sigcntxp;
	pcb = &p->p_addr->u_pcb;

#ifdef DEBUG
	if (sigdebug & SDB_FOLLOW)
	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, ucp);
#endif

	/*
	 * Fetch the entire context structure at once for speed.
	 */
	if (copyin((caddr_t)ucp, (caddr_t)&uc, sizeof(ucontext_t)))
		return (EFAULT);

	/*
	 * Restore the user-supplied information
	 */
	set_regs(p, (struct reg *)uc.uc_mcontext.mc_regs);
	val = (uc.uc_mcontext.mc_regs[R_PS] | ALPHA_PSL_USERSET) &
	    ~ALPHA_PSL_USERCLR;
	p->p_frame->tf_regs[FRAME_PS] = val;
	p->p_frame->tf_regs[FRAME_PC] = uc.uc_mcontext.mc_regs[R_PC];
	p->p_frame->tf_regs[FRAME_FLAGS] = 0; /* full restore */
	alpha_pal_wrusp(uc.uc_mcontext.mc_regs[R_SP]);

	PROC_LOCK(p);
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
	if (uc.uc_mcontext.mc_onstack & 1)
		p->p_sigstk.ss_flags |= SS_ONSTACK;
	else
		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
#endif

	p->p_sigmask = uc.uc_sigmask;
	SIG_CANTMASK(p->p_sigmask);
	PROC_UNLOCK(p);

	/* XXX ksc.sc_ownedfp ? */
	alpha_fpstate_drop(p);
	bcopy((struct fpreg *)uc.uc_mcontext.mc_fpregs,
	      &p->p_addr->u_pcb.pcb_fp, sizeof(struct fpreg));
	p->p_addr->u_pcb.pcb_fp_control = uc.uc_mcontext.mc_fp_control;

#ifdef DEBUG
	if (sigdebug & SDB_FOLLOW)
		printf("sigreturn(%d): returns\n", p->p_pid);
#endif
	return (EJUSTRETURN);
}

/*
 * Machine dependent boot() routine
 *
 * I haven't seen anything to put here yet
 * Possibly some stuff might be grafted back here from boot()
 */
void
cpu_boot(int howto)
{
}

/*
 * Shutdown the CPU as much as possible
 */
void
cpu_halt(void)
{
#ifdef	SMP
	printf("sending IPI_HALT to other processors\n");
	DELAY(1000000);
	ipi_all_but_self(IPI_HALT);
	DELAY(1000000);
	printf("Halting Self\n");
	DELAY(1000000);
#endif
	prom_halt(1);
}

/*
 * Clear registers on exec
 */
void
setregs(struct proc *p, u_long entry, u_long stack, u_long ps_strings)
{
	struct trapframe *tfp = p->p_frame;

	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
	p->p_addr->u_pcb.pcb_fp_control = 0;
	p->p_addr->u_pcb.pcb_fp.fpr_cr = (FPCR_DYN_NORMAL
					  | FPCR_INVD | FPCR_DZED
					  | FPCR_OVFD | FPCR_INED
					  | FPCR_UNFD);

	alpha_pal_wrusp(stack);
	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
	tfp->tf_regs[FRAME_PC] = entry & ~3;

	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
	tfp->tf_regs[FRAME_A3] = PS_STRINGS;		/* a3 = ps_strings */
	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
	tfp->tf_regs[FRAME_FLAGS] = 0;			/* full restore */

	p->p_md.md_flags &= ~MDP_FPUSED;
	alpha_fpstate_drop(p);
}

int
ptrace_set_pc(struct proc *p, unsigned long addr)
{
	struct trapframe *tp = p->p_frame;
	tp->tf_regs[FRAME_PC] = addr;
	return 0;
}

static int
ptrace_read_int(struct proc *p, vm_offset_t addr, u_int32_t *v)
{
	struct iovec iov;
	struct uio uio;
	iov.iov_base = (caddr_t) v;
	iov.iov_len = sizeof(u_int32_t);
	uio.uio_iov = &iov;
	uio.uio_iovcnt = 1;
	uio.uio_offset = (off_t)addr;
	uio.uio_resid = sizeof(u_int32_t);
	uio.uio_segflg = UIO_SYSSPACE;
	uio.uio_rw = UIO_READ;
	uio.uio_procp = p;
	return procfs_domem(curproc, p, NULL, &uio);
}

static int
ptrace_write_int(struct proc *p, vm_offset_t addr, u_int32_t v)
{
	struct iovec iov;
	struct uio uio;
	iov.iov_base = (caddr_t) &v;
	iov.iov_len = sizeof(u_int32_t);
	uio.uio_iov = &iov;
	uio.uio_iovcnt = 1;
	uio.uio_offset = (off_t)addr;
	uio.uio_resid = sizeof(u_int32_t);
	uio.uio_segflg = UIO_SYSSPACE;
	uio.uio_rw = UIO_WRITE;
	uio.uio_procp = p;
	return procfs_domem(curproc, p, NULL, &uio);
}

static u_int64_t
ptrace_read_register(struct proc *p, int regno)
{
	static int reg_to_frame[32] = {
		FRAME_V0,
		FRAME_T0,
		FRAME_T1,
		FRAME_T2,
		FRAME_T3,
		FRAME_T4,
		FRAME_T5,
		FRAME_T6,
		FRAME_T7,

		FRAME_S0,
		FRAME_S1,
		FRAME_S2,
		FRAME_S3,
		FRAME_S4,
		FRAME_S5,
		FRAME_S6,

		FRAME_A0,
		FRAME_A1,
		FRAME_A2,
		FRAME_A3,
		FRAME_A4,
		FRAME_A5,

		FRAME_T8,
		FRAME_T9,
		FRAME_T10,
		FRAME_T11,
		FRAME_RA,
		FRAME_T12,
		FRAME_AT,
		FRAME_GP,
		FRAME_SP,
		-1,		/* zero */
	};

	if (regno == R_ZERO)
		return 0;

	return p->p_frame->tf_regs[reg_to_frame[regno]];
}


static int
ptrace_clear_bpt(struct proc *p, struct mdbpt *bpt)
{
	return ptrace_write_int(p, bpt->addr, bpt->contents);
}

static int
ptrace_set_bpt(struct proc *p, struct mdbpt *bpt)
{
	int error;
	u_int32_t bpins = 0x00000080;
	error = ptrace_read_int(p, bpt->addr, &bpt->contents);
	if (error)
		return error;
	return ptrace_write_int(p, bpt->addr, bpins);
}

int
ptrace_clear_single_step(struct proc *p)
{
	if (p->p_md.md_flags & MDP_STEP2) {
		ptrace_clear_bpt(p, &p->p_md.md_sstep[1]);
		ptrace_clear_bpt(p, &p->p_md.md_sstep[0]);
		p->p_md.md_flags &= ~MDP_STEP2;
	} else if (p->p_md.md_flags & MDP_STEP1) {
		ptrace_clear_bpt(p, &p->p_md.md_sstep[0]);
		p->p_md.md_flags &= ~MDP_STEP1;
	}
	return 0;
}

int
ptrace_single_step(struct proc *p)
{
	int error;
	vm_offset_t pc = p->p_frame->tf_regs[FRAME_PC];
	alpha_instruction ins;
	vm_offset_t addr[2];	/* places to set breakpoints */
	int count = 0;		/* count of breakpoints */

	if (p->p_md.md_flags & (MDP_STEP1|MDP_STEP2))
		panic("ptrace_single_step: step breakpoints not removed");

	error = ptrace_read_int(p, pc, &ins.bits);
	if (error)
		return error;

	switch (ins.branch_format.opcode) {

	case op_j:
		/* Jump: target is register value */
		addr[0] = ptrace_read_register(p, ins.jump_format.rs) & ~3;
		count = 1;
		break;

	case op_br:
	case op_fbeq:
	case op_fblt:
	case op_fble:
	case op_bsr:
	case op_fbne:
	case op_fbge:
	case op_fbgt:
	case op_blbc:
	case op_beq:
	case op_blt:
	case op_ble:
	case op_blbs:
	case op_bne:
	case op_bge:
	case op_bgt:
		/* Branch: target is pc+4+4*displacement */
		addr[0] = pc + 4;
		addr[1] = pc + 4 + 4 * ins.branch_format.displacement;
		count = 2;
		break;

	default:
		addr[0] = pc + 4;
		count = 1;
	}

	p->p_md.md_sstep[0].addr = addr[0];
	error = ptrace_set_bpt(p, &p->p_md.md_sstep[0]);
	if (error)
		return error;
	if (count == 2) {
		p->p_md.md_sstep[1].addr = addr[1];
		error = ptrace_set_bpt(p, &p->p_md.md_sstep[1]);
		if (error) {
			ptrace_clear_bpt(p, &p->p_md.md_sstep[0]);
			return error;
		}
		p->p_md.md_flags |= MDP_STEP2;
	} else
		p->p_md.md_flags |= MDP_STEP1;

	return 0;
}

int ptrace_read_u_check(p, addr, len)
	struct proc *p;
	vm_offset_t addr;
	size_t len;
{
	vm_offset_t gap;

	if ((vm_offset_t) (addr + len) < addr)
		return EPERM;
	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
		return 0;

	gap = (char *) p->p_frame - (char *) p->p_addr;
	
	if ((vm_offset_t) addr < gap)
		return EPERM;
	if ((vm_offset_t) (addr + len) <= 
	    (vm_offset_t) (gap + sizeof(struct trapframe)))
		return 0;
	return EPERM;
}

int
ptrace_write_u(struct proc *p, vm_offset_t off, long data)
{
	vm_offset_t min;
#if 0
	struct trapframe frame_copy;
	struct trapframe *tp;
#endif

	/*
	 * Privileged kernel state is scattered all over the user area.
	 * Only allow write access to parts of regs and to fpregs.
	 */
	min = (char *)p->p_frame - (char *)p->p_addr;
	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
#if 0
		tp = p->p_frame;
		frame_copy = *tp;
		*(int *)((char *)&frame_copy + (off - min)) = data;
		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
		    !CS_SECURE(frame_copy.tf_cs))
			return (EINVAL);
#endif
		*(int*)((char *)p->p_addr + off) = data;
		return (0);
	}
	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_fp);
	if (off >= min && off <= min + sizeof(struct fpreg) - sizeof(int)) {
		*(int*)((char *)p->p_addr + off) = data;
		return (0);
	}
	return (EFAULT);
}

int
alpha_pa_access(vm_offset_t pa)
{
#if 0
	int i;

	for (i = 0; phys_avail[i] != 0; i += 2) {
		if (pa < phys_avail[i])
			continue;
		if (pa < phys_avail[i+1])
			return VM_PROT_READ|VM_PROT_WRITE;
	}
	return 0;
#else
	return VM_PROT_READ|VM_PROT_WRITE;
#endif
}

int
fill_regs(p, regs)
	struct proc *p;
	struct reg *regs;
{
	struct pcb *pcb = &p->p_addr->u_pcb;
	struct trapframe *tp = p->p_frame;

	tp = p->p_frame;
 
#define C(r)	regs->r_regs[R_ ## r] = tp->tf_regs[FRAME_ ## r]

	C(V0);
	C(T0); C(T1); C(T2); C(T3); C(T4); C(T5); C(T6); C(T7);
	C(S0); C(S1); C(S2); C(S3); C(S4); C(S5); C(S6);
	C(A0); C(A1); C(A2); C(A3); C(A4); C(A5);
	C(T8); C(T9); C(T10); C(T11);
	C(RA); C(T12); C(AT); C(GP);

#undef C

	regs->r_regs[R_ZERO] = tp->tf_regs[FRAME_PC];
	regs->r_regs[R_SP] = pcb->pcb_hw.apcb_usp;

	return (0);
}

int
set_regs(p, regs)
	struct proc *p;
	struct reg *regs;
{
	struct pcb *pcb = &p->p_addr->u_pcb;
	struct trapframe *tp = p->p_frame;

	tp = p->p_frame;

#define C(r)	tp->tf_regs[FRAME_ ## r] = regs->r_regs[R_ ## r]

	C(V0);
	C(T0); C(T1); C(T2); C(T3); C(T4); C(T5); C(T6); C(T7);
	C(S0); C(S1); C(S2); C(S3); C(S4); C(S5); C(S6);
	C(A0); C(A1); C(A2); C(A3); C(A4); C(A5);
	C(T8); C(T9); C(T10); C(T11);
	C(RA); C(T12); C(AT); C(GP);

#undef C

	tp->tf_regs[FRAME_PC] = regs->r_regs[R_ZERO];
	pcb->pcb_hw.apcb_usp = regs->r_regs[R_SP];

	return (0);
}

int
fill_fpregs(p, fpregs)
	struct proc *p;
	struct fpreg *fpregs;
{
	alpha_fpstate_save(p, 0);

	bcopy(&p->p_addr->u_pcb.pcb_fp, fpregs, sizeof *fpregs);
	return (0);
}

int
set_fpregs(p, fpregs)
	struct proc *p;
	struct fpreg *fpregs;
{
	alpha_fpstate_drop(p);

	bcopy(fpregs, &p->p_addr->u_pcb.pcb_fp, sizeof *fpregs);
	return (0);
}

#ifndef DDB
void
Debugger(const char *msg)
{
	printf("Debugger(\"%s\") called.\n", msg);
}
#endif /* no DDB */

#include <sys/disklabel.h>

/*
 * Determine the size of the transfer, and make sure it is
 * within the boundaries of the partition. Adjust transfer
 * if needed, and signal errors or early completion.
 */
int
bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
{
        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
        int labelsect = lp->d_partitions[0].p_offset;
        int maxsz = p->p_size,
                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;

        /* overwriting disk label ? */
        /* XXX should also protect bootstrap in first 8K */
        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
#if LABELSECTOR != 0
            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
#endif
            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
                bp->bio_error = EROFS;
                goto bad;
        }

#if     defined(DOSBBSECTOR) && defined(notyet)
        /* overwriting master boot record? */
        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
                bp->bio_error = EROFS;
                goto bad;
        }
#endif

        /* beyond partition? */
        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
                /* if exactly at end of disk, return an EOF */
                if (bp->bio_blkno == maxsz) {
                        bp->bio_resid = bp->bio_bcount;
                        return(0);
                }
                /* or truncate if part of it fits */
                sz = maxsz - bp->bio_blkno;
                if (sz <= 0) {
                        bp->bio_error = EINVAL;
                        goto bad;
                }
                bp->bio_bcount = sz << DEV_BSHIFT;
        }

        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
        return(1);

bad:
        bp->bio_flags |= BIO_ERROR;
        return(-1);

}

static int
sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
{
	int error;
	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
		req);
	if (!error && req->newptr)
		resettodr();
	return (error);
}

SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");

SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
	CTLFLAG_RW, &disable_rtc_set, 0, "");

SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
	CTLFLAG_RW, &wall_cmos_clock, 0, "");

void
alpha_fpstate_check(struct proc *p)
{
	/*
	 * For SMP, we should check the fpcurproc of each cpu.
	 */
#ifndef SMP
	critical_t s;

	s = critical_enter();
	if (p->p_addr->u_pcb.pcb_hw.apcb_flags & ALPHA_PCB_FLAGS_FEN)
		if (p != PCPU_GET(fpcurproc))
			panic("alpha_check_fpcurproc: bogus");
	critical_exit(s);
#endif
}

#define SET_FEN(p) \
	(p)->p_addr->u_pcb.pcb_hw.apcb_flags |= ALPHA_PCB_FLAGS_FEN

#define CLEAR_FEN(p) \
	(p)->p_addr->u_pcb.pcb_hw.apcb_flags &= ~ALPHA_PCB_FLAGS_FEN

/*
 * Save the floating point state in the pcb. Use this to get read-only
 * access to the floating point state. If write is true, the current
 * fp process is cleared so that fp state can safely be modified. The
 * process will automatically reload the changed state by generating a 
 * FEN trap.
 */
void
alpha_fpstate_save(struct proc *p, int write)
{
	critical_t s;

	s = critical_enter();
	if (p != NULL && p == PCPU_GET(fpcurproc)) {
		/*
		 * If curproc != fpcurproc, then we need to enable FEN 
		 * so that we can dump the fp state.
		 */
		alpha_pal_wrfen(1);

		/*
		 * Save the state in the pcb.
		 */
		savefpstate(&p->p_addr->u_pcb.pcb_fp);

		if (write) {
			/*
			 * If fpcurproc == curproc, just ask the
			 * PALcode to disable FEN, otherwise we must
			 * clear the FEN bit in fpcurproc's pcb.
			 */
			if (PCPU_GET(fpcurproc) == curproc)
				alpha_pal_wrfen(0);
			else
				CLEAR_FEN(PCPU_GET(fpcurproc));
			PCPU_SET(fpcurproc, NULL);
		} else {
			/*
			 * Make sure that we leave FEN enabled if
			 * curproc == fpcurproc. We must have at most
			 * one process with FEN enabled. Note that FEN 
			 * must already be set in fpcurproc's pcb.
			 */
			if (curproc != PCPU_GET(fpcurproc))
				alpha_pal_wrfen(0);
		}
	}
	critical_exit(s);
}

/*
 * Relinquish ownership of the FP state. This is called instead of
 * alpha_save_fpstate() if the entire FP state is being changed
 * (e.g. on sigreturn).
 */
void
alpha_fpstate_drop(struct proc *p)
{
	critical_t s;

	s = critical_enter();
	if (p == PCPU_GET(fpcurproc)) {
		if (p == curproc) {
			/*
			 * Disable FEN via the PALcode. This will
			 * clear the bit in the pcb as well.
			 */
			alpha_pal_wrfen(0);
		} else {
			/*
			 * Clear the FEN bit of the pcb.
			 */
			CLEAR_FEN(p);
		}
		PCPU_SET(fpcurproc, NULL);
	}
	critical_exit(s);
}

/*
 * Switch the current owner of the fp state to p, reloading the state
 * from the pcb.
 */
void
alpha_fpstate_switch(struct proc *p)
{
	critical_t s;

	/*
	 * Enable FEN so that we can access the fp registers.
	 */
	s = critical_enter();
	alpha_pal_wrfen(1);
	if (PCPU_GET(fpcurproc)) {
		/*
		 * Dump the old fp state if its valid.
		 */
		savefpstate(&PCPU_GET(fpcurproc)->p_addr->u_pcb.pcb_fp);
		CLEAR_FEN(PCPU_GET(fpcurproc));
	}

	/*
	 * Remember the new FP owner and reload its state.
	 */
	PCPU_SET(fpcurproc, p);
	restorefpstate(&PCPU_GET(fpcurproc)->p_addr->u_pcb.pcb_fp);

	/*
	 * If the new owner is curproc, leave FEN enabled, otherwise
	 * mark its PCB so that it gets FEN when we context switch to
	 * it later.
	 */
	if (p != curproc) {
		alpha_pal_wrfen(0);
		SET_FEN(p);
	}

	p->p_md.md_flags |= MDP_FPUSED;
	critical_exit(s);
}

/*
 * Initialise a struct globaldata.
 */
void
globaldata_init(struct globaldata *globaldata, int cpuid, size_t sz)
{
	bzero(globaldata, sz);
	globaldata->gd_idlepcbphys = vtophys((vm_offset_t) &globaldata->gd_idlepcb);
	globaldata->gd_idlepcb.apcb_ksp = (u_int64_t)
		((caddr_t) globaldata + sz - sizeof(struct trapframe));
	globaldata->gd_idlepcb.apcb_ptbr = proc0.p_addr->u_pcb.pcb_hw.apcb_ptbr;
	globaldata->gd_cpuid = cpuid;
	globaldata->gd_next_asn = 0;
	globaldata->gd_current_asngen = 1;
	globaldata_register(globaldata);
}