aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/contrib/opensolaris/uts/common/os/taskq.c
blob: 220f0801d141ac41b87f30d418e44ac07b20bb4b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License, Version 1.0 only
 * (the "License").  You may not use this file except in compliance
 * with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

/*
 * Kernel task queues: general-purpose asynchronous task scheduling.
 *
 * A common problem in kernel programming is the need to schedule tasks
 * to be performed later, by another thread. There are several reasons
 * you may want or need to do this:
 *
 * (1) The task isn't time-critical, but your current code path is.
 *
 * (2) The task may require grabbing locks that you already hold.
 *
 * (3) The task may need to block (e.g. to wait for memory), but you
 *     cannot block in your current context.
 *
 * (4) Your code path can't complete because of some condition, but you can't
 *     sleep or fail, so you queue the task for later execution when condition
 *     disappears.
 *
 * (5) You just want a simple way to launch multiple tasks in parallel.
 *
 * Task queues provide such a facility. In its simplest form (used when
 * performance is not a critical consideration) a task queue consists of a
 * single list of tasks, together with one or more threads to service the
 * list. There are some cases when this simple queue is not sufficient:
 *
 * (1) The task queues are very hot and there is a need to avoid data and lock
 *	contention over global resources.
 *
 * (2) Some tasks may depend on other tasks to complete, so they can't be put in
 *	the same list managed by the same thread.
 *
 * (3) Some tasks may block for a long time, and this should not block other
 * 	tasks in the queue.
 *
 * To provide useful service in such cases we define a "dynamic task queue"
 * which has an individual thread for each of the tasks. These threads are
 * dynamically created as they are needed and destroyed when they are not in
 * use. The API for managing task pools is the same as for managing task queues
 * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
 * dynamic task pool behavior is desired.
 *
 * Dynamic task queues may also place tasks in the normal queue (called "backing
 * queue") when task pool runs out of resources. Users of task queues may
 * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
 * flags.
 *
 * The backing task queue is also used for scheduling internal tasks needed for
 * dynamic task queue maintenance.
 *
 * INTERFACES:
 *
 * taskq_t *taskq_create(name, nthreads, pri_t pri, minalloc, maxall, flags);
 *
 *	Create a taskq with specified properties.
 *	Possible 'flags':
 *
 *	  TASKQ_DYNAMIC: Create task pool for task management. If this flag is
 * 		specified, 'nthreads' specifies the maximum number of threads in
 *		the task queue. Task execution order for dynamic task queues is
 *		not predictable.
 *
 *		If this flag is not specified (default case) a
 * 		single-list task queue is created with 'nthreads' threads
 * 		servicing it. Entries in this queue are managed by
 * 		taskq_ent_alloc() and taskq_ent_free() which try to keep the
 * 		task population between 'minalloc' and 'maxalloc', but the
 *		latter limit is only advisory for TQ_SLEEP dispatches and the
 *		former limit is only advisory for TQ_NOALLOC dispatches. If
 *		TASKQ_PREPOPULATE is set in 'flags', the taskq will be
 *		prepopulated with 'minalloc' task structures.
 *
 *		Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
 *		executed in the order they are scheduled if nthreads == 1.
 *		If nthreads > 1, task execution order is not predictable.
 *
 *	  TASKQ_PREPOPULATE: Prepopulate task queue with threads.
 *		Also prepopulate the task queue with 'minalloc' task structures.
 *
 *	  TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
 * 		use their own protocol for handling CPR issues. This flag is not
 *		supported for DYNAMIC task queues.
 *
 *	The 'pri' field specifies the default priority for the threads that
 *	service all scheduled tasks.
 *
 * void taskq_destroy(tap):
 *
 *	Waits for any scheduled tasks to complete, then destroys the taskq.
 *	Caller should guarantee that no new tasks are scheduled in the closing
 *	taskq.
 *
 * taskqid_t taskq_dispatch(tq, func, arg, flags):
 *
 *	Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
 *	the caller is willing to block for memory.  The function returns an
 *	opaque value which is zero iff dispatch fails.  If flags is TQ_NOSLEEP
 *	or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
 *	and returns (taskqid_t)0.
 *
 *	ASSUMES: func != NULL.
 *
 *	Possible flags:
 *	  TQ_NOSLEEP: Do not wait for resources; may fail.
 *
 *	  TQ_NOALLOC: Do not allocate memory; may fail.  May only be used with
 *		non-dynamic task queues.
 *
 *	  TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
 *		lack of available resources and fail. If this flag is not
 * 		set, and the task pool is exhausted, the task may be scheduled
 *		in the backing queue. This flag may ONLY be used with dynamic
 *		task queues.
 *
 *		NOTE: This flag should always be used when a task queue is used
 *		for tasks that may depend on each other for completion.
 *		Enqueueing dependent tasks may create deadlocks.
 *
 *	  TQ_SLEEP:   May block waiting for resources. May still fail for
 * 		dynamic task queues if TQ_NOQUEUE is also specified, otherwise
 *		always succeed.
 *
 *	NOTE: Dynamic task queues are much more likely to fail in
 *		taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
 *		is important to have backup strategies handling such failures.
 *
 * void taskq_wait(tq):
 *
 *	Waits for all previously scheduled tasks to complete.
 *
 *	NOTE: It does not stop any new task dispatches.
 *	      Do NOT call taskq_wait() from a task: it will cause deadlock.
 *
 * void taskq_suspend(tq)
 *
 *	Suspend all task execution. Tasks already scheduled for a dynamic task
 *	queue will still be executed, but all new scheduled tasks will be
 *	suspended until taskq_resume() is called.
 *
 * int  taskq_suspended(tq)
 *
 *	Returns 1 if taskq is suspended and 0 otherwise. It is intended to
 *	ASSERT that the task queue is suspended.
 *
 * void taskq_resume(tq)
 *
 *	Resume task queue execution.
 *
 * int  taskq_member(tq, thread)
 *
 *	Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
 *	intended use is to ASSERT that a given function is called in taskq
 *	context only.
 *
 * system_taskq
 *
 *	Global system-wide dynamic task queue for common uses. It may be used by
 *	any subsystem that needs to schedule tasks and does not need to manage
 *	its own task queues. It is initialized quite early during system boot.
 *
 * IMPLEMENTATION.
 *
 * This is schematic representation of the task queue structures.
 *
 *   taskq:
 *   +-------------+
 *   |tq_lock      | +---< taskq_ent_free()
 *   +-------------+ |
 *   |...          | | tqent:                  tqent:
 *   +-------------+ | +------------+          +------------+
 *   | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
 *   +-------------+   +------------+          +------------+
 *   |...          |   | ...        |          | ...        |
 *   +-------------+   +------------+          +------------+
 *   | tq_task     |    |
 *   |             |    +-------------->taskq_ent_alloc()
 * +--------------------------------------------------------------------------+
 * | |                     |            tqent                   tqent         |
 * | +---------------------+     +--> +------------+     +--> +------------+  |
 * | | ...		   |     |    | func, arg  |     |    | func, arg  |  |
 * +>+---------------------+ <---|-+  +------------+ <---|-+  +------------+  |
 *   | tq_taskq.tqent_next | ----+ |  | tqent_next | --->+ |  | tqent_next |--+
 *   +---------------------+	   |  +------------+     ^ |  +------------+
 * +-| tq_task.tqent_prev  |	   +--| tqent_prev |     | +--| tqent_prev |  ^
 * | +---------------------+	      +------------+     |    +------------+  |
 * | |...		   |	      | ...        |     |    | ...        |  |
 * | +---------------------+	      +------------+     |    +------------+  |
 * |                                      ^              |                    |
 * |                                      |              |                    |
 * +--------------------------------------+--------------+       TQ_APPEND() -+
 *   |             |                      |
 *   |...          |   taskq_thread()-----+
 *   +-------------+
 *   | tq_buckets  |--+-------> [ NULL ] (for regular task queues)
 *   +-------------+  |
 *                    |   DYNAMIC TASK QUEUES:
 *                    |
 *                    +-> taskq_bucket[nCPU]       	taskq_bucket_dispatch()
 *                        +-------------------+                    ^
 *                   +--->| tqbucket_lock     |                    |
 *                   |    +-------------------+   +--------+      +--------+
 *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  | ^
 *                   |    +-------------------+<--+--------+<--...+--------+ |
 *                   |    | ...               |   | thread |      | thread | |
 *                   |    +-------------------+   +--------+      +--------+ |
 *                   |    +-------------------+                              |
 * taskq_dispatch()--+--->| tqbucket_lock     |             TQ_APPEND()------+
 *      TQ_HASH()    |    +-------------------+   +--------+      +--------+
 *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  |
 *                   |    +-------------------+<--+--------+<--...+--------+
 *                   |    | ...               |   | thread |      | thread |
 *                   |    +-------------------+   +--------+      +--------+
 *		     +---> 	...
 *
 *
 * Task queues use tq_task field to link new entry in the queue. The queue is a
 * circular doubly-linked list. Entries are put in the end of the list with
 * TQ_APPEND() and processed from the front of the list by taskq_thread() in
 * FIFO order. Task queue entries are cached in the free list managed by
 * taskq_ent_alloc() and taskq_ent_free() functions.
 *
 *	All threads used by task queues mark t_taskq field of the thread to
 *	point to the task queue.
 *
 * Dynamic Task Queues Implementation.
 *
 * For a dynamic task queues there is a 1-to-1 mapping between a thread and
 * taskq_ent_structure. Each entry is serviced by its own thread and each thread
 * is controlled by a single entry.
 *
 * Entries are distributed over a set of buckets. To avoid using modulo
 * arithmetics the number of buckets is 2^n and is determined as the nearest
 * power of two roundown of the number of CPUs in the system. Tunable
 * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
 * is attached to a bucket for its lifetime and can't migrate to other buckets.
 *
 * Entries that have scheduled tasks are not placed in any list. The dispatch
 * function sets their "func" and "arg" fields and signals the corresponding
 * thread to execute the task. Once the thread executes the task it clears the
 * "func" field and places an entry on the bucket cache of free entries pointed
 * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
 * field equal to NULL. The free list is a circular doubly-linked list identical
 * in structure to the tq_task list above, but entries are taken from it in LIFO
 * order - the last freed entry is the first to be allocated. The
 * taskq_bucket_dispatch() function gets the most recently used entry from the
 * free list, sets its "func" and "arg" fields and signals a worker thread.
 *
 * After executing each task a per-entry thread taskq_d_thread() places its
 * entry on the bucket free list and goes to a timed sleep. If it wakes up
 * without getting new task it removes the entry from the free list and destroys
 * itself. The thread sleep time is controlled by a tunable variable
 * `taskq_thread_timeout'.
 *
 * There is various statistics kept in the bucket which allows for later
 * analysis of taskq usage patterns. Also, a global copy of taskq creation and
 * death statistics is kept in the global taskq data structure. Since thread
 * creation and death happen rarely, updating such global data does not present
 * a performance problem.
 *
 * NOTE: Threads are not bound to any CPU and there is absolutely no association
 *       between the bucket and actual thread CPU, so buckets are used only to
 *	 split resources and reduce resource contention. Having threads attached
 *	 to the CPU denoted by a bucket may reduce number of times the job
 *	 switches between CPUs.
 *
 *	 Current algorithm creates a thread whenever a bucket has no free
 *	 entries. It would be nice to know how many threads are in the running
 *	 state and don't create threads if all CPUs are busy with existing
 *	 tasks, but it is unclear how such strategy can be implemented.
 *
 *	 Currently buckets are created statically as an array attached to task
 *	 queue. On some system with nCPUs < max_ncpus it may waste system
 *	 memory. One solution may be allocation of buckets when they are first
 *	 touched, but it is not clear how useful it is.
 *
 * SUSPEND/RESUME implementation.
 *
 *	Before executing a task taskq_thread() (executing non-dynamic task
 *	queues) obtains taskq's thread lock as a reader. The taskq_suspend()
 *	function gets the same lock as a writer blocking all non-dynamic task
 *	execution. The taskq_resume() function releases the lock allowing
 *	taskq_thread to continue execution.
 *
 *	For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
 *	taskq_suspend() function. After that taskq_bucket_dispatch() always
 *	fails, so that taskq_dispatch() will either enqueue tasks for a
 *	suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
 *	flags.
 *
 *	NOTE: taskq_suspend() does not immediately block any tasks already
 *	      scheduled for dynamic task queues. It only suspends new tasks
 *	      scheduled after taskq_suspend() was called.
 *
 *	taskq_member() function works by comparing a thread t_taskq pointer with
 *	the passed thread pointer.
 *
 * LOCKS and LOCK Hierarchy:
 *
 *   There are two locks used in task queues.
 *
 *   1) Task queue structure has a lock, protecting global task queue state.
 *
 *   2) Each per-CPU bucket has a lock for bucket management.
 *
 *   If both locks are needed, task queue lock should be taken only after bucket
 *   lock.
 *
 * DEBUG FACILITIES.
 *
 * For DEBUG kernels it is possible to induce random failures to
 * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
 * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
 * failures for dynamic and static task queues respectively.
 *
 * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
 *
 * TUNABLES
 *
 *	system_taskq_size	- Size of the global system_taskq.
 *				  This value is multiplied by nCPUs to determine
 *				  actual size.
 *				  Default value: 64
 *
 *	taskq_thread_timeout	- Maximum idle time for taskq_d_thread()
 *				  Default value: 5 minutes
 *
 *	taskq_maxbuckets	- Maximum number of buckets in any task queue
 *				  Default value: 128
 *
 *	taskq_search_depth	- Maximum # of buckets searched for a free entry
 *				  Default value: 4
 *
 *	taskq_dmtbf		- Mean time between induced dispatch failures
 *				  for dynamic task queues.
 *				  Default value: UINT_MAX (no induced failures)
 *
 *	taskq_smtbf		- Mean time between induced dispatch failures
 *				  for static task queues.
 *				  Default value: UINT_MAX (no induced failures)
 *
 * CONDITIONAL compilation.
 *
 *    TASKQ_STATISTIC	- If set will enable bucket statistic (default).
 *
 */

#include <sys/taskq_impl.h>
#include <sys/proc.h>
#include <sys/kmem.h>
#include <sys/callb.h>
#include <sys/systm.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/sysmacros.h>
#include <sys/sdt.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/limits.h>

static kmem_cache_t *taskq_ent_cache, *taskq_cache;

/* Global system task queue for common use */
taskq_t *system_taskq;

/*
 * Maxmimum number of entries in global system taskq is
 *      system_taskq_size * max_ncpus
 */
#define SYSTEM_TASKQ_SIZE 1
int system_taskq_size = SYSTEM_TASKQ_SIZE;

/*
 * Dynamic task queue threads that don't get any work within
 * taskq_thread_timeout destroy themselves
 */
#define	TASKQ_THREAD_TIMEOUT (60 * 5)
int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;

#define	TASKQ_MAXBUCKETS 128
int taskq_maxbuckets = TASKQ_MAXBUCKETS;

/*
 * When a bucket has no available entries another buckets are tried.
 * taskq_search_depth parameter limits the amount of buckets that we search
 * before failing. This is mostly useful in systems with many CPUs where we may
 * spend too much time scanning busy buckets.
 */
#define	TASKQ_SEARCH_DEPTH 4
int taskq_search_depth = TASKQ_SEARCH_DEPTH;

/*
 * Hashing function: mix various bits of x. May be pretty much anything.
 */
#define	TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))

/*
 * We do not create any new threads when the system is low on memory and start
 * throttling memory allocations. The following macro tries to estimate such
 * condition.
 */
#define	ENOUGH_MEMORY() (freemem > throttlefree)

/*
 * Static functions.
 */
static taskq_t	*taskq_create_common(const char *, int, int, pri_t, int,
    int, uint_t);
static void taskq_thread(void *);
static int  taskq_constructor(void *, void *, int);
static void taskq_destructor(void *, void *);
static int  taskq_ent_constructor(void *, void *, int);
static void taskq_ent_destructor(void *, void *);
static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
static void taskq_ent_free(taskq_t *, taskq_ent_t *);

/*
 * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
 */
#define	TASKQ_STATISTIC 1

#if TASKQ_STATISTIC
#define	TQ_STAT(b, x)	b->tqbucket_stat.x++
#else
#define	TQ_STAT(b, x)
#endif

/*
 * Random fault injection.
 */
uint_t taskq_random;
uint_t taskq_dmtbf = UINT_MAX;    /* mean time between injected failures */
uint_t taskq_smtbf = UINT_MAX;    /* mean time between injected failures */

/*
 * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
 *
 * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
 * they could prepopulate the cache and make sure that they do not use more
 * then minalloc entries.  So, fault injection in this case insures that
 * either TASKQ_PREPOPULATE is not set or there are more entries allocated
 * than is specified by minalloc.  TQ_NOALLOC dispatches are always allowed
 * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
 * dispatches.
 */
#ifdef DEBUG
#define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)		\
	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
	if ((flag & TQ_NOSLEEP) &&				\
	    taskq_random < 1771875 / taskq_dmtbf) {		\
		return (NULL);					\
	}

#define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)		\
	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
	if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) &&		\
	    (!(tq->tq_flags & TASKQ_PREPOPULATE) ||		\
	    (tq->tq_nalloc > tq->tq_minalloc)) &&		\
	    (taskq_random < (1771875 / taskq_smtbf))) {		\
		mutex_exit(&tq->tq_lock);			\
		return ((taskqid_t)0);				\
	}
#else
#define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
#define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
#endif

#define	IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) &&	\
	((l).tqent_prev == &(l)))

/*
 * Append `tqe' in the end of the doubly-linked list denoted by l.
 */
#define	TQ_APPEND(l, tqe) {					\
	tqe->tqent_next = &l;					\
	tqe->tqent_prev = l.tqent_prev;				\
	tqe->tqent_next->tqent_prev = tqe;			\
	tqe->tqent_prev->tqent_next = tqe;			\
}

/*
 * Schedule a task specified by func and arg into the task queue entry tqe.
 */
#define	TQ_ENQUEUE(tq, tqe, func, arg) {			\
	ASSERT(MUTEX_HELD(&tq->tq_lock));			\
	TQ_APPEND(tq->tq_task, tqe);				\
	tqe->tqent_func = (func);				\
	tqe->tqent_arg = (arg);					\
	tq->tq_tasks++;						\
	if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks)	\
		tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed;	\
	cv_signal(&tq->tq_dispatch_cv);				\
	DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
}

/*
 * Do-nothing task which may be used to prepopulate thread caches.
 */
/*ARGSUSED*/
void
nulltask(void *unused)
{
}


/*ARGSUSED*/
static int
taskq_constructor(void *buf, void *cdrarg, int kmflags)
{
	taskq_t *tq = buf;

	bzero(tq, sizeof (taskq_t));

	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);

	tq->tq_task.tqent_next = &tq->tq_task;
	tq->tq_task.tqent_prev = &tq->tq_task;

	return (0);
}

/*ARGSUSED*/
static void
taskq_destructor(void *buf, void *cdrarg)
{
	taskq_t *tq = buf;

	mutex_destroy(&tq->tq_lock);
	rw_destroy(&tq->tq_threadlock);
	cv_destroy(&tq->tq_dispatch_cv);
	cv_destroy(&tq->tq_wait_cv);
}

/*ARGSUSED*/
static int
taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
{
	taskq_ent_t *tqe = buf;

	tqe->tqent_thread = NULL;
	cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);

	return (0);
}

/*ARGSUSED*/
static void
taskq_ent_destructor(void *buf, void *cdrarg)
{
	taskq_ent_t *tqe = buf;

	ASSERT(tqe->tqent_thread == NULL);
	cv_destroy(&tqe->tqent_cv);
}

/*
 * Create global system dynamic task queue.
 */
void
system_taskq_init(void)
{
	system_taskq = taskq_create_common("system_taskq", 0,
	    system_taskq_size * max_ncpus, minclsyspri, 4, 512,
	    TASKQ_PREPOPULATE);
}

void
system_taskq_fini(void)
{
	taskq_destroy(system_taskq);
}

static void
taskq_init(void *dummy __unused)
{
	taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
	    sizeof (taskq_ent_t), 0, taskq_ent_constructor,
	    taskq_ent_destructor, NULL, NULL, NULL, 0);
	taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
	    0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
	system_taskq_init();
}

static void
taskq_fini(void *dummy __unused)
{
	system_taskq_fini();
	kmem_cache_destroy(taskq_cache);
	kmem_cache_destroy(taskq_ent_cache);
}

/*
 * taskq_ent_alloc()
 *
 * Allocates a new taskq_ent_t structure either from the free list or from the
 * cache. Returns NULL if it can't be allocated.
 *
 * Assumes: tq->tq_lock is held.
 */
static taskq_ent_t *
taskq_ent_alloc(taskq_t *tq, int flags)
{
	int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;

	taskq_ent_t *tqe;

	ASSERT(MUTEX_HELD(&tq->tq_lock));

	/*
	 * TQ_NOALLOC allocations are allowed to use the freelist, even if
	 * we are below tq_minalloc.
	 */
	if ((tqe = tq->tq_freelist) != NULL &&
	    ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
		tq->tq_freelist = tqe->tqent_next;
	} else {
		if (flags & TQ_NOALLOC)
			return (NULL);

		mutex_exit(&tq->tq_lock);
		if (tq->tq_nalloc >= tq->tq_maxalloc) {
			if (kmflags & KM_NOSLEEP) {
				mutex_enter(&tq->tq_lock);
				return (NULL);
			}
			/*
			 * We don't want to exceed tq_maxalloc, but we can't
			 * wait for other tasks to complete (and thus free up
			 * task structures) without risking deadlock with
			 * the caller.  So, we just delay for one second
			 * to throttle the allocation rate.
			 */
			delay(hz);
		}
		tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
		mutex_enter(&tq->tq_lock);
		if (tqe != NULL)
			tq->tq_nalloc++;
	}
	return (tqe);
}

/*
 * taskq_ent_free()
 *
 * Free taskq_ent_t structure by either putting it on the free list or freeing
 * it to the cache.
 *
 * Assumes: tq->tq_lock is held.
 */
static void
taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
{
	ASSERT(MUTEX_HELD(&tq->tq_lock));

	if (tq->tq_nalloc <= tq->tq_minalloc) {
		tqe->tqent_next = tq->tq_freelist;
		tq->tq_freelist = tqe;
	} else {
		tq->tq_nalloc--;
		mutex_exit(&tq->tq_lock);
		kmem_cache_free(taskq_ent_cache, tqe);
		mutex_enter(&tq->tq_lock);
	}
}

/*
 * Dispatch a task.
 *
 * Assumes: func != NULL
 *
 * Returns: NULL if dispatch failed.
 *	    non-NULL if task dispatched successfully.
 *	    Actual return value is the pointer to taskq entry that was used to
 *	    dispatch a task. This is useful for debugging.
 */
/* ARGSUSED */
taskqid_t
taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
{
	taskq_ent_t *tqe = NULL;

	ASSERT(tq != NULL);
	ASSERT(func != NULL);
	ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));

	/*
	 * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
	 */
	ASSERT(! (flags & TQ_NOQUEUE));

	/*
	 * Enqueue the task to the underlying queue.
	 */
	mutex_enter(&tq->tq_lock);

	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);

	if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
		mutex_exit(&tq->tq_lock);
		return ((taskqid_t)NULL);
	}
	TQ_ENQUEUE(tq, tqe, func, arg);
	mutex_exit(&tq->tq_lock);
	return ((taskqid_t)tqe);
}

/*
 * Wait for all pending tasks to complete.
 * Calling taskq_wait from a task will cause deadlock.
 */
void
taskq_wait(taskq_t *tq)
{

	mutex_enter(&tq->tq_lock);
	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
	mutex_exit(&tq->tq_lock);
}

/*
 * Suspend execution of tasks.
 *
 * Tasks in the queue part will be suspended immediately upon return from this
 * function. Pending tasks in the dynamic part will continue to execute, but all
 * new tasks will  be suspended.
 */
void
taskq_suspend(taskq_t *tq)
{
	rw_enter(&tq->tq_threadlock, RW_WRITER);

	/*
	 * Mark task queue as being suspended. Needed for taskq_suspended().
	 */
	mutex_enter(&tq->tq_lock);
	ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
	tq->tq_flags |= TASKQ_SUSPENDED;
	mutex_exit(&tq->tq_lock);
}

/*
 * returns: 1 if tq is suspended, 0 otherwise.
 */
int
taskq_suspended(taskq_t *tq)
{
	return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
}

/*
 * Resume taskq execution.
 */
void
taskq_resume(taskq_t *tq)
{
	ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));

	mutex_enter(&tq->tq_lock);
	ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
	tq->tq_flags &= ~TASKQ_SUSPENDED;
	mutex_exit(&tq->tq_lock);

	rw_exit(&tq->tq_threadlock);
}

/*
 * Worker thread for processing task queue.
 */
static void
taskq_thread(void *arg)
{
	taskq_t *tq = arg;
	taskq_ent_t *tqe;
	callb_cpr_t cprinfo;
	hrtime_t start, end;

	CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr, tq->tq_name);

	mutex_enter(&tq->tq_lock);
	while (tq->tq_flags & TASKQ_ACTIVE) {
		if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
			if (--tq->tq_active == 0)
				cv_broadcast(&tq->tq_wait_cv);
			if (tq->tq_flags & TASKQ_CPR_SAFE) {
				cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
			} else {
				CALLB_CPR_SAFE_BEGIN(&cprinfo);
				cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
				CALLB_CPR_SAFE_END(&cprinfo, &tq->tq_lock);
			}
			tq->tq_active++;
			continue;
		}
		tqe->tqent_prev->tqent_next = tqe->tqent_next;
		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
		mutex_exit(&tq->tq_lock);

		rw_enter(&tq->tq_threadlock, RW_READER);
		start = gethrtime();
		DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
		    taskq_ent_t *, tqe);
		tqe->tqent_func(tqe->tqent_arg);
		DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
		    taskq_ent_t *, tqe);
		end = gethrtime();
		rw_exit(&tq->tq_threadlock);

		mutex_enter(&tq->tq_lock);
		tq->tq_totaltime += end - start;
		tq->tq_executed++;

		taskq_ent_free(tq, tqe);
	}
	tq->tq_nthreads--;
	cv_broadcast(&tq->tq_wait_cv);
	ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
	CALLB_CPR_EXIT(&cprinfo);
	thread_exit();
}

/*
 * Taskq creation. May sleep for memory.
 * Always use automatically generated instances to avoid kstat name space
 * collisions.
 */

taskq_t *
taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
    int maxalloc, uint_t flags)
{
	return taskq_create_common(name, 0, nthreads, pri, minalloc,
	    maxalloc, flags | TASKQ_NOINSTANCE);
}

static taskq_t *
taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
    int minalloc, int maxalloc, uint_t flags)
{
	taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
	uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
	uint_t bsize;	/* # of buckets - always power of 2 */

	ASSERT(instance == 0);
	ASSERT(flags == TASKQ_PREPOPULATE | TASKQ_NOINSTANCE);

	/*
	 * TASKQ_CPR_SAFE and TASKQ_DYNAMIC flags are mutually exclusive.
	 */
	ASSERT((flags & (TASKQ_DYNAMIC | TASKQ_CPR_SAFE)) !=
	    ((TASKQ_DYNAMIC | TASKQ_CPR_SAFE)));

	ASSERT(tq->tq_buckets == NULL);

	bsize = 1 << (highbit(ncpus) - 1);
	ASSERT(bsize >= 1);
	bsize = MIN(bsize, taskq_maxbuckets);

	tq->tq_maxsize = nthreads;

	(void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
	tq->tq_name[TASKQ_NAMELEN] = '\0';
	/* Make sure the name conforms to the rules for C indentifiers */
	strident_canon(tq->tq_name, TASKQ_NAMELEN);

	tq->tq_flags = flags | TASKQ_ACTIVE;
	tq->tq_active = nthreads;
	tq->tq_nthreads = nthreads;
	tq->tq_minalloc = minalloc;
	tq->tq_maxalloc = maxalloc;
	tq->tq_nbuckets = bsize;
	tq->tq_pri = pri;

	if (flags & TASKQ_PREPOPULATE) {
		mutex_enter(&tq->tq_lock);
		while (minalloc-- > 0)
			taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
		mutex_exit(&tq->tq_lock);
	}

	if (nthreads == 1) {
		tq->tq_thread = thread_create(NULL, 0, taskq_thread, tq,
		    0, NULL, TS_RUN, pri);
	} else {
		kthread_t **tpp = kmem_alloc(sizeof (kthread_t *) * nthreads,
		    KM_SLEEP);

		tq->tq_threadlist = tpp;

		mutex_enter(&tq->tq_lock);
		while (nthreads-- > 0) {
			*tpp = thread_create(NULL, 0, taskq_thread, tq,
			    0, NULL, TS_RUN, pri);
			tpp++;
		}
		mutex_exit(&tq->tq_lock);
	}

	return (tq);
}

/*
 * taskq_destroy().
 *
 * Assumes: by the time taskq_destroy is called no one will use this task queue
 * in any way and no one will try to dispatch entries in it.
 */
void
taskq_destroy(taskq_t *tq)
{
	taskq_bucket_t *b = tq->tq_buckets;
	int bid = 0;

	ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));

	/*
	 * Wait for any pending entries to complete.
	 */
	taskq_wait(tq);

	mutex_enter(&tq->tq_lock);
	ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
	    (tq->tq_active == 0));

	if ((tq->tq_nthreads > 1) && (tq->tq_threadlist != NULL))
		kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
		    tq->tq_nthreads);

	tq->tq_flags &= ~TASKQ_ACTIVE;
	cv_broadcast(&tq->tq_dispatch_cv);
	while (tq->tq_nthreads != 0)
		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);

	tq->tq_minalloc = 0;
	while (tq->tq_nalloc != 0)
		taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));

	mutex_exit(&tq->tq_lock);

	/*
	 * Mark each bucket as closing and wakeup all sleeping threads.
	 */
	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
		taskq_ent_t *tqe;

		mutex_enter(&b->tqbucket_lock);

		b->tqbucket_flags |= TQBUCKET_CLOSE;
		/* Wakeup all sleeping threads */

		for (tqe = b->tqbucket_freelist.tqent_next;
		    tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
			cv_signal(&tqe->tqent_cv);

		ASSERT(b->tqbucket_nalloc == 0);

		/*
		 * At this point we waited for all pending jobs to complete (in
		 * both the task queue and the bucket and no new jobs should
		 * arrive. Wait for all threads to die.
		 */
		while (b->tqbucket_nfree > 0)
			cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
		mutex_exit(&b->tqbucket_lock);
		mutex_destroy(&b->tqbucket_lock);
		cv_destroy(&b->tqbucket_cv);
	}

	if (tq->tq_buckets != NULL) {
		ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
		kmem_free(tq->tq_buckets,
		    sizeof (taskq_bucket_t) * tq->tq_nbuckets);

		/* Cleanup fields before returning tq to the cache */
		tq->tq_buckets = NULL;
		tq->tq_tcreates = 0;
		tq->tq_tdeaths = 0;
	} else {
		ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
	}

	tq->tq_totaltime = 0;
	tq->tq_tasks = 0;
	tq->tq_maxtasks = 0;
	tq->tq_executed = 0;
	kmem_cache_free(taskq_cache, tq);
}

SYSINIT(sol_taskq, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, taskq_init, NULL)
SYSUNINIT(sol_taskq, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, taskq_fini, NULL);