aboutsummaryrefslogtreecommitdiff
path: root/sys/amd64/amd64/efirt.c
blob: ea940d771c51b87dcec9dad1436722b3501fd681 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
/*-
 * Copyright (c) 2004 Marcel Moolenaar
 * Copyright (c) 2001 Doug Rabson
 * Copyright (c) 2016 The FreeBSD Foundation
 * All rights reserved.
 *
 * Portions of this software were developed by Konstantin Belousov
 * under sponsorship from the FreeBSD Foundation.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/efi.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/clock.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#include <isa/rtc.h>
#include <machine/fpu.h>
#include <machine/efi.h>
#include <machine/metadata.h>
#include <machine/md_var.h>
#include <machine/smp.h>
#include <machine/vmparam.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>

static struct efi_systbl *efi_systbl;
static struct efi_cfgtbl *efi_cfgtbl;
static struct efi_rt *efi_runtime;

static int efi_status2err[25] = {
	0,		/* EFI_SUCCESS */
	ENOEXEC,	/* EFI_LOAD_ERROR */
	EINVAL,		/* EFI_INVALID_PARAMETER */
	ENOSYS,		/* EFI_UNSUPPORTED */
	EMSGSIZE, 	/* EFI_BAD_BUFFER_SIZE */
	EOVERFLOW,	/* EFI_BUFFER_TOO_SMALL */
	EBUSY,		/* EFI_NOT_READY */
	EIO,		/* EFI_DEVICE_ERROR */
	EROFS,		/* EFI_WRITE_PROTECTED */
	EAGAIN,		/* EFI_OUT_OF_RESOURCES */
	EIO,		/* EFI_VOLUME_CORRUPTED */
	ENOSPC,		/* EFI_VOLUME_FULL */
	ENXIO,		/* EFI_NO_MEDIA */
	ESTALE,		/* EFI_MEDIA_CHANGED */
	ENOENT,		/* EFI_NOT_FOUND */
	EACCES,		/* EFI_ACCESS_DENIED */
	ETIMEDOUT,	/* EFI_NO_RESPONSE */
	EADDRNOTAVAIL,	/* EFI_NO_MAPPING */
	ETIMEDOUT,	/* EFI_TIMEOUT */
	EDOOFUS,	/* EFI_NOT_STARTED */
	EALREADY,	/* EFI_ALREADY_STARTED */
	ECANCELED,	/* EFI_ABORTED */
	EPROTO,		/* EFI_ICMP_ERROR */
	EPROTO,		/* EFI_TFTP_ERROR */
	EPROTO		/* EFI_PROTOCOL_ERROR */
};

static int
efi_status_to_errno(efi_status status)
{
	u_long code;

	code = status & 0x3ffffffffffffffful;
	return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
}

static struct mtx efi_lock;
static pml4_entry_t *efi_pml4;
static vm_object_t obj_1t1_pt;
static vm_page_t efi_pml4_page;

static void
efi_destroy_1t1_map(void)
{
	vm_page_t m;

	if (obj_1t1_pt != NULL) {
		VM_OBJECT_RLOCK(obj_1t1_pt);
		TAILQ_FOREACH(m, &obj_1t1_pt->memq, listq)
			m->wire_count = 0;
		atomic_subtract_int(&vm_cnt.v_wire_count,
		    obj_1t1_pt->resident_page_count);
		VM_OBJECT_RUNLOCK(obj_1t1_pt);
		vm_object_deallocate(obj_1t1_pt);
	}

	obj_1t1_pt = NULL;
	efi_pml4 = NULL;
	efi_pml4_page = NULL;
}

static vm_page_t
efi_1t1_page(vm_pindex_t idx)
{

	return (vm_page_grab(obj_1t1_pt, idx, VM_ALLOC_NOBUSY |
	    VM_ALLOC_WIRED | VM_ALLOC_ZERO));
}

static pt_entry_t *
efi_1t1_pte(vm_offset_t va)
{
	pml4_entry_t *pml4e;
	pdp_entry_t *pdpe;
	pd_entry_t *pde;
	pt_entry_t *pte;
	vm_page_t m;
	vm_pindex_t pml4_idx, pdp_idx, pd_idx;
	vm_paddr_t mphys;

	pml4_idx = pmap_pml4e_index(va);
	pml4e = &efi_pml4[pml4_idx];
	if (*pml4e == 0) {
		m = efi_1t1_page(1 + pml4_idx);
		mphys =  VM_PAGE_TO_PHYS(m);
		*pml4e = mphys | X86_PG_RW | X86_PG_V;
	} else {
		mphys = *pml4e & ~PAGE_MASK;
	}

	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys);
	pdp_idx = pmap_pdpe_index(va);
	pdpe += pdp_idx;
	if (*pdpe == 0) {
		m = efi_1t1_page(1 + NPML4EPG + (pml4_idx + 1) * (pdp_idx + 1));
		mphys =  VM_PAGE_TO_PHYS(m);
		*pdpe = mphys | X86_PG_RW | X86_PG_V;
	} else {
		mphys = *pdpe & ~PAGE_MASK;
	}

	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
	pd_idx = pmap_pde_index(va);
	pde += pd_idx;
	if (*pde == 0) {
		m = efi_1t1_page(1 + NPML4EPG + NPML4EPG * NPDPEPG +
		    (pml4_idx + 1) * (pdp_idx + 1) * (pd_idx + 1));
		mphys = VM_PAGE_TO_PHYS(m);
		*pde = mphys | X86_PG_RW | X86_PG_V;
	} else {
		mphys = *pde & ~PAGE_MASK;
	}

	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
	pte += pmap_pte_index(va);
	KASSERT(*pte == 0, ("va %#jx *pt %#jx", va, *pte));

	return (pte);
}

static bool
efi_create_1t1_map(struct efi_md *map, int ndesc, int descsz)
{
	struct efi_md *p;
	pt_entry_t *pte;
	vm_offset_t va;
	uint64_t idx;
	int bits, i, mode;

	obj_1t1_pt = vm_pager_allocate(OBJT_PHYS, NULL, ptoa(1 +
	    NPML4EPG + NPML4EPG * NPDPEPG + NPML4EPG * NPDPEPG * NPDEPG),
	    VM_PROT_ALL, 0, NULL);
	VM_OBJECT_WLOCK(obj_1t1_pt);
	efi_pml4_page = efi_1t1_page(0);
	VM_OBJECT_WUNLOCK(obj_1t1_pt);
	efi_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(efi_pml4_page));
	pmap_pinit_pml4(efi_pml4_page);

	for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
	    descsz)) {
		if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
			continue;
		if (p->md_virt != NULL) {
			if (bootverbose)
				printf("EFI Runtime entry %d is mapped\n", i);
			goto fail;
		}
		if ((p->md_phys & EFI_PAGE_MASK) != 0) {
			if (bootverbose)
				printf("EFI Runtime entry %d is not aligned\n",
				    i);
			goto fail;
		}
		if (p->md_phys + p->md_pages * EFI_PAGE_SIZE < p->md_phys ||
		    p->md_phys + p->md_pages * EFI_PAGE_SIZE >=
		    VM_MAXUSER_ADDRESS) {
			printf("EFI Runtime entry %d is not in mappable for RT:"
			    "base %#016jx %#jx pages\n",
			    i, (uintmax_t)p->md_phys,
			    (uintmax_t)p->md_pages);
			goto fail;
		}
		if ((p->md_attr & EFI_MD_ATTR_WB) != 0)
			mode = VM_MEMATTR_WRITE_BACK;
		else if ((p->md_attr & EFI_MD_ATTR_WT) != 0)
			mode = VM_MEMATTR_WRITE_THROUGH;
		else if ((p->md_attr & EFI_MD_ATTR_WC) != 0)
			mode = VM_MEMATTR_WRITE_COMBINING;
		else if ((p->md_attr & EFI_MD_ATTR_WP) != 0)
			mode = VM_MEMATTR_WRITE_PROTECTED;
		else if ((p->md_attr & EFI_MD_ATTR_UC) != 0)
			mode = VM_MEMATTR_UNCACHEABLE;
		else {
			if (bootverbose)
				printf("EFI Runtime entry %d mapping "
				    "attributes unsupported\n", i);
			mode = VM_MEMATTR_UNCACHEABLE;
		}
		bits = pmap_cache_bits(kernel_pmap, mode, FALSE) | X86_PG_RW |
		    X86_PG_V;
		VM_OBJECT_WLOCK(obj_1t1_pt);
		for (va = p->md_phys, idx = 0; idx < p->md_pages; idx++,
		    va += PAGE_SIZE) {
			pte = efi_1t1_pte(va);
			pte_store(pte, va | bits);
		}
		VM_OBJECT_WUNLOCK(obj_1t1_pt);
	}

	return (true);

fail:
	efi_destroy_1t1_map();
	return (false);
}

/*
 * Create an environment for the EFI runtime code call.  The most
 * important part is creating the required 1:1 physical->virtual
 * mappings for the runtime segments.  To do that, we manually create
 * page table which unmap userspace but gives correct kernel mapping.
 * The 1:1 mappings for runtime segments usually occupy low 4G of the
 * physical address map.
 *
 * The 1:1 mappings were chosen over the SetVirtualAddressMap() EFI RT
 * service, because there are some BIOSes which fail to correctly
 * relocate itself on the call, requiring both 1:1 and virtual
 * mapping.  As result, we must provide 1:1 mapping anyway, so no
 * reason to bother with the virtual map, and no need to add a
 * complexity into loader.
 *
 * The fpu_kern_enter() call allows firmware to use FPU, as mandated
 * by the specification.  In particular, CR0.TS bit is cleared.  Also
 * it enters critical section, giving us neccessary protection against
 * context switch.
 *
 * There is no need to disable interrupts around the change of %cr3,
 * the kernel mappings are correct, while we only grabbed the
 * userspace portion of VA.  Interrupts handlers must not access
 * userspace.  Having interrupts enabled fixes the issue with
 * firmware/SMM long operation, which would negatively affect IPIs,
 * esp. TLB shootdown requests.
 */
static int
efi_enter(void)
{
	pmap_t curpmap;
	int error;

	if (efi_runtime == NULL)
		return (ENXIO);
	curpmap = PCPU_GET(curpmap);
	PMAP_LOCK(curpmap);
	mtx_lock(&efi_lock);
	error = fpu_kern_enter(curthread, NULL, FPU_KERN_NOCTX);
	if (error != 0) {
		PMAP_UNLOCK(curpmap);
		return (error);
	}

	/*
	 * IPI TLB shootdown handler invltlb_pcid_handler() reloads
	 * %cr3 from the curpmap->pm_cr3, which would disable runtime
	 * segments mappings.  Block the handler's action by setting
	 * curpmap to impossible value.  See also comment in
	 * pmap.c:pmap_activate_sw().
	 */
	if (pmap_pcid_enabled && !invpcid_works)
		PCPU_SET(curpmap, NULL);

	load_cr3(VM_PAGE_TO_PHYS(efi_pml4_page) | (pmap_pcid_enabled ?
	    curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0));
	/*
	 * If PCID is enabled, the clear CR3_PCID_SAVE bit in the loaded %cr3
	 * causes TLB invalidation.
	 */
	if (!pmap_pcid_enabled)
		invltlb();
	return (0);
}

static void
efi_leave(void)
{
	pmap_t curpmap;

	curpmap = &curproc->p_vmspace->vm_pmap;
	if (pmap_pcid_enabled && !invpcid_works)
		PCPU_SET(curpmap, curpmap);
	load_cr3(curpmap->pm_cr3 | (pmap_pcid_enabled ?
	    curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0));
	if (!pmap_pcid_enabled)
		invltlb();

	fpu_kern_leave(curthread, NULL);
	mtx_unlock(&efi_lock);
	PMAP_UNLOCK(curpmap);
}

static int
efi_init(void)
{
	struct efi_map_header *efihdr;
	struct efi_md *map;
	caddr_t kmdp;
	size_t efisz;

	mtx_init(&efi_lock, "efi", NULL, MTX_DEF);

	if (efi_systbl_phys == 0) {
		if (bootverbose)
			printf("EFI systbl not available\n");
		return (0);
	}
	efi_systbl = (struct efi_systbl *)PHYS_TO_DMAP(efi_systbl_phys);
	if (efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
		efi_systbl = NULL;
		if (bootverbose)
			printf("EFI systbl signature invalid\n");
		return (0);
	}
	efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
	    (struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
	if (efi_cfgtbl == NULL) {
		if (bootverbose)
			printf("EFI config table is not present\n");
	}

	kmdp = preload_search_by_type("elf kernel");
	if (kmdp == NULL)
		kmdp = preload_search_by_type("elf64 kernel");
	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
	if (efihdr == NULL) {
		if (bootverbose)
			printf("EFI map is not present\n");
		return (0);
	}
	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
	if (efihdr->descriptor_size == 0)
		return (ENOMEM);

	if (!efi_create_1t1_map(map, efihdr->memory_size /
	    efihdr->descriptor_size, efihdr->descriptor_size)) {
		if (bootverbose)
			printf("EFI cannot create runtime map\n");
		return (ENOMEM);
	}

	efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
	    (struct efi_rt *)efi_systbl->st_rt;
	if (efi_runtime == NULL) {
		if (bootverbose)
			printf("EFI runtime services table is not present\n");
		efi_destroy_1t1_map();
		return (ENXIO);
	}

	return (0);
}

static void
efi_uninit(void)
{

	efi_destroy_1t1_map();

	efi_systbl = NULL;
	efi_cfgtbl = NULL;
	efi_runtime = NULL;

	mtx_destroy(&efi_lock);
}

int
efi_rt_ok(void)
{

	if (efi_runtime == NULL)
		return (ENXIO);
	return (0);
}

int
efi_get_table(struct uuid *uuid, void **ptr)
{
	struct efi_cfgtbl *ct;
	u_long count;

	if (efi_cfgtbl == NULL || efi_systbl == NULL)
		return (ENXIO);
	count = efi_systbl->st_entries;
	ct = efi_cfgtbl;
	while (count--) {
		if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
			*ptr = (void *)PHYS_TO_DMAP(ct->ct_data);
			return (0);
		}
		ct++;
	}
	return (ENOENT);
}

int
efi_get_time_locked(struct efi_tm *tm)
{
	efi_status status;
	int error;

	mtx_assert(&atrtc_time_lock, MA_OWNED);
	error = efi_enter();
	if (error != 0)
		return (error);
	status = efi_runtime->rt_gettime(tm, NULL);
	efi_leave();
	error = efi_status_to_errno(status);
	return (error);
}

int
efi_get_time(struct efi_tm *tm)
{
	int error;

	if (efi_runtime == NULL)
		return (ENXIO);
	mtx_lock(&atrtc_time_lock);
	error = efi_get_time_locked(tm);
	mtx_unlock(&atrtc_time_lock);
	return (error);
}

int
efi_reset_system(void)
{
	int error;

	error = efi_enter();
	if (error != 0)
		return (error);
	efi_runtime->rt_reset(EFI_RESET_WARM, 0, 0, NULL);
	efi_leave();
	return (EIO);
}

int
efi_set_time_locked(struct efi_tm *tm)
{
	efi_status status;
	int error;

	mtx_assert(&atrtc_time_lock, MA_OWNED);
	error = efi_enter();
	if (error != 0)
		return (error);
	status = efi_runtime->rt_settime(tm);
	efi_leave();
	error = efi_status_to_errno(status);
	return (error);
}

int
efi_set_time(struct efi_tm *tm)
{
	int error;

	if (efi_runtime == NULL)
		return (ENXIO);
	mtx_lock(&atrtc_time_lock);
	error = efi_set_time_locked(tm);
	mtx_unlock(&atrtc_time_lock);
	return (error);
}

int
efi_var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
    size_t *datasize, void *data)
{
	efi_status status;
	int error;

	error = efi_enter();
	if (error != 0)
		return (error);
	status = efi_runtime->rt_getvar(name, vendor, attrib, datasize, data);
	efi_leave();
	error = efi_status_to_errno(status);
	return (error);
}

int
efi_var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
{
	efi_status status;
	int error;

	error = efi_enter();
	if (error != 0)
		return (error);
	status = efi_runtime->rt_scanvar(namesize, name, vendor);
	efi_leave();
	error = efi_status_to_errno(status);
	return (error);
}

int
efi_var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
    size_t datasize, void *data)
{
	efi_status status;
	int error;

	error = efi_enter();
	if (error != 0)
		return (error);
	status = efi_runtime->rt_setvar(name, vendor, attrib, datasize, data);
	efi_leave();
	error = efi_status_to_errno(status);
	return (error);
}

static int
efirt_modevents(module_t m, int event, void *arg __unused)
{

	switch (event) {
	case MOD_LOAD:
		return (efi_init());

	case MOD_UNLOAD:
		efi_uninit();
		return (0);

	case MOD_SHUTDOWN:
		return (0);

	default:
		return (EOPNOTSUPP);
	}
}

static moduledata_t efirt_moddata = {
	.name = "efirt",
	.evhand = efirt_modevents,
	.priv = NULL,
};
DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_VM_CONF, SI_ORDER_ANY);
MODULE_VERSION(efirt, 1);

/* XXX debug stuff */
static int
efi_time_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
	struct efi_tm tm;
	int error, val;

	val = 0;
	error = sysctl_handle_int(oidp, &val, 0, req);
	if (error != 0 || req->newptr == NULL)
		return (error);
	error = efi_get_time(&tm);
	if (error == 0) {
		uprintf("EFI reports: Year %d Month %d Day %d Hour %d Min %d "
		    "Sec %d\n", tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour,
		    tm.tm_min, tm.tm_sec);
	}
	return (error);
}

SYSCTL_PROC(_debug, OID_AUTO, efi_time, CTLTYPE_INT | CTLFLAG_RW, NULL, 0,
    efi_time_sysctl_handler, "I", "");