aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa_misc.c
blob: 08903184c5e20350e471ea1b02462d567649658e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2013 by Delphix. All rights reserved.
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/spa_boot.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/zap.h>
#include <sys/zil.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab.h>
#include <sys/uberblock_impl.h>
#include <sys/txg.h>
#include <sys/avl.h>
#include <sys/unique.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_scan.h>
#include <sys/fs/zfs.h>
#include <sys/metaslab_impl.h>
#include <sys/arc.h>
#include <sys/ddt.h>
#include "zfs_prop.h"
#include "zfeature_common.h"

/*
 * SPA locking
 *
 * There are four basic locks for managing spa_t structures:
 *
 * spa_namespace_lock (global mutex)
 *
 *	This lock must be acquired to do any of the following:
 *
 *		- Lookup a spa_t by name
 *		- Add or remove a spa_t from the namespace
 *		- Increase spa_refcount from non-zero
 *		- Check if spa_refcount is zero
 *		- Rename a spa_t
 *		- add/remove/attach/detach devices
 *		- Held for the duration of create/destroy/import/export
 *
 *	It does not need to handle recursion.  A create or destroy may
 *	reference objects (files or zvols) in other pools, but by
 *	definition they must have an existing reference, and will never need
 *	to lookup a spa_t by name.
 *
 * spa_refcount (per-spa refcount_t protected by mutex)
 *
 *	This reference count keep track of any active users of the spa_t.  The
 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
 *	the refcount is never really 'zero' - opening a pool implicitly keeps
 *	some references in the DMU.  Internally we check against spa_minref, but
 *	present the image of a zero/non-zero value to consumers.
 *
 * spa_config_lock[] (per-spa array of rwlocks)
 *
 *	This protects the spa_t from config changes, and must be held in
 *	the following circumstances:
 *
 *		- RW_READER to perform I/O to the spa
 *		- RW_WRITER to change the vdev config
 *
 * The locking order is fairly straightforward:
 *
 *		spa_namespace_lock	->	spa_refcount
 *
 *	The namespace lock must be acquired to increase the refcount from 0
 *	or to check if it is zero.
 *
 *		spa_refcount		->	spa_config_lock[]
 *
 *	There must be at least one valid reference on the spa_t to acquire
 *	the config lock.
 *
 *		spa_namespace_lock	->	spa_config_lock[]
 *
 *	The namespace lock must always be taken before the config lock.
 *
 *
 * The spa_namespace_lock can be acquired directly and is globally visible.
 *
 * The namespace is manipulated using the following functions, all of which
 * require the spa_namespace_lock to be held.
 *
 *	spa_lookup()		Lookup a spa_t by name.
 *
 *	spa_add()		Create a new spa_t in the namespace.
 *
 *	spa_remove()		Remove a spa_t from the namespace.  This also
 *				frees up any memory associated with the spa_t.
 *
 *	spa_next()		Returns the next spa_t in the system, or the
 *				first if NULL is passed.
 *
 *	spa_evict_all()		Shutdown and remove all spa_t structures in
 *				the system.
 *
 *	spa_guid_exists()	Determine whether a pool/device guid exists.
 *
 * The spa_refcount is manipulated using the following functions:
 *
 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
 *				called with spa_namespace_lock held if the
 *				refcount is currently zero.
 *
 *	spa_close()		Remove a reference from the spa_t.  This will
 *				not free the spa_t or remove it from the
 *				namespace.  No locking is required.
 *
 *	spa_refcount_zero()	Returns true if the refcount is currently
 *				zero.  Must be called with spa_namespace_lock
 *				held.
 *
 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
 *
 * To read the configuration, it suffices to hold one of these locks as reader.
 * To modify the configuration, you must hold all locks as writer.  To modify
 * vdev state without altering the vdev tree's topology (e.g. online/offline),
 * you must hold SCL_STATE and SCL_ZIO as writer.
 *
 * We use these distinct config locks to avoid recursive lock entry.
 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
 * block allocations (SCL_ALLOC), which may require reading space maps
 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
 *
 * The spa config locks cannot be normal rwlocks because we need the
 * ability to hand off ownership.  For example, SCL_ZIO is acquired
 * by the issuing thread and later released by an interrupt thread.
 * They do, however, obey the usual write-wanted semantics to prevent
 * writer (i.e. system administrator) starvation.
 *
 * The lock acquisition rules are as follows:
 *
 * SCL_CONFIG
 *	Protects changes to the vdev tree topology, such as vdev
 *	add/remove/attach/detach.  Protects the dirty config list
 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
 *
 * SCL_STATE
 *	Protects changes to pool state and vdev state, such as vdev
 *	online/offline/fault/degrade/clear.  Protects the dirty state list
 *	(spa_state_dirty_list) and global pool state (spa_state).
 *
 * SCL_ALLOC
 *	Protects changes to metaslab groups and classes.
 *	Held as reader by metaslab_alloc() and metaslab_claim().
 *
 * SCL_ZIO
 *	Held by bp-level zios (those which have no io_vd upon entry)
 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
 *
 * SCL_FREE
 *	Protects changes to metaslab groups and classes.
 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
 *	blocks in zio_done() while another i/o that holds either
 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
 *
 * SCL_VDEV
 *	Held as reader to prevent changes to the vdev tree during trivial
 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
 *	other locks, and lower than all of them, to ensure that it's safe
 *	to acquire regardless of caller context.
 *
 * In addition, the following rules apply:
 *
 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
 *	The lock ordering is SCL_CONFIG > spa_props_lock.
 *
 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
 *	or zio_write_phys() -- the caller must ensure that the config cannot
 *	cannot change in the interim, and that the vdev cannot be reopened.
 *	SCL_STATE as reader suffices for both.
 *
 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
 *
 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
 *				for writing.
 *
 *	spa_vdev_exit()		Release the config lock, wait for all I/O
 *				to complete, sync the updated configs to the
 *				cache, and release the namespace lock.
 *
 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
 *
 * spa_rename() is also implemented within this file since it requires
 * manipulation of the namespace.
 */

static avl_tree_t spa_namespace_avl;
kmutex_t spa_namespace_lock;
static kcondvar_t spa_namespace_cv;
static int spa_active_count;
int spa_max_replication_override = SPA_DVAS_PER_BP;

static kmutex_t spa_spare_lock;
static avl_tree_t spa_spare_avl;
static kmutex_t spa_l2cache_lock;
static avl_tree_t spa_l2cache_avl;

kmem_cache_t *spa_buffer_pool;
int spa_mode_global;

#ifdef ZFS_DEBUG
/* Everything except dprintf and spa is on by default in debug builds */
int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
#else
int zfs_flags = 0;
#endif
SYSCTL_DECL(_debug);
SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
    "ZFS debug flags.");

/*
 * zfs_recover can be set to nonzero to attempt to recover from
 * otherwise-fatal errors, typically caused by on-disk corruption.  When
 * set, calls to zfs_panic_recover() will turn into warning messages.
 * This should only be used as a last resort, as it typically results
 * in leaked space, or worse.
 */
int zfs_recover = 0;
SYSCTL_DECL(_vfs_zfs);
SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RDTUN, &zfs_recover, 0,
    "Try to recover from otherwise-fatal errors.");

/*
 * Expiration time in milliseconds. This value has two meanings. First it is
 * used to determine when the spa_deadman() logic should fire. By default the
 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
 * in a system panic.
 */
uint64_t zfs_deadman_synctime_ms = 1000000ULL;
SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
    &zfs_deadman_synctime_ms, 0,
    "Stalled ZFS I/O expiration time in milliseconds");

/*
 * Check time in milliseconds. This defines the frequency at which we check
 * for hung I/O.
 */
uint64_t zfs_deadman_checktime_ms = 5000ULL;
SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
    &zfs_deadman_checktime_ms, 0,
    "Period of checks for stalled ZFS I/O in milliseconds");

/*
 * Default value of -1 for zfs_deadman_enabled is resolved in
 * zfs_deadman_init()
 */
int zfs_deadman_enabled = -1;
SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");

/*
 * The worst case is single-sector max-parity RAID-Z blocks, in which
 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
 * times the size; so just assume that.  Add to this the fact that
 * we can have up to 3 DVAs per bp, and one more factor of 2 because
 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
 * the worst case is:
 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
 */
int spa_asize_inflation = 24;
SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");

#ifndef illumos
#ifdef _KERNEL
static void
zfs_deadman_init()
{
	/*
	 * If we are not i386 or amd64 or in a virtual machine,
	 * disable ZFS deadman thread by default
	 */
	if (zfs_deadman_enabled == -1) {
#if defined(__amd64__) || defined(__i386__)
		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
#else
		zfs_deadman_enabled = 0;
#endif
	}
}
#endif	/* _KERNEL */
#endif	/* !illumos */

/*
 * ==========================================================================
 * SPA config locking
 * ==========================================================================
 */
static void
spa_config_lock_init(spa_t *spa)
{
	for (int i = 0; i < SCL_LOCKS; i++) {
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
		refcount_create_untracked(&scl->scl_count);
		scl->scl_writer = NULL;
		scl->scl_write_wanted = 0;
	}
}

static void
spa_config_lock_destroy(spa_t *spa)
{
	for (int i = 0; i < SCL_LOCKS; i++) {
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
		mutex_destroy(&scl->scl_lock);
		cv_destroy(&scl->scl_cv);
		refcount_destroy(&scl->scl_count);
		ASSERT(scl->scl_writer == NULL);
		ASSERT(scl->scl_write_wanted == 0);
	}
}

int
spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
{
	for (int i = 0; i < SCL_LOCKS; i++) {
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
		if (!(locks & (1 << i)))
			continue;
		mutex_enter(&scl->scl_lock);
		if (rw == RW_READER) {
			if (scl->scl_writer || scl->scl_write_wanted) {
				mutex_exit(&scl->scl_lock);
				spa_config_exit(spa, locks ^ (1 << i), tag);
				return (0);
			}
		} else {
			ASSERT(scl->scl_writer != curthread);
			if (!refcount_is_zero(&scl->scl_count)) {
				mutex_exit(&scl->scl_lock);
				spa_config_exit(spa, locks ^ (1 << i), tag);
				return (0);
			}
			scl->scl_writer = curthread;
		}
		(void) refcount_add(&scl->scl_count, tag);
		mutex_exit(&scl->scl_lock);
	}
	return (1);
}

void
spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
{
	int wlocks_held = 0;

	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);

	for (int i = 0; i < SCL_LOCKS; i++) {
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
		if (scl->scl_writer == curthread)
			wlocks_held |= (1 << i);
		if (!(locks & (1 << i)))
			continue;
		mutex_enter(&scl->scl_lock);
		if (rw == RW_READER) {
			while (scl->scl_writer || scl->scl_write_wanted) {
				cv_wait(&scl->scl_cv, &scl->scl_lock);
			}
		} else {
			ASSERT(scl->scl_writer != curthread);
			while (!refcount_is_zero(&scl->scl_count)) {
				scl->scl_write_wanted++;
				cv_wait(&scl->scl_cv, &scl->scl_lock);
				scl->scl_write_wanted--;
			}
			scl->scl_writer = curthread;
		}
		(void) refcount_add(&scl->scl_count, tag);
		mutex_exit(&scl->scl_lock);
	}
	ASSERT(wlocks_held <= locks);
}

void
spa_config_exit(spa_t *spa, int locks, void *tag)
{
	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
		if (!(locks & (1 << i)))
			continue;
		mutex_enter(&scl->scl_lock);
		ASSERT(!refcount_is_zero(&scl->scl_count));
		if (refcount_remove(&scl->scl_count, tag) == 0) {
			ASSERT(scl->scl_writer == NULL ||
			    scl->scl_writer == curthread);
			scl->scl_writer = NULL;	/* OK in either case */
			cv_broadcast(&scl->scl_cv);
		}
		mutex_exit(&scl->scl_lock);
	}
}

int
spa_config_held(spa_t *spa, int locks, krw_t rw)
{
	int locks_held = 0;

	for (int i = 0; i < SCL_LOCKS; i++) {
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
		if (!(locks & (1 << i)))
			continue;
		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
		    (rw == RW_WRITER && scl->scl_writer == curthread))
			locks_held |= 1 << i;
	}

	return (locks_held);
}

/*
 * ==========================================================================
 * SPA namespace functions
 * ==========================================================================
 */

/*
 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
 * Returns NULL if no matching spa_t is found.
 */
spa_t *
spa_lookup(const char *name)
{
	static spa_t search;	/* spa_t is large; don't allocate on stack */
	spa_t *spa;
	avl_index_t where;
	char *cp;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));

	/*
	 * If it's a full dataset name, figure out the pool name and
	 * just use that.
	 */
	cp = strpbrk(search.spa_name, "/@#");
	if (cp != NULL)
		*cp = '\0';

	spa = avl_find(&spa_namespace_avl, &search, &where);

	return (spa);
}

/*
 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
 * looking for potentially hung I/Os.
 */
void
spa_deadman(void *arg)
{
	spa_t *spa = arg;

	/*
	 * Disable the deadman timer if the pool is suspended.
	 */
	if (spa_suspended(spa)) {
#ifdef illumos
		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
#else
		/* Nothing.  just don't schedule any future callouts. */
#endif
		return;
	}

	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
	    ++spa->spa_deadman_calls);
	if (zfs_deadman_enabled)
		vdev_deadman(spa->spa_root_vdev);
}

/*
 * Create an uninitialized spa_t with the given name.  Requires
 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
 * exist by calling spa_lookup() first.
 */
spa_t *
spa_add(const char *name, nvlist_t *config, const char *altroot)
{
	spa_t *spa;
	spa_config_dirent_t *dp;
#ifdef illumos
	cyc_handler_t hdlr;
	cyc_time_t when;
#endif

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);

	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);

	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);

	for (int t = 0; t < TXG_SIZE; t++)
		bplist_create(&spa->spa_free_bplist[t]);

	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
	spa->spa_state = POOL_STATE_UNINITIALIZED;
	spa->spa_freeze_txg = UINT64_MAX;
	spa->spa_final_txg = UINT64_MAX;
	spa->spa_load_max_txg = UINT64_MAX;
	spa->spa_proc = &p0;
	spa->spa_proc_state = SPA_PROC_NONE;

#ifdef illumos
	hdlr.cyh_func = spa_deadman;
	hdlr.cyh_arg = spa;
	hdlr.cyh_level = CY_LOW_LEVEL;
#endif

	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);

#ifdef illumos
	/*
	 * This determines how often we need to check for hung I/Os after
	 * the cyclic has already fired. Since checking for hung I/Os is
	 * an expensive operation we don't want to check too frequently.
	 * Instead wait for 5 seconds before checking again.
	 */
	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
	when.cyt_when = CY_INFINITY;
	mutex_enter(&cpu_lock);
	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
	mutex_exit(&cpu_lock);
#else	/* !illumos */
#ifdef _KERNEL
	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
#endif
#endif
	refcount_create(&spa->spa_refcount);
	spa_config_lock_init(spa);

	avl_add(&spa_namespace_avl, spa);

	/*
	 * Set the alternate root, if there is one.
	 */
	if (altroot) {
		spa->spa_root = spa_strdup(altroot);
		spa_active_count++;
	}

	/*
	 * Every pool starts with the default cachefile
	 */
	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
	    offsetof(spa_config_dirent_t, scd_link));

	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
	list_insert_head(&spa->spa_config_list, dp);

	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
	    KM_SLEEP) == 0);

	if (config != NULL) {
		nvlist_t *features;

		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
		    &features) == 0) {
			VERIFY(nvlist_dup(features, &spa->spa_label_features,
			    0) == 0);
		}

		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
	}

	if (spa->spa_label_features == NULL) {
		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
		    KM_SLEEP) == 0);
	}

	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);

	/*
	 * As a pool is being created, treat all features as disabled by
	 * setting SPA_FEATURE_DISABLED for all entries in the feature
	 * refcount cache.
	 */
	for (int i = 0; i < SPA_FEATURES; i++) {
		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
	}

	return (spa);
}

/*
 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
 * spa_namespace_lock.  This is called only after the spa_t has been closed and
 * deactivated.
 */
void
spa_remove(spa_t *spa)
{
	spa_config_dirent_t *dp;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));
	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);

	nvlist_free(spa->spa_config_splitting);

	avl_remove(&spa_namespace_avl, spa);
	cv_broadcast(&spa_namespace_cv);

	if (spa->spa_root) {
		spa_strfree(spa->spa_root);
		spa_active_count--;
	}

	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
		list_remove(&spa->spa_config_list, dp);
		if (dp->scd_path != NULL)
			spa_strfree(dp->scd_path);
		kmem_free(dp, sizeof (spa_config_dirent_t));
	}

	list_destroy(&spa->spa_config_list);

	nvlist_free(spa->spa_label_features);
	nvlist_free(spa->spa_load_info);
	spa_config_set(spa, NULL);

#ifdef illumos
	mutex_enter(&cpu_lock);
	if (spa->spa_deadman_cycid != CYCLIC_NONE)
		cyclic_remove(spa->spa_deadman_cycid);
	mutex_exit(&cpu_lock);
	spa->spa_deadman_cycid = CYCLIC_NONE;
#else	/* !illumos */
#ifdef _KERNEL
	callout_drain(&spa->spa_deadman_cycid);
#endif
#endif

	refcount_destroy(&spa->spa_refcount);

	spa_config_lock_destroy(spa);

	for (int t = 0; t < TXG_SIZE; t++)
		bplist_destroy(&spa->spa_free_bplist[t]);

	cv_destroy(&spa->spa_async_cv);
	cv_destroy(&spa->spa_proc_cv);
	cv_destroy(&spa->spa_scrub_io_cv);
	cv_destroy(&spa->spa_suspend_cv);

	mutex_destroy(&spa->spa_async_lock);
	mutex_destroy(&spa->spa_errlist_lock);
	mutex_destroy(&spa->spa_errlog_lock);
	mutex_destroy(&spa->spa_history_lock);
	mutex_destroy(&spa->spa_proc_lock);
	mutex_destroy(&spa->spa_props_lock);
	mutex_destroy(&spa->spa_scrub_lock);
	mutex_destroy(&spa->spa_suspend_lock);
	mutex_destroy(&spa->spa_vdev_top_lock);

	kmem_free(spa, sizeof (spa_t));
}

/*
 * Given a pool, return the next pool in the namespace, or NULL if there is
 * none.  If 'prev' is NULL, return the first pool.
 */
spa_t *
spa_next(spa_t *prev)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	if (prev)
		return (AVL_NEXT(&spa_namespace_avl, prev));
	else
		return (avl_first(&spa_namespace_avl));
}

/*
 * ==========================================================================
 * SPA refcount functions
 * ==========================================================================
 */

/*
 * Add a reference to the given spa_t.  Must have at least one reference, or
 * have the namespace lock held.
 */
void
spa_open_ref(spa_t *spa, void *tag)
{
	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
	    MUTEX_HELD(&spa_namespace_lock));
	(void) refcount_add(&spa->spa_refcount, tag);
}

/*
 * Remove a reference to the given spa_t.  Must have at least one reference, or
 * have the namespace lock held.
 */
void
spa_close(spa_t *spa, void *tag)
{
	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
	    MUTEX_HELD(&spa_namespace_lock));
	(void) refcount_remove(&spa->spa_refcount, tag);
}

/*
 * Check to see if the spa refcount is zero.  Must be called with
 * spa_namespace_lock held.  We really compare against spa_minref, which is the
 * number of references acquired when opening a pool
 */
boolean_t
spa_refcount_zero(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
}

/*
 * ==========================================================================
 * SPA spare and l2cache tracking
 * ==========================================================================
 */

/*
 * Hot spares and cache devices are tracked using the same code below,
 * for 'auxiliary' devices.
 */

typedef struct spa_aux {
	uint64_t	aux_guid;
	uint64_t	aux_pool;
	avl_node_t	aux_avl;
	int		aux_count;
} spa_aux_t;

static int
spa_aux_compare(const void *a, const void *b)
{
	const spa_aux_t *sa = a;
	const spa_aux_t *sb = b;

	if (sa->aux_guid < sb->aux_guid)
		return (-1);
	else if (sa->aux_guid > sb->aux_guid)
		return (1);
	else
		return (0);
}

void
spa_aux_add(vdev_t *vd, avl_tree_t *avl)
{
	avl_index_t where;
	spa_aux_t search;
	spa_aux_t *aux;

	search.aux_guid = vd->vdev_guid;
	if ((aux = avl_find(avl, &search, &where)) != NULL) {
		aux->aux_count++;
	} else {
		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
		aux->aux_guid = vd->vdev_guid;
		aux->aux_count = 1;
		avl_insert(avl, aux, where);
	}
}

void
spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
{
	spa_aux_t search;
	spa_aux_t *aux;
	avl_index_t where;

	search.aux_guid = vd->vdev_guid;
	aux = avl_find(avl, &search, &where);

	ASSERT(aux != NULL);

	if (--aux->aux_count == 0) {
		avl_remove(avl, aux);
		kmem_free(aux, sizeof (spa_aux_t));
	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
		aux->aux_pool = 0ULL;
	}
}

boolean_t
spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
{
	spa_aux_t search, *found;

	search.aux_guid = guid;
	found = avl_find(avl, &search, NULL);

	if (pool) {
		if (found)
			*pool = found->aux_pool;
		else
			*pool = 0ULL;
	}

	if (refcnt) {
		if (found)
			*refcnt = found->aux_count;
		else
			*refcnt = 0;
	}

	return (found != NULL);
}

void
spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
{
	spa_aux_t search, *found;
	avl_index_t where;

	search.aux_guid = vd->vdev_guid;
	found = avl_find(avl, &search, &where);
	ASSERT(found != NULL);
	ASSERT(found->aux_pool == 0ULL);

	found->aux_pool = spa_guid(vd->vdev_spa);
}

/*
 * Spares are tracked globally due to the following constraints:
 *
 * 	- A spare may be part of multiple pools.
 * 	- A spare may be added to a pool even if it's actively in use within
 *	  another pool.
 * 	- A spare in use in any pool can only be the source of a replacement if
 *	  the target is a spare in the same pool.
 *
 * We keep track of all spares on the system through the use of a reference
 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
 * spare, then we bump the reference count in the AVL tree.  In addition, we set
 * the 'vdev_isspare' member to indicate that the device is a spare (active or
 * inactive).  When a spare is made active (used to replace a device in the
 * pool), we also keep track of which pool its been made a part of.
 *
 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
 * called under the spa_namespace lock as part of vdev reconfiguration.  The
 * separate spare lock exists for the status query path, which does not need to
 * be completely consistent with respect to other vdev configuration changes.
 */

static int
spa_spare_compare(const void *a, const void *b)
{
	return (spa_aux_compare(a, b));
}

void
spa_spare_add(vdev_t *vd)
{
	mutex_enter(&spa_spare_lock);
	ASSERT(!vd->vdev_isspare);
	spa_aux_add(vd, &spa_spare_avl);
	vd->vdev_isspare = B_TRUE;
	mutex_exit(&spa_spare_lock);
}

void
spa_spare_remove(vdev_t *vd)
{
	mutex_enter(&spa_spare_lock);
	ASSERT(vd->vdev_isspare);
	spa_aux_remove(vd, &spa_spare_avl);
	vd->vdev_isspare = B_FALSE;
	mutex_exit(&spa_spare_lock);
}

boolean_t
spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
{
	boolean_t found;

	mutex_enter(&spa_spare_lock);
	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
	mutex_exit(&spa_spare_lock);

	return (found);
}

void
spa_spare_activate(vdev_t *vd)
{
	mutex_enter(&spa_spare_lock);
	ASSERT(vd->vdev_isspare);
	spa_aux_activate(vd, &spa_spare_avl);
	mutex_exit(&spa_spare_lock);
}

/*
 * Level 2 ARC devices are tracked globally for the same reasons as spares.
 * Cache devices currently only support one pool per cache device, and so
 * for these devices the aux reference count is currently unused beyond 1.
 */

static int
spa_l2cache_compare(const void *a, const void *b)
{
	return (spa_aux_compare(a, b));
}

void
spa_l2cache_add(vdev_t *vd)
{
	mutex_enter(&spa_l2cache_lock);
	ASSERT(!vd->vdev_isl2cache);
	spa_aux_add(vd, &spa_l2cache_avl);
	vd->vdev_isl2cache = B_TRUE;
	mutex_exit(&spa_l2cache_lock);
}

void
spa_l2cache_remove(vdev_t *vd)
{
	mutex_enter(&spa_l2cache_lock);
	ASSERT(vd->vdev_isl2cache);
	spa_aux_remove(vd, &spa_l2cache_avl);
	vd->vdev_isl2cache = B_FALSE;
	mutex_exit(&spa_l2cache_lock);
}

boolean_t
spa_l2cache_exists(uint64_t guid, uint64_t *pool)
{
	boolean_t found;

	mutex_enter(&spa_l2cache_lock);
	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
	mutex_exit(&spa_l2cache_lock);

	return (found);
}

void
spa_l2cache_activate(vdev_t *vd)
{
	mutex_enter(&spa_l2cache_lock);
	ASSERT(vd->vdev_isl2cache);
	spa_aux_activate(vd, &spa_l2cache_avl);
	mutex_exit(&spa_l2cache_lock);
}

/*
 * ==========================================================================
 * SPA vdev locking
 * ==========================================================================
 */

/*
 * Lock the given spa_t for the purpose of adding or removing a vdev.
 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
 * It returns the next transaction group for the spa_t.
 */
uint64_t
spa_vdev_enter(spa_t *spa)
{
	mutex_enter(&spa->spa_vdev_top_lock);
	mutex_enter(&spa_namespace_lock);
	return (spa_vdev_config_enter(spa));
}

/*
 * Internal implementation for spa_vdev_enter().  Used when a vdev
 * operation requires multiple syncs (i.e. removing a device) while
 * keeping the spa_namespace_lock held.
 */
uint64_t
spa_vdev_config_enter(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);

	return (spa_last_synced_txg(spa) + 1);
}

/*
 * Used in combination with spa_vdev_config_enter() to allow the syncing
 * of multiple transactions without releasing the spa_namespace_lock.
 */
void
spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	int config_changed = B_FALSE;

	ASSERT(txg > spa_last_synced_txg(spa));

	spa->spa_pending_vdev = NULL;

	/*
	 * Reassess the DTLs.
	 */
	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);

	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
		config_changed = B_TRUE;
		spa->spa_config_generation++;
	}

	/*
	 * Verify the metaslab classes.
	 */
	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);

	spa_config_exit(spa, SCL_ALL, spa);

	/*
	 * Panic the system if the specified tag requires it.  This
	 * is useful for ensuring that configurations are updated
	 * transactionally.
	 */
	if (zio_injection_enabled)
		zio_handle_panic_injection(spa, tag, 0);

	/*
	 * Note: this txg_wait_synced() is important because it ensures
	 * that there won't be more than one config change per txg.
	 * This allows us to use the txg as the generation number.
	 */
	if (error == 0)
		txg_wait_synced(spa->spa_dsl_pool, txg);

	if (vd != NULL) {
		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
		vdev_free(vd);
		spa_config_exit(spa, SCL_ALL, spa);
	}

	/*
	 * If the config changed, update the config cache.
	 */
	if (config_changed)
		spa_config_sync(spa, B_FALSE, B_TRUE);
}

/*
 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
 * locking of spa_vdev_enter(), we also want make sure the transactions have
 * synced to disk, and then update the global configuration cache with the new
 * information.
 */
int
spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
{
	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
	mutex_exit(&spa_namespace_lock);
	mutex_exit(&spa->spa_vdev_top_lock);

	return (error);
}

/*
 * Lock the given spa_t for the purpose of changing vdev state.
 */
void
spa_vdev_state_enter(spa_t *spa, int oplocks)
{
	int locks = SCL_STATE_ALL | oplocks;

	/*
	 * Root pools may need to read of the underlying devfs filesystem
	 * when opening up a vdev.  Unfortunately if we're holding the
	 * SCL_ZIO lock it will result in a deadlock when we try to issue
	 * the read from the root filesystem.  Instead we "prefetch"
	 * the associated vnodes that we need prior to opening the
	 * underlying devices and cache them so that we can prevent
	 * any I/O when we are doing the actual open.
	 */
	if (spa_is_root(spa)) {
		int low = locks & ~(SCL_ZIO - 1);
		int high = locks & ~low;

		spa_config_enter(spa, high, spa, RW_WRITER);
		vdev_hold(spa->spa_root_vdev);
		spa_config_enter(spa, low, spa, RW_WRITER);
	} else {
		spa_config_enter(spa, locks, spa, RW_WRITER);
	}
	spa->spa_vdev_locks = locks;
}

int
spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
{
	boolean_t config_changed = B_FALSE;

	if (vd != NULL || error == 0)
		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
		    0, 0, B_FALSE);

	if (vd != NULL) {
		vdev_state_dirty(vd->vdev_top);
		config_changed = B_TRUE;
		spa->spa_config_generation++;
	}

	if (spa_is_root(spa))
		vdev_rele(spa->spa_root_vdev);

	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
	spa_config_exit(spa, spa->spa_vdev_locks, spa);

	/*
	 * If anything changed, wait for it to sync.  This ensures that,
	 * from the system administrator's perspective, zpool(1M) commands
	 * are synchronous.  This is important for things like zpool offline:
	 * when the command completes, you expect no further I/O from ZFS.
	 */
	if (vd != NULL)
		txg_wait_synced(spa->spa_dsl_pool, 0);

	/*
	 * If the config changed, update the config cache.
	 */
	if (config_changed) {
		mutex_enter(&spa_namespace_lock);
		spa_config_sync(spa, B_FALSE, B_TRUE);
		mutex_exit(&spa_namespace_lock);
	}

	return (error);
}

/*
 * ==========================================================================
 * Miscellaneous functions
 * ==========================================================================
 */

void
spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
{
	if (!nvlist_exists(spa->spa_label_features, feature)) {
		fnvlist_add_boolean(spa->spa_label_features, feature);
		/*
		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
		 * dirty the vdev config because lock SCL_CONFIG is not held.
		 * Thankfully, in this case we don't need to dirty the config
		 * because it will be written out anyway when we finish
		 * creating the pool.
		 */
		if (tx->tx_txg != TXG_INITIAL)
			vdev_config_dirty(spa->spa_root_vdev);
	}
}

void
spa_deactivate_mos_feature(spa_t *spa, const char *feature)
{
	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
		vdev_config_dirty(spa->spa_root_vdev);
}

/*
 * Rename a spa_t.
 */
int
spa_rename(const char *name, const char *newname)
{
	spa_t *spa;
	int err;

	/*
	 * Lookup the spa_t and grab the config lock for writing.  We need to
	 * actually open the pool so that we can sync out the necessary labels.
	 * It's OK to call spa_open() with the namespace lock held because we
	 * allow recursive calls for other reasons.
	 */
	mutex_enter(&spa_namespace_lock);
	if ((err = spa_open(name, &spa, FTAG)) != 0) {
		mutex_exit(&spa_namespace_lock);
		return (err);
	}

	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);

	avl_remove(&spa_namespace_avl, spa);
	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
	avl_add(&spa_namespace_avl, spa);

	/*
	 * Sync all labels to disk with the new names by marking the root vdev
	 * dirty and waiting for it to sync.  It will pick up the new pool name
	 * during the sync.
	 */
	vdev_config_dirty(spa->spa_root_vdev);

	spa_config_exit(spa, SCL_ALL, FTAG);

	txg_wait_synced(spa->spa_dsl_pool, 0);

	/*
	 * Sync the updated config cache.
	 */
	spa_config_sync(spa, B_FALSE, B_TRUE);

	spa_close(spa, FTAG);

	mutex_exit(&spa_namespace_lock);

	return (0);
}

/*
 * Return the spa_t associated with given pool_guid, if it exists.  If
 * device_guid is non-zero, determine whether the pool exists *and* contains
 * a device with the specified device_guid.
 */
spa_t *
spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
{
	spa_t *spa;
	avl_tree_t *t = &spa_namespace_avl;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
			continue;
		if (spa->spa_root_vdev == NULL)
			continue;
		if (spa_guid(spa) == pool_guid) {
			if (device_guid == 0)
				break;

			if (vdev_lookup_by_guid(spa->spa_root_vdev,
			    device_guid) != NULL)
				break;

			/*
			 * Check any devices we may be in the process of adding.
			 */
			if (spa->spa_pending_vdev) {
				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
				    device_guid) != NULL)
					break;
			}
		}
	}

	return (spa);
}

/*
 * Determine whether a pool with the given pool_guid exists.
 */
boolean_t
spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
{
	return (spa_by_guid(pool_guid, device_guid) != NULL);
}

char *
spa_strdup(const char *s)
{
	size_t len;
	char *new;

	len = strlen(s);
	new = kmem_alloc(len + 1, KM_SLEEP);
	bcopy(s, new, len);
	new[len] = '\0';

	return (new);
}

void
spa_strfree(char *s)
{
	kmem_free(s, strlen(s) + 1);
}

uint64_t
spa_get_random(uint64_t range)
{
	uint64_t r;

	ASSERT(range != 0);

	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));

	return (r % range);
}

uint64_t
spa_generate_guid(spa_t *spa)
{
	uint64_t guid = spa_get_random(-1ULL);

	if (spa != NULL) {
		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
			guid = spa_get_random(-1ULL);
	} else {
		while (guid == 0 || spa_guid_exists(guid, 0))
			guid = spa_get_random(-1ULL);
	}

	return (guid);
}

void
snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
{
	char type[256];
	char *checksum = NULL;
	char *compress = NULL;

	if (bp != NULL) {
		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
			dmu_object_byteswap_t bswap =
			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
			(void) snprintf(type, sizeof (type), "bswap %s %s",
			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
			    "metadata" : "data",
			    dmu_ot_byteswap[bswap].ob_name);
		} else {
			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
			    sizeof (type));
		}
		if (!BP_IS_EMBEDDED(bp)) {
			checksum =
			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
		}
		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
	}

	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
	    compress);
}

void
spa_freeze(spa_t *spa)
{
	uint64_t freeze_txg = 0;

	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
	if (spa->spa_freeze_txg == UINT64_MAX) {
		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
		spa->spa_freeze_txg = freeze_txg;
	}
	spa_config_exit(spa, SCL_ALL, FTAG);
	if (freeze_txg != 0)
		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
}

void
zfs_panic_recover(const char *fmt, ...)
{
	va_list adx;

	va_start(adx, fmt);
	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
	va_end(adx);
}

/*
 * This is a stripped-down version of strtoull, suitable only for converting
 * lowercase hexadecimal numbers that don't overflow.
 */
uint64_t
zfs_strtonum(const char *str, char **nptr)
{
	uint64_t val = 0;
	char c;
	int digit;

	while ((c = *str) != '\0') {
		if (c >= '0' && c <= '9')
			digit = c - '0';
		else if (c >= 'a' && c <= 'f')
			digit = 10 + c - 'a';
		else
			break;

		val *= 16;
		val += digit;

		str++;
	}

	if (nptr)
		*nptr = (char *)str;

	return (val);
}

/*
 * ==========================================================================
 * Accessor functions
 * ==========================================================================
 */

boolean_t
spa_shutting_down(spa_t *spa)
{
	return (spa->spa_async_suspended);
}

dsl_pool_t *
spa_get_dsl(spa_t *spa)
{
	return (spa->spa_dsl_pool);
}

boolean_t
spa_is_initializing(spa_t *spa)
{
	return (spa->spa_is_initializing);
}

blkptr_t *
spa_get_rootblkptr(spa_t *spa)
{
	return (&spa->spa_ubsync.ub_rootbp);
}

void
spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
{
	spa->spa_uberblock.ub_rootbp = *bp;
}

void
spa_altroot(spa_t *spa, char *buf, size_t buflen)
{
	if (spa->spa_root == NULL)
		buf[0] = '\0';
	else
		(void) strncpy(buf, spa->spa_root, buflen);
}

int
spa_sync_pass(spa_t *spa)
{
	return (spa->spa_sync_pass);
}

char *
spa_name(spa_t *spa)
{
	return (spa->spa_name);
}

uint64_t
spa_guid(spa_t *spa)
{
	dsl_pool_t *dp = spa_get_dsl(spa);
	uint64_t guid;

	/*
	 * If we fail to parse the config during spa_load(), we can go through
	 * the error path (which posts an ereport) and end up here with no root
	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
	 * this case.
	 */
	if (spa->spa_root_vdev == NULL)
		return (spa->spa_config_guid);

	guid = spa->spa_last_synced_guid != 0 ?
	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;

	/*
	 * Return the most recently synced out guid unless we're
	 * in syncing context.
	 */
	if (dp && dsl_pool_sync_context(dp))
		return (spa->spa_root_vdev->vdev_guid);
	else
		return (guid);
}

uint64_t
spa_load_guid(spa_t *spa)
{
	/*
	 * This is a GUID that exists solely as a reference for the
	 * purposes of the arc.  It is generated at load time, and
	 * is never written to persistent storage.
	 */
	return (spa->spa_load_guid);
}

uint64_t
spa_last_synced_txg(spa_t *spa)
{
	return (spa->spa_ubsync.ub_txg);
}

uint64_t
spa_first_txg(spa_t *spa)
{
	return (spa->spa_first_txg);
}

uint64_t
spa_syncing_txg(spa_t *spa)
{
	return (spa->spa_syncing_txg);
}

pool_state_t
spa_state(spa_t *spa)
{
	return (spa->spa_state);
}

spa_load_state_t
spa_load_state(spa_t *spa)
{
	return (spa->spa_load_state);
}

uint64_t
spa_freeze_txg(spa_t *spa)
{
	return (spa->spa_freeze_txg);
}

/* ARGSUSED */
uint64_t
spa_get_asize(spa_t *spa, uint64_t lsize)
{
	return (lsize * spa_asize_inflation);
}

uint64_t
spa_get_dspace(spa_t *spa)
{
	return (spa->spa_dspace);
}

void
spa_update_dspace(spa_t *spa)
{
	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
	    ddt_get_dedup_dspace(spa);
}

/*
 * Return the failure mode that has been set to this pool. The default
 * behavior will be to block all I/Os when a complete failure occurs.
 */
uint8_t
spa_get_failmode(spa_t *spa)
{
	return (spa->spa_failmode);
}

boolean_t
spa_suspended(spa_t *spa)
{
	return (spa->spa_suspended);
}

uint64_t
spa_version(spa_t *spa)
{
	return (spa->spa_ubsync.ub_version);
}

boolean_t
spa_deflate(spa_t *spa)
{
	return (spa->spa_deflate);
}

metaslab_class_t *
spa_normal_class(spa_t *spa)
{
	return (spa->spa_normal_class);
}

metaslab_class_t *
spa_log_class(spa_t *spa)
{
	return (spa->spa_log_class);
}

int
spa_max_replication(spa_t *spa)
{
	/*
	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
	 * handle BPs with more than one DVA allocated.  Set our max
	 * replication level accordingly.
	 */
	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
		return (1);
	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
}

int
spa_prev_software_version(spa_t *spa)
{
	return (spa->spa_prev_software_version);
}

uint64_t
spa_deadman_synctime(spa_t *spa)
{
	return (spa->spa_deadman_synctime);
}

uint64_t
dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
{
	uint64_t asize = DVA_GET_ASIZE(dva);
	uint64_t dsize = asize;

	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);

	if (asize != 0 && spa->spa_deflate) {
		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
	}

	return (dsize);
}

uint64_t
bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
{
	uint64_t dsize = 0;

	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);

	return (dsize);
}

uint64_t
bp_get_dsize(spa_t *spa, const blkptr_t *bp)
{
	uint64_t dsize = 0;

	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);

	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);

	spa_config_exit(spa, SCL_VDEV, FTAG);

	return (dsize);
}

/*
 * ==========================================================================
 * Initialization and Termination
 * ==========================================================================
 */

static int
spa_name_compare(const void *a1, const void *a2)
{
	const spa_t *s1 = a1;
	const spa_t *s2 = a2;
	int s;

	s = strcmp(s1->spa_name, s2->spa_name);
	if (s > 0)
		return (1);
	if (s < 0)
		return (-1);
	return (0);
}

int
spa_busy(void)
{
	return (spa_active_count);
}

void
spa_boot_init()
{
	spa_config_load();
}

#ifdef _KERNEL
EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
#endif

void
spa_init(int mode)
{
	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);

	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
	    offsetof(spa_t, spa_avl));

	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
	    offsetof(spa_aux_t, aux_avl));

	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
	    offsetof(spa_aux_t, aux_avl));

	spa_mode_global = mode;

#ifdef illumos
#ifdef _KERNEL
	spa_arch_init();
#else
	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
		arc_procfd = open("/proc/self/ctl", O_WRONLY);
		if (arc_procfd == -1) {
			perror("could not enable watchpoints: "
			    "opening /proc/self/ctl failed: ");
		} else {
			arc_watch = B_TRUE;
		}
	}
#endif
#endif /* illumos */
	refcount_sysinit();
	unique_init();
	range_tree_init();
	zio_init();
	lz4_init();
	dmu_init();
	zil_init();
	vdev_cache_stat_init();
	zfs_prop_init();
	zpool_prop_init();
	zpool_feature_init();
	spa_config_load();
	l2arc_start();
#ifndef illumos
#ifdef _KERNEL
	zfs_deadman_init();
#endif
#endif	/* !illumos */
}

void
spa_fini(void)
{
	l2arc_stop();

	spa_evict_all();

	vdev_cache_stat_fini();
	zil_fini();
	dmu_fini();
	lz4_fini();
	zio_fini();
	range_tree_fini();
	unique_fini();
	refcount_fini();

	avl_destroy(&spa_namespace_avl);
	avl_destroy(&spa_spare_avl);
	avl_destroy(&spa_l2cache_avl);

	cv_destroy(&spa_namespace_cv);
	mutex_destroy(&spa_namespace_lock);
	mutex_destroy(&spa_spare_lock);
	mutex_destroy(&spa_l2cache_lock);
}

/*
 * Return whether this pool has slogs. No locking needed.
 * It's not a problem if the wrong answer is returned as it's only for
 * performance and not correctness
 */
boolean_t
spa_has_slogs(spa_t *spa)
{
	return (spa->spa_log_class->mc_rotor != NULL);
}

spa_log_state_t
spa_get_log_state(spa_t *spa)
{
	return (spa->spa_log_state);
}

void
spa_set_log_state(spa_t *spa, spa_log_state_t state)
{
	spa->spa_log_state = state;
}

boolean_t
spa_is_root(spa_t *spa)
{
	return (spa->spa_is_root);
}

boolean_t
spa_writeable(spa_t *spa)
{
	return (!!(spa->spa_mode & FWRITE));
}

int
spa_mode(spa_t *spa)
{
	return (spa->spa_mode);
}

uint64_t
spa_bootfs(spa_t *spa)
{
	return (spa->spa_bootfs);
}

uint64_t
spa_delegation(spa_t *spa)
{
	return (spa->spa_delegation);
}

objset_t *
spa_meta_objset(spa_t *spa)
{
	return (spa->spa_meta_objset);
}

enum zio_checksum
spa_dedup_checksum(spa_t *spa)
{
	return (spa->spa_dedup_checksum);
}

/*
 * Reset pool scan stat per scan pass (or reboot).
 */
void
spa_scan_stat_init(spa_t *spa)
{
	/* data not stored on disk */
	spa->spa_scan_pass_start = gethrestime_sec();
	spa->spa_scan_pass_exam = 0;
	vdev_scan_stat_init(spa->spa_root_vdev);
}

/*
 * Get scan stats for zpool status reports
 */
int
spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
{
	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;

	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
		return (SET_ERROR(ENOENT));
	bzero(ps, sizeof (pool_scan_stat_t));

	/* data stored on disk */
	ps->pss_func = scn->scn_phys.scn_func;
	ps->pss_start_time = scn->scn_phys.scn_start_time;
	ps->pss_end_time = scn->scn_phys.scn_end_time;
	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
	ps->pss_examined = scn->scn_phys.scn_examined;
	ps->pss_to_process = scn->scn_phys.scn_to_process;
	ps->pss_processed = scn->scn_phys.scn_processed;
	ps->pss_errors = scn->scn_phys.scn_errors;
	ps->pss_state = scn->scn_phys.scn_state;

	/* data not stored on disk */
	ps->pss_pass_start = spa->spa_scan_pass_start;
	ps->pss_pass_exam = spa->spa_scan_pass_exam;

	return (0);
}

boolean_t
spa_debug_enabled(spa_t *spa)
{
	return (spa->spa_debug);
}