aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_reset.c
blob: 2b4374d237bdda01be962753180f2e58a1711cba (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
/*
 * Copyright (c) 2013 Qualcomm Atheros, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 * PERFORMANCE OF THIS SOFTWARE.
 */



#include "opt_ah.h"

#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_desc.h"

#include "ar9300.h"
#include "ar9300reg.h"
#include "ar9300phy.h"
#include "ar9300desc.h"

#define FIX_NOISE_FLOOR     1


/* Additional Time delay to wait after activiting the Base band */
#define BASE_ACTIVATE_DELAY         100     /* usec */
#define RTC_PLL_SETTLE_DELAY        100     /* usec */
#define COEF_SCALE_S                24
#define HT40_CHANNEL_CENTER_SHIFT   10      /* MHz      */

#define DELPT 32

/* XXX Duplicates! (in ar9300desc.h) */
#if 0
extern  HAL_BOOL ar9300_reset_tx_queue(struct ath_hal *ah, u_int q);
extern  u_int32_t ar9300_num_tx_pending(struct ath_hal *ah, u_int q);
#endif


#define MAX_MEASUREMENT 8
#define MAXIQCAL 3
struct coeff_t {
    int32_t mag_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL];
    int32_t phs_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL];
    int32_t iqc_coeff[2];
    int last_nmeasurement;
    HAL_BOOL last_cal;
};

static HAL_BOOL ar9300_tx_iq_cal_hw_run(struct ath_hal *ah);
static void ar9300_tx_iq_cal_post_proc(struct ath_hal *ah,HAL_CHANNEL_INTERNAL *ichan,
       int iqcal_idx, int max_iqcal, HAL_BOOL is_cal_reusable, HAL_BOOL apply_last_corr);
static void ar9300_tx_iq_cal_outlier_detection(struct ath_hal *ah,HAL_CHANNEL_INTERNAL *ichan,
       u_int32_t num_chains, struct coeff_t *coeff, HAL_BOOL is_cal_reusable);
#if ATH_SUPPORT_CAL_REUSE
static void ar9300_tx_iq_cal_apply(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan);
#endif


static inline void ar9300_prog_ini(struct ath_hal *ah, struct ar9300_ini_array *ini_arr, int column);
static inline void ar9300_set_rf_mode(struct ath_hal *ah, struct ieee80211_channel *chan);
static inline HAL_BOOL ar9300_init_cal(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_BOOL skip_if_none, HAL_BOOL apply_last_corr);
static inline void ar9300_init_user_settings(struct ath_hal *ah);

#ifdef HOST_OFFLOAD
/* 
 * For usb offload solution, some USB registers must be tuned 
 * to gain better stability/performance but these registers
 * might be changed while doing wlan reset so do this here 
 */
#define WAR_USB_DISABLE_PLL_LOCK_DETECT(__ah) \
do { \
    if (AR_SREV_HORNET(__ah) || AR_SREV_WASP(__ah)) { \
        volatile u_int32_t *usb_ctrl_r1 = (u_int32_t *) 0xb8116c84; \
        volatile u_int32_t *usb_ctrl_r2 = (u_int32_t *) 0xb8116c88; \
        *usb_ctrl_r1 = (*usb_ctrl_r1 & 0xffefffff); \
        *usb_ctrl_r2 = (*usb_ctrl_r2 & 0xfc1fffff) | (1 << 21) | (3 << 22); \
    } \
} while (0)
#else
#define WAR_USB_DISABLE_PLL_LOCK_DETECT(__ah)
#endif

/*
 * Note: the below is the version that ships with ath9k.
 * The original HAL version is above.
 */

static void
ar9300_disable_pll_lock_detect(struct ath_hal *ah)
{
	/*
	 * On AR9330 and AR9340 devices, some PHY registers must be
	 * tuned to gain better stability/performance. These registers
	 * might be changed while doing wlan reset so the registers must
	 * be reprogrammed after each reset.
	 */
	if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah)) {
		HALDEBUG(ah, HAL_DEBUG_RESET, "%s: called\n", __func__);
		OS_REG_CLR_BIT(ah, AR_PHY_USB_CTRL1, (1 << 20));
		OS_REG_RMW(ah, AR_PHY_USB_CTRL2,
		    (1 << 21) | (0xf << 22),
		    (1 << 21) | (0x3 << 22));
	}
}

static inline void
ar9300_attach_hw_platform(struct ath_hal *ah)
{
    struct ath_hal_9300 *ahp = AH9300(ah);

    ahp->ah_hwp = HAL_TRUE_CHIP;
    return;
}

/* Adjust various register settings based on half/quarter rate clock setting.
 * This includes: +USEC, TX/RX latency, 
 *                + IFS params: slot, eifs, misc etc.
 * SIFS stays the same.
 */
static void 
ar9300_set_ifs_timing(struct ath_hal *ah, struct ieee80211_channel *chan)
{
    u_int32_t tx_lat, rx_lat, usec, slot, regval, eifs;

    regval = OS_REG_READ(ah, AR_USEC);
    regval &= ~(AR_USEC_RX_LATENCY | AR_USEC_TX_LATENCY | AR_USEC_USEC);
    if (IEEE80211_IS_CHAN_HALF(chan)) { /* half rates */
        slot = ar9300_mac_to_clks(ah, AR_SLOT_HALF);
        eifs = ar9300_mac_to_clks(ah, AR_EIFS_HALF);
        if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { /* fast clock */
            rx_lat = SM(AR_RX_LATENCY_HALF_FAST_CLOCK, AR_USEC_RX_LATENCY);
            tx_lat = SM(AR_TX_LATENCY_HALF_FAST_CLOCK, AR_USEC_TX_LATENCY);
            usec = SM(AR_USEC_HALF_FAST_CLOCK, AR_USEC_USEC);
        } else {
            rx_lat = SM(AR_RX_LATENCY_HALF, AR_USEC_RX_LATENCY);
            tx_lat = SM(AR_TX_LATENCY_HALF, AR_USEC_TX_LATENCY);
            usec = SM(AR_USEC_HALF, AR_USEC_USEC);
        }
    } else { /* quarter rate */
        slot = ar9300_mac_to_clks(ah, AR_SLOT_QUARTER);
        eifs = ar9300_mac_to_clks(ah, AR_EIFS_QUARTER);
        if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { /* fast clock */
            rx_lat = SM(AR_RX_LATENCY_QUARTER_FAST_CLOCK, AR_USEC_RX_LATENCY);
            tx_lat = SM(AR_TX_LATENCY_QUARTER_FAST_CLOCK, AR_USEC_TX_LATENCY);
            usec = SM(AR_USEC_QUARTER_FAST_CLOCK, AR_USEC_USEC);
        } else {
            rx_lat = SM(AR_RX_LATENCY_QUARTER, AR_USEC_RX_LATENCY);
            tx_lat = SM(AR_TX_LATENCY_QUARTER, AR_USEC_TX_LATENCY);
            usec = SM(AR_USEC_QUARTER, AR_USEC_USEC);
        }
    }

    OS_REG_WRITE(ah, AR_USEC, (usec | regval | tx_lat | rx_lat));
    OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
    OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
}


/*
 * This inline function configures the chip either
 * to encrypt/decrypt management frames or pass thru
 */
static inline void
ar9300_init_mfp(struct ath_hal * ah)
{
    u_int32_t   mfpcap, mfp_qos;

    ath_hal_getcapability(ah, HAL_CAP_MFP, 0, &mfpcap);

    if (mfpcap == HAL_MFP_QOSDATA) {
        /* Treat like legacy hardware. Do not touch the MFP registers. */
        HALDEBUG(ah, HAL_DEBUG_RESET, "%s forced to use QOSDATA\n", __func__);
        return;
    }

    /* MFP support (Sowl 1.0 or greater) */
    if (mfpcap == HAL_MFP_HW_CRYPTO) {
        /* configure hardware MFP support */
        HALDEBUG(ah, HAL_DEBUG_RESET, "%s using HW crypto\n", __func__);
        OS_REG_RMW_FIELD(ah,
            AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, AR_AES_MUTE_MASK1_FC_MGMT_MFP);
        OS_REG_RMW(ah,
            AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE,
            AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
        /*
        * Mask used to construct AAD for CCMP-AES
        * Cisco spec defined bits 0-3 as mask 
        * IEEE802.11w defined as bit 4.
        */		
        if (ath_hal_get_mfp_qos(ah)) {
            mfp_qos = AR_MFP_QOS_MASK_IEEE;
        } else {
            mfp_qos = AR_MFP_QOS_MASK_CISCO;
        }
        OS_REG_RMW_FIELD(ah,
            AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_QOS, mfp_qos);
    } else if (mfpcap == HAL_MFP_PASSTHRU) {
        /* Disable en/decrypt by hardware */
        HALDEBUG(ah, HAL_DEBUG_RESET, "%s using passthru\n", __func__);
        OS_REG_RMW(ah,
            AR_PCU_MISC_MODE2,
            AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT,
            AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
    }
}

void
ar9300_get_channel_centers(struct ath_hal *ah, const struct ieee80211_channel *chan,
    CHAN_CENTERS *centers)
{
    int8_t      extoff;
    struct ath_hal_9300 *ahp = AH9300(ah);
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);

    if (!IEEE80211_IS_CHAN_HT40(chan)) {
        centers->ctl_center = centers->ext_center =
        centers->synth_center = ichan->channel;
        return;
    }

    HALASSERT(IEEE80211_IS_CHAN_HT40(chan));

    /*
     * In 20/40 phy mode, the center frequency is
     * "between" the primary and extension channels.
     */
    if (IEEE80211_IS_CHAN_HT40U(chan)) {
        centers->synth_center = ichan->channel + HT40_CHANNEL_CENTER_SHIFT;
        extoff = 1;
    } else {
        centers->synth_center = ichan->channel - HT40_CHANNEL_CENTER_SHIFT;
        extoff = -1;
    }

    centers->ctl_center =
        centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
    centers->ext_center =
        centers->synth_center +
        (extoff * ((ahp->ah_ext_prot_spacing == HAL_HT_EXTPROTSPACING_20) ?
            HT40_CHANNEL_CENTER_SHIFT : 15));
}

/*
 * Read the noise-floor values from the HW.
 * Specifically, read the minimum clear-channel assessment value for
 * each chain, for both the control and extension channels.
 * (The received power level during clear-channel periods is the
 * noise floor.)
 * These noise floor values computed by the HW will be stored in the
 * NF history buffer.
 * The HW sometimes produces bogus NF values.  To avoid using these
 * bogus values, the NF data is (a) range-limited, and (b) filtered.
 * However, this data-processing is done when reading the NF values
 * out of the history buffer.  The history buffer stores the raw values.
 * This allows the NF history buffer to be used to check for interference.
 * A single high NF reading might be a bogus HW value, but if the NF
 * readings are consistently high, it must be due to interference.
 * This is the purpose of storing raw NF values in the history buffer,
 * rather than processed values.  By looking at a history of NF values
 * that have not been range-limited, we can check if they are consistently
 * high (due to interference).
 */
#define AH_NF_SIGN_EXTEND(nf)      \
    ((nf) & 0x100) ?               \
        0 - (((nf) ^ 0x1ff) + 1) : \
        (nf)
void
ar9300_upload_noise_floor(struct ath_hal *ah, int is_2g,
    int16_t nfarray[HAL_NUM_NF_READINGS])
{
    int16_t nf;
    int chan, chain;
    u_int32_t regs[HAL_NUM_NF_READINGS] = {
        /* control channel */
        AR_PHY_CCA_0,     /* chain 0 */
        AR_PHY_CCA_1,     /* chain 1 */
        AR_PHY_CCA_2,     /* chain 2 */
        /* extension channel */
        AR_PHY_EXT_CCA,   /* chain 0 */
        AR_PHY_EXT_CCA_1, /* chain 1 */
        AR_PHY_EXT_CCA_2, /* chain 2 */
    };
    u_int8_t chainmask;

    /*
     * Within a given channel (ctl vs. ext), the CH0, CH1, and CH2
     * masks and shifts are the same, though they differ for the
     * control vs. extension channels.
     */
    u_int32_t masks[2] = {
        AR_PHY_MINCCA_PWR,     /* control channel */
        AR_PHY_EXT_MINCCA_PWR, /* extention channel */
    };
    u_int8_t shifts[2] = {
        AR_PHY_MINCCA_PWR_S,     /* control channel */
        AR_PHY_EXT_MINCCA_PWR_S, /* extention channel */
    };

    /*
     * Force NF calibration for all chains.
     */
    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
        chainmask = 0x01;
    } else if (AR_SREV_WASP(ah) || AR_SREV_JUPITER(ah) || AR_SREV_HONEYBEE(ah)) {
        chainmask = 0x03;
    } else {
        chainmask = 0x07;
    }

    for (chan = 0; chan < 2 /*ctl,ext*/; chan++) {
        for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
            int i;
            
            if (!((chainmask >> chain) & 0x1)) {
                continue;
            }
            i = chan * AR9300_MAX_CHAINS + chain;
            nf = (OS_REG_READ(ah, regs[i]) & masks[chan]) >> shifts[chan];
            nfarray[i] = AH_NF_SIGN_EXTEND(nf);
        }
    }
}

/* ar9300_get_min_cca_pwr -
 * Used by the scan function for a quick read of the noise floor.
 * This is used to detect presence of CW interference such as video bridge.
 * The noise floor is assumed to have been already started during reset
 * called during channel change. The function checks if the noise floor
 * reading is done. In case it has been done, it reads the noise floor value.
 * If the noise floor calibration has not been finished, it assumes this is
 * due to presence of CW interference an returns a high value for noise floor,
 * derived from the CW interference threshold + margin fudge factor. 
 */
#define BAD_SCAN_NF_MARGIN (30)
int16_t ar9300_get_min_cca_pwr(struct ath_hal *ah)
{
    int16_t nf;
//    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);


    if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) {
        nf = MS(OS_REG_READ(ah, AR_PHY_CCA_0), AR9280_PHY_MINCCA_PWR);
        if (nf & 0x100) {
            nf = 0 - ((nf ^ 0x1ff) + 1);
        }
    } else {
        /* NF calibration is not done, assume CW interference */
        nf = AH9300(ah)->nfp->nominal + AH9300(ah)->nf_cw_int_delta +
            BAD_SCAN_NF_MARGIN;
    }
    return nf;
}


/* 
 * Noise Floor values for all chains. 
 * Most recently updated values from the NF history buffer are used.
 */
void ar9300_chain_noise_floor(struct ath_hal *ah, int16_t *nf_buf,
    struct ieee80211_channel *chan, int is_scan)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    int i, nf_hist_len, recent_nf_index = 0;
    HAL_NFCAL_HIST_FULL *h;
    u_int8_t rx_chainmask = ahp->ah_rx_chainmask | (ahp->ah_rx_chainmask << 3);
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 
    HALASSERT(ichan);

#ifdef ATH_NF_PER_CHAN
    /* Fill 0 if valid internal channel is not found */
    if (ichan == AH_NULL) {
        OS_MEMZERO(nf_buf, sizeof(nf_buf[0])*HAL_NUM_NF_READINGS);
        return;
    }
    h = &ichan->nf_cal_hist;
    nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
#else
    /*
     * If a scan is not in progress, then the most recent value goes
     * into ahpriv->nf_cal_hist.  If a scan is in progress, then
     * the most recent value goes into ichan->nf_cal_hist.
     * Thus, return the value from ahpriv->nf_cal_hist if there's
     * no scan, and if the specified channel is the current channel.
     * Otherwise, return the noise floor from ichan->nf_cal_hist.
     */
    if ((!is_scan) && chan == AH_PRIVATE(ah)->ah_curchan) {
        h = &AH_PRIVATE(ah)->nf_cal_hist;
        nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
    } else {
        /* Fill 0 if valid internal channel is not found */
        if (ichan == AH_NULL) {
            OS_MEMZERO(nf_buf, sizeof(nf_buf[0])*HAL_NUM_NF_READINGS);
            return;
        }
       /*
        * It is okay to treat a HAL_NFCAL_HIST_SMALL struct as if it were a
        * HAL_NFCAL_HIST_FULL struct, as long as only the index 0 of the
        * nf_cal_buffer is used (nf_cal_buffer[0][0:HAL_NUM_NF_READINGS-1])
        */
        h = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist;
        nf_hist_len = HAL_NF_CAL_HIST_LEN_SMALL;
    }
#endif
    /* Get most recently updated values from nf cal history buffer */
    recent_nf_index =
        (h->base.curr_index) ? h->base.curr_index - 1 : nf_hist_len - 1;

    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
        /* Fill 0 for unsupported chains */
        if (!(rx_chainmask & (1 << i))) {
            nf_buf[i] = 0;
            continue;
        }
        nf_buf[i] = h->nf_cal_buffer[recent_nf_index][i];
    }
}

/*
 * Return the current NF value in register.
 * If the current NF cal is not completed, return 0.
 */
int16_t ar9300_get_nf_from_reg(struct ath_hal *ah, struct ieee80211_channel *chan, int wait_time)
{
    int16_t nfarray[HAL_NUM_NF_READINGS] = {0};
    int is_2g = 0;
    HAL_CHANNEL_INTERNAL *ichan = NULL;

    ichan = ath_hal_checkchannel(ah, chan);
    if (ichan == NULL)
        return (0);

    if (wait_time <= 0) {
        return 0;
    }

    if (!ath_hal_waitfor(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0, wait_time)) {
        ath_hal_printf(ah, "%s: NF cal is not complete in %dus", __func__, wait_time);
        return 0;
    }
    is_2g = !! (IS_CHAN_2GHZ(ichan));
    ar9300_upload_noise_floor(ah, is_2g, nfarray);

    return nfarray[0];
}

/*
 * Pick up the medium one in the noise floor buffer and update the
 * corresponding range for valid noise floor values
 */
static int16_t
ar9300_get_nf_hist_mid(struct ath_hal *ah, HAL_NFCAL_HIST_FULL *h, int reading,
    int hist_len)
{
    int16_t nfval;
    int16_t sort[HAL_NF_CAL_HIST_LEN_FULL]; /* upper bound for hist_len */
    int i, j;


    for (i = 0; i < hist_len; i++) {
        sort[i] = h->nf_cal_buffer[i][reading];
        HALDEBUG(ah, HAL_DEBUG_NFCAL,
            "nf_cal_buffer[%d][%d] = %d\n", i, reading, (int)sort[i]);
    }
    for (i = 0; i < hist_len - 1; i++) {
        for (j = 1; j < hist_len - i; j++) {
            if (sort[j] > sort[j - 1]) {
                nfval = sort[j];
                sort[j] = sort[j - 1];
                sort[j - 1] = nfval;
            }
        }
    }
    nfval = sort[(hist_len - 1) >> 1];

    return nfval;
}

static int16_t ar9300_limit_nf_range(struct ath_hal *ah, int16_t nf)
{
    if (nf < AH9300(ah)->nfp->min) {
        return AH9300(ah)->nfp->nominal;
    } else if (nf > AH9300(ah)->nfp->max) {
        return AH9300(ah)->nfp->max;
    }
    return nf;
}

#ifndef ATH_NF_PER_CHAN
inline static void
ar9300_reset_nf_hist_buff(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
{
    HAL_CHAN_NFCAL_HIST *h = &ichan->nf_cal_hist;
    HAL_NFCAL_HIST_FULL *home = &AH_PRIVATE(ah)->nf_cal_hist;
    int i;
    
    /* 
     * Copy the value for the channel in question into the home-channel
     * NF history buffer.  The channel NF is probably a value filled in by
     * a prior background channel scan, but if no scan has been done then
     * it is the nominal noise floor filled in by ath_hal_init_NF_buffer
     * for this chip and the channel's band.
     * Replicate this channel NF into all entries of the home-channel NF
     * history buffer.
     * If the channel NF was filled in by a channel scan, it has not had
     * bounds limits applied to it yet - do so now.  It is important to
     * apply bounds limits to the priv_nf value that gets loaded into the
     * WLAN chip's min_cca_pwr register field.  It is also necessary to
     * apply bounds limits to the nf_cal_buffer[] elements.  Since we are
     * replicating a single NF reading into all nf_cal_buffer elements,
     * if the single reading were above the CW_INT threshold, the CW_INT
     * check in ar9300_get_nf would immediately conclude that CW interference
     * is present, even though we're not supposed to set CW_INT unless
     * NF values are _consistently_ above the CW_INT threshold.
     * Applying the bounds limits to the nf_cal_buffer contents fixes this
     * problem.
     */
    for (i = 0; i < HAL_NUM_NF_READINGS; i ++) {
        int j;
        int16_t nf;
        /*
         * No need to set curr_index, since it already has a value in
         * the range [0..HAL_NF_CAL_HIST_LEN_FULL), and all nf_cal_buffer
         * values will be the same.
         */
        nf = ar9300_limit_nf_range(ah, h->nf_cal_buffer[0][i]);
        for (j = 0; j < HAL_NF_CAL_HIST_LEN_FULL; j++) {
            home->nf_cal_buffer[j][i] = nf;
        }
        AH_PRIVATE(ah)->nf_cal_hist.base.priv_nf[i] = nf;
    }
}
#endif

/*
 *  Update the noise floor buffer as a ring buffer
 */
static int16_t
ar9300_update_nf_hist_buff(struct ath_hal *ah, HAL_NFCAL_HIST_FULL *h,
   int16_t *nfarray, int hist_len)
{
    int i, nr;
    int16_t nf_no_lim_chain0;

    nf_no_lim_chain0 = ar9300_get_nf_hist_mid(ah, h, 0, hist_len);

    HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s[%d] BEFORE\n", __func__, __LINE__);
    for (nr = 0; nr < HAL_NF_CAL_HIST_LEN_FULL; nr++) {
        for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
            HALDEBUG(ah, HAL_DEBUG_NFCAL,
                "nf_cal_buffer[%d][%d] = %d\n",
                nr, i, (int)h->nf_cal_buffer[nr][i]);
        }
    }
    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
        h->nf_cal_buffer[h->base.curr_index][i] = nfarray[i];
        h->base.priv_nf[i] = ar9300_limit_nf_range(
            ah, ar9300_get_nf_hist_mid(ah, h, i, hist_len));
    }
    HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s[%d] AFTER\n", __func__, __LINE__);
    for (nr = 0; nr < HAL_NF_CAL_HIST_LEN_FULL; nr++) {
        for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
            HALDEBUG(ah, HAL_DEBUG_NFCAL,
                "nf_cal_buffer[%d][%d] = %d\n",
                nr, i, (int)h->nf_cal_buffer[nr][i]);
        }
    }

    if (++h->base.curr_index >= hist_len) {
        h->base.curr_index = 0;
    }

    return nf_no_lim_chain0;
}

#ifdef UNUSED
static HAL_BOOL
get_noise_floor_thresh(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *chan,
    int16_t *nft)
{
    struct ath_hal_9300 *ahp = AH9300(ah);


    switch (chan->channel_flags & CHANNEL_ALL_NOTURBO) {
    case CHANNEL_A:
    case CHANNEL_A_HT20:
    case CHANNEL_A_HT40PLUS:
    case CHANNEL_A_HT40MINUS:
        *nft = (int8_t)ar9300_eeprom_get(ahp, EEP_NFTHRESH_5);
        break;
    case CHANNEL_B:
    case CHANNEL_G:
    case CHANNEL_G_HT20:
    case CHANNEL_G_HT40PLUS:
    case CHANNEL_G_HT40MINUS:
        *nft = (int8_t)ar9300_eeprom_get(ahp, EEP_NFTHRESH_2);
        break;
    default:
        HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: invalid channel flags 0x%x\n",
                __func__, chan->channel_flags);
        return AH_FALSE;
    }
    return AH_TRUE;
}
#endif

/*
 * Read the NF and check it against the noise floor threshhold
 */
#define IS(_c, _f)       (((_c)->channel_flags & _f) || 0)
static int
ar9300_store_new_nf(struct ath_hal *ah, struct ieee80211_channel *chan,
  int is_scan)
{
//    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
    int nf_hist_len;
    int16_t nf_no_lim;
    int16_t nfarray[HAL_NUM_NF_READINGS] = {0};
    HAL_NFCAL_HIST_FULL *h;
    int is_2g = 0;
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
    struct ath_hal_9300 *ahp = AH9300(ah);

    if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
        u_int32_t tsf32, nf_cal_dur_tsf;
        /*
         * The reason the NF calibration did not complete may just be that
         * not enough time has passed since the NF calibration was started,
         * because under certain conditions (when first moving to a new
         * channel) the NF calibration may be checked very repeatedly.
         * Or, there may be CW interference keeping the NF calibration
         * from completing.  Check the delta time between when the NF
         * calibration was started and now to see whether the NF calibration
         * should have already completed (but hasn't, probably due to CW
         * interference), or hasn't had enough time to finish yet.
         */
        /*
         * AH_NF_CAL_DUR_MAX_TSF - A conservative maximum time that the
         *     HW should need to finish a NF calibration.  If the HW
         *     does not complete a NF calibration within this time period,
         *     there must be a problem - probably CW interference.
         * AH_NF_CAL_PERIOD_MAX_TSF - A conservative maximum time between
         *     check of the HW's NF calibration being finished.
         *     If the difference between the current TSF and the TSF
         *     recorded when the NF calibration started is larger than this
         *     value, the TSF must have been reset.
         *     In general, we expect the TSF to only be reset during
         *     regular operation for STAs, not for APs.  However, an
         *     AP's TSF could be reset when joining an IBSS.
         *     There's an outside chance that this could result in the
         *     CW_INT flag being erroneously set, if the TSF adjustment
         *     is smaller than AH_NF_CAL_PERIOD_MAX_TSF but larger than
         *     AH_NF_CAL_DUR_TSF.  However, even if this does happen,
         *     it shouldn't matter, as the IBSS case shouldn't be
         *     concerned about CW_INT.
         */
        /* AH_NF_CAL_DUR_TSF - 90 sec in usec units */
        #define AH_NF_CAL_DUR_TSF (90 * 1000 * 1000)
        /* AH_NF_CAL_PERIOD_MAX_TSF - 180 sec in usec units */
        #define AH_NF_CAL_PERIOD_MAX_TSF (180 * 1000 * 1000)
        /* wraparound handled by using unsigned values */
        tsf32 = ar9300_get_tsf32(ah);
        nf_cal_dur_tsf = tsf32 - AH9300(ah)->nf_tsf32;
        if (nf_cal_dur_tsf > AH_NF_CAL_PERIOD_MAX_TSF) {
            /*
             * The TSF must have gotten reset during the NF cal -
             * just reset the NF TSF timestamp, so the next time
             * this function is called, the timestamp comparison
             * will be valid.
             */
            AH9300(ah)->nf_tsf32 = tsf32;
        } else if (nf_cal_dur_tsf > AH_NF_CAL_DUR_TSF) {
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "%s: NF did not complete in calibration window\n", __func__);
            /* the NF incompletion is probably due to CW interference */
            chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
        }
        return 0; /* HW's NF measurement not finished */
    }
    HALDEBUG(ah, HAL_DEBUG_NFCAL,
        "%s[%d] chan %d\n", __func__, __LINE__, ichan->channel);
    is_2g = !! IS_CHAN_2GHZ(ichan);
    ar9300_upload_noise_floor(ah, is_2g, nfarray);

    /* Update the NF buffer for each chain masked by chainmask */
#ifdef ATH_NF_PER_CHAN
    h = &ichan->nf_cal_hist;
    nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
#else
    if (is_scan) {
        /*
         * This channel's NF cal info is just a HAL_NFCAL_HIST_SMALL struct
         * rather than a HAL_NFCAL_HIST_FULL struct.
         * As long as we only use the first history element of nf_cal_buffer
         * (nf_cal_buffer[0][0:HAL_NUM_NF_READINGS-1]), we can use
         * HAL_NFCAL_HIST_SMALL and HAL_NFCAL_HIST_FULL interchangeably.
         */
        h = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist;
        nf_hist_len = HAL_NF_CAL_HIST_LEN_SMALL;
    } else {
        h = &AH_PRIVATE(ah)->nf_cal_hist;
        nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
    }
#endif

    /*
     * nf_no_lim = median value from NF history buffer without bounds limits,
     * priv_nf = median value from NF history buffer with bounds limits.
     */
    nf_no_lim = ar9300_update_nf_hist_buff(ah, h, nfarray, nf_hist_len);
    ichan->rawNoiseFloor = h->base.priv_nf[0];

    /* check if there is interference */
//    ichan->channel_flags &= (~CHANNEL_CW_INT);
    /*
     * Use AR9300_EMULATION to check for emulation purpose as PCIE Device ID
     * 0xABCD is recognized as valid Osprey as WAR in some EVs.
     */
    if (nf_no_lim > ahp->nfp->nominal + ahp->nf_cw_int_delta) {
        /*
         * Since this CW interference check is being applied to the
         * median element of the NF history buffer, this indicates that
         * the CW interference is persistent.  A single high NF reading
         * will not show up in the median, and thus will not cause the
         * CW_INT flag to be set.
         */
        HALDEBUG(ah, HAL_DEBUG_NFCAL,
            "%s: NF Cal: CW interferer detected through NF: %d\n",
            __func__, nf_no_lim); 
        chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
    }
    return 1; /* HW's NF measurement finished */
}
#undef IS

static inline void
ar9300_get_delta_slope_values(struct ath_hal *ah, u_int32_t coef_scaled,
    u_int32_t *coef_mantissa, u_int32_t *coef_exponent)
{
    u_int32_t coef_exp, coef_man;

    /*
     * ALGO -> coef_exp = 14-floor(log2(coef));
     * floor(log2(x)) is the highest set bit position
     */
    for (coef_exp = 31; coef_exp > 0; coef_exp--) {
        if ((coef_scaled >> coef_exp) & 0x1) {
            break;
        }
    }
    /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
    HALASSERT(coef_exp);
    coef_exp = 14 - (coef_exp - COEF_SCALE_S);


    /*
     * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
     * The coefficient is already shifted up for scaling
     */
    coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));

    *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
    *coef_exponent = coef_exp - 16;
}

#define MAX_ANALOG_START        319             /* XXX */

/*
 * Delta slope coefficient computation.
 * Required for OFDM operation.
 */
static void
ar9300_set_delta_slope(struct ath_hal *ah, struct ieee80211_channel *chan)
{
    u_int32_t coef_scaled, ds_coef_exp, ds_coef_man;
    u_int32_t fclk = COEFF; /* clock * 2.5 */

    u_int32_t clock_mhz_scaled = 0x1000000 * fclk;
    CHAN_CENTERS centers;

    /*
     * half and quarter rate can divide the scaled clock by 2 or 4
     * scale for selected channel bandwidth
     */
    if (IEEE80211_IS_CHAN_HALF(chan)) {
        clock_mhz_scaled = clock_mhz_scaled >> 1;
    } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
        clock_mhz_scaled = clock_mhz_scaled >> 2;
    }

    /*
     * ALGO -> coef = 1e8/fcarrier*fclock/40;
     * scaled coef to provide precision for this floating calculation
     */
    ar9300_get_channel_centers(ah, chan, &centers);
    coef_scaled = clock_mhz_scaled / centers.synth_center;

    ar9300_get_delta_slope_values(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);

    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);

    /*
     * For Short GI,
     * scaled coeff is 9/10 that of normal coeff
     */
    coef_scaled = (9 * coef_scaled) / 10;

    ar9300_get_delta_slope_values(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);

    /* for short gi */
    OS_REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_MAN, ds_coef_man);
    OS_REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_EXP, ds_coef_exp);
}

#define IS(_c, _f)       (IEEE80211_IS_ ## _f(_c))

/*
 * XXX FreeBSD: This should be turned into something generic in ath_hal!
 */
HAL_CHANNEL_INTERNAL *
ar9300_check_chan(struct ath_hal *ah, const struct ieee80211_channel *chan)
{

    if (chan == NULL) {
        return AH_NULL;
    }

    if ((IS(chan, CHAN_2GHZ) ^ IS(chan, CHAN_5GHZ)) == 0) {
        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
            "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
            __func__, chan->ic_freq , chan->ic_flags);
        return AH_NULL;
    }

    /*
     * FreeBSD sets multiple flags, so this will fail.
     */
#if 0
    if ((IS(chan, CHAN_OFDM) ^ IS(chan, CHAN_CCK) ^ IS(chan, CHAN_DYN) ^
         IS(chan, CHAN_HT20) ^ IS(chan, CHAN_HT40U) ^
         IS(chan, CHAN_HT40D)) == 0)
    {
        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
            "%s: invalid channel %u/0x%x; not marked as "
            "OFDM or CCK or DYN or HT20 or HT40PLUS or HT40MINUS\n",
            __func__, chan->ic_freq , chan->ic_flags);
        return AH_NULL;
    }
#endif

    return (ath_hal_checkchannel(ah, chan));
}
#undef IS

static void
ar9300_set_11n_regs(struct ath_hal *ah, struct ieee80211_channel *chan,
    HAL_HT_MACMODE macmode)
{
    u_int32_t phymode;
//    struct ath_hal_9300 *ahp = AH9300(ah);
    u_int32_t enable_dac_fifo;

    /* XXX */
    enable_dac_fifo =
        OS_REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO;

    /* Enable 11n HT, 20 MHz */
    phymode =
        AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_SHORT_GI_40
        | enable_dac_fifo;
    /* Configure baseband for dynamic 20/40 operation */
    if (IEEE80211_IS_CHAN_HT40(chan)) {
        phymode |= AR_PHY_GC_DYN2040_EN;
        /* Configure control (primary) channel at +-10MHz */
        if (IEEE80211_IS_CHAN_HT40U(chan)) {
            phymode |= AR_PHY_GC_DYN2040_PRI_CH;
        }

#if 0
        /* Configure 20/25 spacing */
        if (ahp->ah_ext_prot_spacing == HAL_HT_EXTPROTSPACING_25) {
            phymode |= AR_PHY_GC_DYN2040_EXT_CH;
        }
#endif
    }

    /* make sure we preserve INI settings */
    phymode |= OS_REG_READ(ah, AR_PHY_GEN_CTRL);

    /* EV 62881/64991 - turn off Green Field detection for Maverick STA beta */
    phymode &= ~AR_PHY_GC_GF_DETECT_EN;

    OS_REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);

    /* Set IFS timing for half/quarter rates */
    if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
        u_int32_t modeselect = OS_REG_READ(ah, AR_PHY_MODE);

        if (IEEE80211_IS_CHAN_HALF(chan)) {
            modeselect |= AR_PHY_MS_HALF_RATE;
        } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
            modeselect |= AR_PHY_MS_QUARTER_RATE;
        }
        OS_REG_WRITE(ah, AR_PHY_MODE, modeselect);

        ar9300_set_ifs_timing(ah, chan);
        OS_REG_RMW_FIELD(
            ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 0x3);
    }

    /* Configure MAC for 20/40 operation */
    ar9300_set_11n_mac2040(ah, macmode);

    /* global transmit timeout (25 TUs default)*/
    /* XXX - put this elsewhere??? */
    OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);

    /* carrier sense timeout */
    OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
}

/*
 * Spur mitigation for MRC CCK
 */
static void
ar9300_spur_mitigate_mrc_cck(struct ath_hal *ah, struct ieee80211_channel *chan)
{
    int i;
    /* spur_freq_for_osprey - hardcoded by Systems team for now. */
    u_int32_t spur_freq_for_osprey[4] = { 2420, 2440, 2464, 2480 };
    u_int32_t spur_freq_for_jupiter[2] = { 2440, 2464};
    int cur_bb_spur, negative = 0, cck_spur_freq;
    u_int8_t* spur_fbin_ptr = NULL;
    int synth_freq;
    int range = 10;
    int max_spurcounts = OSPREY_EEPROM_MODAL_SPURS; 
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);

    /*
     * Need to verify range +/- 10 MHz in control channel, otherwise spur
     * is out-of-band and can be ignored.
     */
    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) ||
        AR_SREV_WASP(ah)  || AR_SREV_SCORPION(ah)) {
        spur_fbin_ptr = ar9300_eeprom_get_spur_chans_ptr(ah, 1);
        if (spur_fbin_ptr[0] == 0) {
            return;      /* No spur in the mode */
        }
        if (IEEE80211_IS_CHAN_HT40(chan)) {
            range = 19;
            if (OS_REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH)
                == 0x0)
            {
                synth_freq = ichan->channel + 10;
            } else {
                synth_freq = ichan->channel - 10;
            }
        } else {
            range = 10;
            synth_freq = ichan->channel;
        }
    } else if(AR_SREV_JUPITER(ah)) {
        range = 5;
        max_spurcounts = 2; /* Hardcoded by Jupiter Systems team for now. */
        synth_freq = ichan->channel;
    } else {
        range = 10;
        max_spurcounts = 4; /* Hardcoded by Osprey Systems team for now. */
        synth_freq = ichan->channel;
    }

    for (i = 0; i < max_spurcounts; i++) {
        negative = 0;

        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) ||
            AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) {
            cur_bb_spur = 
                FBIN2FREQ(spur_fbin_ptr[i], HAL_FREQ_BAND_2GHZ) - synth_freq;
        } else if(AR_SREV_JUPITER(ah)) {
            cur_bb_spur = spur_freq_for_jupiter[i] - synth_freq;
        } else {
            cur_bb_spur = spur_freq_for_osprey[i] - synth_freq;
        }
        
        if (cur_bb_spur < 0) {
            negative = 1;
            cur_bb_spur = -cur_bb_spur;
        }
        if (cur_bb_spur < range) {
            cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
            if (negative == 1) {
                cck_spur_freq = -cck_spur_freq;
            }
            cck_spur_freq = cck_spur_freq & 0xfffff;
            /*OS_REG_WRITE_field(ah, BB_agc_control.ycok_max, 0x7);*/
            OS_REG_RMW_FIELD(ah,
                AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
            /*OS_REG_WRITE_field(ah, BB_cck_spur_mit.spur_rssi_thr, 0x7f);*/
            OS_REG_RMW_FIELD(ah,
                AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
            /*OS_REG_WRITE(ah, BB_cck_spur_mit.spur_filter_type, 0x2);*/
            OS_REG_RMW_FIELD(ah,
                AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 0x2);
            /*OS_REG_WRITE(ah, BB_cck_spur_mit.use_cck_spur_mit, 0x1);*/
            OS_REG_RMW_FIELD(ah,
                AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x1);
            /*OS_REG_WRITE(ah, BB_cck_spur_mit.cck_spur_freq, cck_spur_freq);*/
            OS_REG_RMW_FIELD(ah,
                AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
                cck_spur_freq);
            return; 
        }
    }

    /*OS_REG_WRITE(ah, BB_agc_control.ycok_max, 0x5);*/
    OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
    /*OS_REG_WRITE(ah, BB_cck_spur_mit.use_cck_spur_mit, 0x0);*/
    OS_REG_RMW_FIELD(ah,
        AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
    /*OS_REG_WRITE(ah, BB_cck_spur_mit.cck_spur_freq, 0x0);*/
    OS_REG_RMW_FIELD(ah,
        AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
}

/* Spur mitigation for OFDM */
static void
ar9300_spur_mitigate_ofdm(struct ath_hal *ah, struct ieee80211_channel *chan)
{ 
    int synth_freq;
    int range = 10;
    int freq_offset = 0;
    int spur_freq_sd = 0;
    int spur_subchannel_sd = 0;
    int spur_delta_phase = 0;
    int mask_index = 0;
    int i;
    int mode;
    u_int8_t* spur_chans_ptr;
    struct ath_hal_9300 *ahp;
    ahp = AH9300(ah);
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);

    if (IS_CHAN_5GHZ(ichan)) {
        spur_chans_ptr = ar9300_eeprom_get_spur_chans_ptr(ah, 0);
        mode = 0;
    } else {
        spur_chans_ptr = ar9300_eeprom_get_spur_chans_ptr(ah, 1);
        mode = 1;
    }

    if (IEEE80211_IS_CHAN_HT40(chan)) {
        range = 19;
        if (OS_REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH)
            == 0x0)
        {
            synth_freq = ichan->channel - 10;
        } else {
            synth_freq = ichan->channel + 10;
        }
    } else {
        range = 10;
        synth_freq = ichan->channel;
    }

    /* Clean all spur register fields */
    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
    OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
    OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
    OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
    OS_REG_RMW_FIELD(ah,
        AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
    OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);

    i = 0;
    while (spur_chans_ptr[i] && i < 5) {
        freq_offset = FBIN2FREQ(spur_chans_ptr[i], mode) - synth_freq;
        if (abs(freq_offset) < range) {
            /*
            printf(
                "Spur Mitigation for OFDM: Synth Frequency = %d, "
                "Spur Frequency = %d\n",
                synth_freq, FBIN2FREQ(spur_chans_ptr[i], mode));
             */
            if (IEEE80211_IS_CHAN_HT40(chan)) {
                if (freq_offset < 0) {
                    if (OS_REG_READ_FIELD(
                        ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
                    {
                        spur_subchannel_sd = 1;
                    } else {
                        spur_subchannel_sd = 0;
                    }
                    spur_freq_sd = ((freq_offset + 10) << 9) / 11;
                } else {
                    if (OS_REG_READ_FIELD(ah,
                        AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
                    {
                        spur_subchannel_sd = 0;
                    } else {
                        spur_subchannel_sd = 1;
                    }
                    spur_freq_sd = ((freq_offset - 10) << 9) / 11;
                }
                spur_delta_phase = (freq_offset << 17) / 5;
            } else {
                spur_subchannel_sd = 0;
                spur_freq_sd = (freq_offset << 9) / 11;
                spur_delta_phase = (freq_offset << 18) / 5;
            }
            spur_freq_sd = spur_freq_sd & 0x3ff;
            spur_delta_phase = spur_delta_phase & 0xfffff;
            /*
            printf(
                "spur_subchannel_sd = %d, spur_freq_sd = 0x%x, "
                "spur_delta_phase = 0x%x\n", spur_subchannel_sd,
                spur_freq_sd, spur_delta_phase);
             */

            /* OFDM Spur mitigation */
            OS_REG_RMW_FIELD(ah,
                AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE,
                spur_delta_phase);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD,
                spur_subchannel_sd);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR,
                0x1);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);

            /*
             * Do not subtract spur power from noise floor for wasp.
             * This causes the maximum client test (on Veriwave) to fail
             * when run on spur channel (2464 MHz).
             * Refer to ev#82746 and ev#82744.
             */
            if (!AR_SREV_WASP(ah) && (OS_REG_READ_FIELD(ah, AR_PHY_MODE,
                                           AR_PHY_MODE_DYNAMIC) == 0x1)) {
                OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
                    AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
            }

            mask_index = (freq_offset << 4) / 5;
            if (mask_index < 0) {
                mask_index = mask_index - 1;
            }
            mask_index = mask_index & 0x7f;
            /*printf("Bin 0x%x\n", mask_index);*/

            OS_REG_RMW_FIELD(ah,
                AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_PILOT_SPUR_MASK,
                AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A,
                mask_index);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_CHAN_SPUR_MASK,
                AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A,
                0xc);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A,
                0xc);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
            /*
            printf("BB_timing_control_4 = 0x%x\n",
                OS_REG_READ(ah, AR_PHY_TIMING4));
            printf("BB_timing_control_11 = 0x%x\n",
                OS_REG_READ(ah, AR_PHY_TIMING11));
            printf("BB_ext_chan_scorr_thr = 0x%x\n",
                OS_REG_READ(ah, AR_PHY_SFCORR_EXT));
            printf("BB_spur_mask_controls = 0x%x\n",
                OS_REG_READ(ah, AR_PHY_SPUR_REG));
            printf("BB_pilot_spur_mask = 0x%x\n",
                OS_REG_READ(ah, AR_PHY_PILOT_SPUR_MASK));
            printf("BB_chan_spur_mask = 0x%x\n",
                OS_REG_READ(ah, AR_PHY_CHAN_SPUR_MASK));
            printf("BB_vit_spur_mask_A = 0x%x\n",
                OS_REG_READ(ah, AR_PHY_SPUR_MASK_A));
             */
            break;
        }
        i++;
    }
}


/*
 * Convert to baseband spur frequency given input channel frequency 
 * and compute register settings below.
 */
static void
ar9300_spur_mitigate(struct ath_hal *ah, struct ieee80211_channel *chan)
{
    ar9300_spur_mitigate_ofdm(ah, chan);
    ar9300_spur_mitigate_mrc_cck(ah, chan);
}

/**************************************************************
 * ar9300_channel_change
 * Assumes caller wants to change channel, and not reset.
 */
static inline HAL_BOOL
ar9300_channel_change(struct ath_hal *ah, struct ieee80211_channel *chan,
    HAL_CHANNEL_INTERNAL *ichan, HAL_HT_MACMODE macmode)
{

    u_int32_t synth_delay, qnum;
    struct ath_hal_9300 *ahp = AH9300(ah);

    /* TX must be stopped by now */
    for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
        if (ar9300_num_tx_pending(ah, qnum)) {
            HALDEBUG(ah, HAL_DEBUG_QUEUE,
                "%s: Transmit frames pending on queue %d\n", __func__, qnum);
            HALASSERT(0);
            return AH_FALSE;
        }
    }


    /*
     * Kill last Baseband Rx Frame - Request analog bus grant
     */
    OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
    if (!ath_hal_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
            AR_PHY_RFBUS_GRANT_EN))
    {
        HALDEBUG(ah, HAL_DEBUG_PHYIO,
            "%s: Could not kill baseband RX\n", __func__);
        return AH_FALSE;
    }


    /* Setup 11n MAC/Phy mode registers */
    ar9300_set_11n_regs(ah, chan, macmode);

    /*
     * Change the synth
     */
    if (!ahp->ah_rf_hal.set_channel(ah, chan)) {
        HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: failed to set channel\n", __func__);
        return AH_FALSE;
    }

    /* 
     * Some registers get reinitialized during ATH_INI_POST INI programming. 
     */
    ar9300_init_user_settings(ah);

    /*
     * Setup the transmit power values.
     *
     * After the public to private hal channel mapping, ichan contains the
     * valid regulatory power value.
     * ath_hal_getctl and ath_hal_getantennaallowed look up ichan from chan.
     */
    if (ar9300_eeprom_set_transmit_power(
         ah, &ahp->ah_eeprom, chan, ath_hal_getctl(ah, chan),
         ath_hal_getantennaallowed(ah, chan),
         ath_hal_get_twice_max_regpower(AH_PRIVATE(ah), ichan, chan),
         AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit)) != HAL_OK)
    {
        HALDEBUG(ah, HAL_DEBUG_EEPROM,
            "%s: error init'ing transmit power\n", __func__);
        return AH_FALSE;
    }

    /*
     * Release the RFBus Grant.
     */
    OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);

    /*
     * Write spur immunity and delta slope for OFDM enabled modes (A, G, Turbo)
     */
    if (IEEE80211_IS_CHAN_OFDM(chan) || IEEE80211_IS_CHAN_HT(chan)) {
        ar9300_set_delta_slope(ah, chan);
    } else {
        /* Set to Ini default */
        OS_REG_WRITE(ah, AR_PHY_TIMING3, 0x9c0a9f6b);
        OS_REG_WRITE(ah, AR_PHY_SGI_DELTA, 0x00046384);
    }

    ar9300_spur_mitigate(ah, chan);


    /*
     * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
     * Read the phy active delay register. Value is in 100ns increments.
     */
    synth_delay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
    if (IEEE80211_IS_CHAN_CCK(chan)) {
        synth_delay = (4 * synth_delay) / 22;
    } else {
        synth_delay /= 10;
    }

    OS_DELAY(synth_delay + BASE_ACTIVATE_DELAY);

    /*
     * Do calibration.
     */

    return AH_TRUE;
}

void
ar9300_set_operating_mode(struct ath_hal *ah, int opmode)
{
    u_int32_t val;

    val = OS_REG_READ(ah, AR_STA_ID1);
    val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
    switch (opmode) {
    case HAL_M_HOSTAP:
        OS_REG_WRITE(ah, AR_STA_ID1,
            val | AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE);
        OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
        break;
    case HAL_M_IBSS:
        OS_REG_WRITE(ah, AR_STA_ID1,
            val | AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE);
        OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
        break;
    case HAL_M_STA:
    case HAL_M_MONITOR:
        OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
        break;
    }
}

/* XXX need the logic for Osprey */
void
ar9300_init_pll(struct ath_hal *ah, struct ieee80211_channel *chan)
{
    u_int32_t pll;
    u_int8_t clk_25mhz = AH9300(ah)->clk_25mhz;
    HAL_CHANNEL_INTERNAL *ichan = NULL;

    if (chan)
        ichan = ath_hal_checkchannel(ah, chan);

    if (AR_SREV_HORNET(ah)) {
        if (clk_25mhz) {
            /* Hornet uses PLL_CONTROL_2. Xtal is 25MHz for Hornet.
             * REFDIV set to 0x1.
             * $xtal_freq = 25;
             * $PLL2_div = (704/$xtal_freq); # 176 * 4 = 704.
             * MAC and BB run at 176 MHz.
             * $PLL2_divint = int($PLL2_div);
             * $PLL2_divfrac = $PLL2_div - $PLL2_divint;
             * $PLL2_divfrac = int($PLL2_divfrac * 0x4000); # 2^14
             * $PLL2_Val = ($PLL2_divint & 0x3f) << 19 | (0x1) << 14 |
             *     $PLL2_divfrac & 0x3fff;
             * Therefore, $PLL2_Val = 0xe04a3d
             */
#define DPLL2_KD_VAL            0x1D
#define DPLL2_KI_VAL            0x06
#define DPLL3_PHASE_SHIFT_VAL   0x1

            /* Rewrite DDR PLL2 and PLL3 */
            /* program DDR PLL ki and kd value, ki=0x6, kd=0x1d */
            OS_REG_WRITE(ah, AR_HORNET_CH0_DDR_DPLL2, 0x18e82f01);

            /* program DDR PLL phase_shift to 0x1 */
            OS_REG_RMW_FIELD(ah, AR_HORNET_CH0_DDR_DPLL3,
                AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);

            OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
            OS_DELAY(1000);

            /* program refdiv, nint, frac to RTC register */
            OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0xe04a3d);

            /* program BB PLL ki and kd value, ki=0x6, kd=0x1d */
            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
                AR_PHY_BB_DPLL2_KD, DPLL2_KD_VAL);
            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
                AR_PHY_BB_DPLL2_KI, DPLL2_KI_VAL);

            /* program BB PLL phase_shift to 0x1 */
            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL3,
                AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
        } else { /* 40MHz */
#undef  DPLL2_KD_VAL
#undef  DPLL2_KI_VAL
#define DPLL2_KD_VAL            0x3D
#define DPLL2_KI_VAL            0x06
            /* Rewrite DDR PLL2 and PLL3 */
            /* program DDR PLL ki and kd value, ki=0x6, kd=0x3d */
            OS_REG_WRITE(ah, AR_HORNET_CH0_DDR_DPLL2, 0x19e82f01);

            /* program DDR PLL phase_shift to 0x1 */
            OS_REG_RMW_FIELD(ah, AR_HORNET_CH0_DDR_DPLL3,
                AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);

            OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
            OS_DELAY(1000);

            /* program refdiv, nint, frac to RTC register */
            OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);

            /* program BB PLL ki and kd value, ki=0x6, kd=0x3d */
            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
                AR_PHY_BB_DPLL2_KD, DPLL2_KD_VAL);
            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2,
                AR_PHY_BB_DPLL2_KI, DPLL2_KI_VAL);

            /* program BB PLL phase_shift to 0x1 */
            OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL3,
                AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
        }
        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
        OS_DELAY(1000);
    } else if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, AR_PHY_BB_DPLL2_PLL_PWD, 0x1);

        /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 
            AR_PHY_BB_DPLL2_KD, 0x40);
        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 
            AR_PHY_BB_DPLL2_KI, 0x4);

        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL1, 
            AR_PHY_BB_DPLL1_REFDIV, 0x5);
        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL1, 
            AR_PHY_BB_DPLL1_NINI, 0x58);
        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL1, 
            AR_PHY_BB_DPLL1_NFRAC, 0x0);

        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 
            AR_PHY_BB_DPLL2_OUTDIV, 0x1);      
        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 
            AR_PHY_BB_DPLL2_LOCAL_PLL, 0x1);      
        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 
            AR_PHY_BB_DPLL2_EN_NEGTRIG, 0x1); 

        /* program BB PLL phase_shift to 0x6 */
        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL3, 
            AR_PHY_BB_DPLL3_PHASE_SHIFT, 0x6); 

        OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 
            AR_PHY_BB_DPLL2_PLL_PWD, 0x0); 
        OS_DELAY(1000);

        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
        OS_DELAY(1000);
    } else if (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) {
#define SRIF_PLL 1
        u_int32_t regdata, pll2_divint, pll2_divfrac;

#ifndef SRIF_PLL
	u_int32_t pll2_clkmode;
#endif

#ifdef SRIF_PLL
        u_int32_t refdiv;
#endif
        if (clk_25mhz) {
#ifndef SRIF_PLL
            pll2_divint = 0x1c;
            pll2_divfrac = 0xa3d7;
#else
            if (AR_SREV_HONEYBEE(ah)) {
                pll2_divint = 0x1c;
                pll2_divfrac = 0xa3d2;
                refdiv = 1;
            } else {
                pll2_divint = 0x54;
                pll2_divfrac = 0x1eb85;
                refdiv = 3;
            }
#endif
        } else {
#ifndef SRIF_PLL
            pll2_divint = 0x11;
            pll2_divfrac = 0x26666;
#else
            if (AR_SREV_WASP(ah)) {
                pll2_divint = 88;
                pll2_divfrac = 0;
                refdiv = 5;
            } else {
                pll2_divint = 0x11;
                pll2_divfrac = 0x26666;
                refdiv = 1;
            }
#endif
        }
#ifndef SRIF_PLL
        pll2_clkmode = 0x3d;
#endif
        /* PLL programming through SRIF Local Mode */
        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); /* Bypass mode */
        OS_DELAY(1000);
        do {
            regdata = OS_REG_READ(ah, AR_PHY_PLL_MODE);
            if (AR_SREV_HONEYBEE(ah)) {
                regdata = regdata | (0x1 << 22);
            } else {
                regdata = regdata | (0x1 << 16);
            }
            OS_REG_WRITE(ah, AR_PHY_PLL_MODE, regdata); /* PWD_PLL set to 1 */
            OS_DELAY(100);
            /* override int, frac, refdiv */
#ifndef SRIF_PLL
            OS_REG_WRITE(ah, AR_PHY_PLL_CONTROL,
                ((1 << 27) | (pll2_divint << 18) | pll2_divfrac));
#else
            OS_REG_WRITE(ah, AR_PHY_PLL_CONTROL,
                ((refdiv << 27) | (pll2_divint << 18) | pll2_divfrac));
#endif
            OS_DELAY(100);
            regdata = OS_REG_READ(ah, AR_PHY_PLL_MODE);
#ifndef SRIF_PLL
            regdata = (regdata & 0x80071fff) |
                (0x1 << 30) | (0x1 << 13) | (0x6 << 26) | (pll2_clkmode << 19);
#else
            if (AR_SREV_WASP(ah)) {
                regdata = (regdata & 0x80071fff) |
                    (0x1 << 30) | (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
            } else if (AR_SREV_HONEYBEE(ah)) {
                /*
                 * Kd=10, Ki=2, Outdiv=1, Local PLL=0, Phase Shift=4 
                 */
                regdata = (regdata & 0x01c00fff) |
                    (0x1 << 31) | (0x2 << 29) | (0xa << 25) | (0x1 << 19) | (0x6 << 12);
            } else {
                regdata = (regdata & 0x80071fff) |
                    (0x3 << 30) | (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
            }
#endif
            /* Ki, Kd, Local PLL, Outdiv */
            OS_REG_WRITE(ah, AR_PHY_PLL_MODE, regdata);
            regdata = OS_REG_READ(ah, AR_PHY_PLL_MODE);
            if (AR_SREV_HONEYBEE(ah)) {
                regdata = (regdata & 0xffbfffff);
            } else {
                regdata = (regdata & 0xfffeffff);
            }
            OS_REG_WRITE(ah, AR_PHY_PLL_MODE, regdata); /* PWD_PLL set to 0 */
            OS_DELAY(1000);
            if (AR_SREV_WASP(ah)) {
                /* clear do measure */
                regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3);
                regdata &= ~(1 << 30);
                OS_REG_WRITE(ah, AR_PHY_PLL_BB_DPLL3, regdata);
                OS_DELAY(100);
            
                /* set do measure */
                regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3);
                regdata |= (1 << 30);
                OS_REG_WRITE(ah, AR_PHY_PLL_BB_DPLL3, regdata);
            
                /* wait for measure done */
                do {
                    regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL4);
                } while ((regdata & (1 << 3)) == 0);
            
                /* clear do measure */
                regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3);
                regdata &= ~(1 << 30);
                OS_REG_WRITE(ah, AR_PHY_PLL_BB_DPLL3, regdata);
            
                /* get measure sqsum dvc */
                regdata = (OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3) & 0x007FFFF8) >> 3;
            } else {
                break;
            }
        } while (regdata >= 0x40000);

        /* Remove from Bypass mode */
        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
        OS_DELAY(1000);
    } else {
        pll = SM(0x5, AR_RTC_PLL_REFDIV);
  
        /* Supposedly not needed on Osprey */
#if 0
        if (chan && IS_CHAN_HALF_RATE(chan)) {
            pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
        } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
            pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
        }
#endif
        if (ichan && IS_CHAN_5GHZ(ichan)) {
            pll |= SM(0x28, AR_RTC_PLL_DIV);
            /* 
             * When doing fast clock, set PLL to 0x142c
             */
            if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
                pll = 0x142c;
            }
        } else {
            pll |= SM(0x2c, AR_RTC_PLL_DIV);
        }

        OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
    }

    /* TODO:
     * For multi-band owl, switch between bands by reiniting the PLL.
     */
    OS_DELAY(RTC_PLL_SETTLE_DELAY);

    OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK,
        AR_RTC_FORCE_DERIVED_CLK | AR_RTC_PCIE_RST_PWDN_EN);

    /* XXX TODO: honeybee? */
    if (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) {
        if (clk_25mhz) {
            OS_REG_WRITE(ah,
                AR_RTC_DERIVED_RTC_CLK, (0x17c << 1)); /* 32KHz sleep clk */
            OS_REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
            OS_REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
        } else {
            OS_REG_WRITE(ah,
                AR_RTC_DERIVED_RTC_CLK, (0x261 << 1)); /* 32KHz sleep clk */
            OS_REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
            OS_REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
        }
        OS_DELAY(100);
    }
}

static inline HAL_BOOL
ar9300_set_reset(struct ath_hal *ah, int type)
{
    u_int32_t rst_flags;
    u_int32_t tmp_reg;
    struct ath_hal_9300 *ahp = AH9300(ah);

    HALASSERT(type == HAL_RESET_WARM || type == HAL_RESET_COLD);

    /*
     * RTC Force wake should be done before resetting the MAC.
     * MDK/ART does it that way.
     */
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_WA), AH9300(ah)->ah_wa_reg_val);
    OS_DELAY(10); /* delay to allow AR_WA reg write to kick in */
    OS_REG_WRITE(ah,
        AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);

    /* Reset AHB */
    /* Bug26871 */
    tmp_reg = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE));
    if (AR_SREV_WASP(ah)) {
        if (tmp_reg & (AR9340_INTR_SYNC_LOCAL_TIMEOUT)) {
            OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), 0);
            OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_HOSTIF);
        }
    } else {
        if (tmp_reg & (AR9300_INTR_SYNC_LOCAL_TIMEOUT | AR9300_INTR_SYNC_RADM_CPL_TIMEOUT)) {
            OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), 0);
            OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_HOSTIF);
        }
        else {
            /* NO AR_RC_AHB in Osprey */
            /*OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_AHB);*/
        }
    }
    
    rst_flags = AR_RTC_RC_MAC_WARM;
    if (type == HAL_RESET_COLD) {
        rst_flags |= AR_RTC_RC_MAC_COLD;
    }

#ifdef AH_SUPPORT_HORNET
    /* Hornet WAR: trigger SoC to reset WMAC if ...
     * (1) doing cold reset. Ref: EV 69254 
     * (2) beacon pending. Ref: EV 70983
     */
    if (AR_SREV_HORNET(ah) &&
        (ar9300_num_tx_pending(
            ah, AH_PRIVATE(ah)->ah_caps.halTotalQueues - 1) != 0 ||
         type == HAL_RESET_COLD))
    {
        u_int32_t time_out;
#define AR_SOC_RST_RESET         0xB806001C
#define AR_SOC_BOOT_STRAP        0xB80600AC
#define AR_SOC_WLAN_RST          0x00000800 /* WLAN reset */
#define REG_WRITE(_reg, _val)    *((volatile u_int32_t *)(_reg)) = (_val);
#define REG_READ(_reg)           *((volatile u_int32_t *)(_reg))
        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Hornet SoC reset WMAC.\n", __func__);

        REG_WRITE(AR_SOC_RST_RESET,
            REG_READ(AR_SOC_RST_RESET) | AR_SOC_WLAN_RST);
        REG_WRITE(AR_SOC_RST_RESET,
            REG_READ(AR_SOC_RST_RESET) & (~AR_SOC_WLAN_RST));

        time_out = 0;

        while (1) {
            tmp_reg = REG_READ(AR_SOC_BOOT_STRAP);
            if ((tmp_reg & 0x10) == 0) {
                break;
            }
            if (time_out > 20) {
                break;
            }
            OS_DELAY(10000);
            time_out++;
        }

        OS_REG_WRITE(ah, AR_RTC_RESET, 1);
#undef REG_READ
#undef REG_WRITE
#undef AR_SOC_WLAN_RST
#undef AR_SOC_RST_RESET
#undef AR_SOC_BOOT_STRAP
    }
#endif /* AH_SUPPORT_HORNET */

#ifdef AH_SUPPORT_SCORPION
    if (AR_SREV_SCORPION(ah)) {
#define DDR_CTL_CONFIG_ADDRESS                                       0xb8000000
#define DDR_CTL_CONFIG_OFFSET                                        0x0108
#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_MSB                           29
#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_LSB                           21
#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_MASK                          0x3fe00000
#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_GET(x)                        (((x) & DDR_CTL_CONFIG_CLIENT_ACTIVITY_MASK) >> DDR_CTL_CONFIG_CLIENT_ACTIVITY_LSB)
#define DDR_CTL_CONFIG_CLIENT_ACTIVITY_SET(x)                        (((x) << DDR_CTL_CONFIG_CLIENT_ACTIVITY_LSB) & DDR_CTL_CONFIG_CLIENT_ACTIVITY_MASK)
#define MAC_DMA_CFG_ADDRESS                                          0xb8100000
#define MAC_DMA_CFG_OFFSET                                           0x0014

#define MAC_DMA_CFG_HALT_REQ_MSB                                     11
#define MAC_DMA_CFG_HALT_REQ_LSB                                     11
#define MAC_DMA_CFG_HALT_REQ_MASK                                    0x00000800
#define MAC_DMA_CFG_HALT_REQ_GET(x)                                  (((x) & MAC_DMA_CFG_HALT_REQ_MASK) >> MAC_DMA_CFG_HALT_REQ_LSB)
#define MAC_DMA_CFG_HALT_REQ_SET(x)                                  (((x) << MAC_DMA_CFG_HALT_REQ_LSB) & MAC_DMA_CFG_HALT_REQ_MASK)
#define MAC_DMA_CFG_HALT_ACK_MSB                                     12
#define MAC_DMA_CFG_HALT_ACK_LSB                                     12
#define MAC_DMA_CFG_HALT_ACK_MASK                                    0x00001000
#define MAC_DMA_CFG_HALT_ACK_GET(x)                                  (((x) & MAC_DMA_CFG_HALT_ACK_MASK) >> MAC_DMA_CFG_HALT_ACK_LSB)
#define MAC_DMA_CFG_HALT_ACK_SET(x)                                  (((x) << MAC_DMA_CFG_HALT_ACK_LSB) & MAC_DMA_CFG_HALT_ACK_MASK)

#define RST_RESET                                                    0xB806001c
#define RTC_RESET                                                    (1<<27)

#define REG_READ(_reg)          *((volatile u_int32_t *)(_reg))
#define REG_WRITE(_reg, _val)   *((volatile u_int32_t *)(_reg)) = (_val);

#define DDR_REG_READ(_ah, _reg) \
	    *((volatile u_int32_t *)( DDR_CTL_CONFIG_ADDRESS + (_reg)))
#define DDR_REG_WRITE(_ah, _reg, _val) \
	    *((volatile u_int32_t *)(DDR_CTL_CONFIG_ADDRESS + (_reg))) = (_val)

	    OS_REG_WRITE(ah,MAC_DMA_CFG_OFFSET, (OS_REG_READ(ah,MAC_DMA_CFG_OFFSET) & ~MAC_DMA_CFG_HALT_REQ_MASK) |
			    MAC_DMA_CFG_HALT_REQ_SET(1));

	    {
		    int count;
            u_int32_t data;

		    count = 0;
		    while (!MAC_DMA_CFG_HALT_ACK_GET(OS_REG_READ(ah, MAC_DMA_CFG_OFFSET) ))
		    {
			    count++;
			    if (count > 10) {
				    ath_hal_printf(ah, "Halt ACK timeout\n");
				    break;
			    }
			    OS_DELAY(10);
		    }

		    data = DDR_REG_READ(ah,DDR_CTL_CONFIG_OFFSET);
		    HALDEBUG(ah, HAL_DEBUG_RESET, "check DDR Activity - HIGH\n");

		    count = 0;
		    while (DDR_CTL_CONFIG_CLIENT_ACTIVITY_GET(data)) {
			    //      AVE_DEBUG(0,"DDR Activity - HIGH\n");
			    HALDEBUG(ah, HAL_DEBUG_RESET, "DDR Activity - HIGH\n");
			    count++;
			    OS_DELAY(10);
			    data = DDR_REG_READ(ah,DDR_CTL_CONFIG_OFFSET);
			    if (count > 10) {
				    ath_hal_printf(ah, "DDR Activity timeout\n");
				    break;
			    }
		    }
	    }


	    {
		    //Force RTC reset
		    REG_WRITE(RST_RESET, (REG_READ(RST_RESET) | RTC_RESET));
		    OS_DELAY(10);
		    REG_WRITE(RST_RESET, (REG_READ(RST_RESET) & ~RTC_RESET));
		    OS_DELAY(10);
		    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
		    OS_DELAY(10);
		    OS_REG_WRITE(ah, AR_RTC_RESET, 1);
		    OS_DELAY(10);
		    HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Scorpion SoC RTC reset done.\n", __func__);
	    }
#undef REG_READ
#undef REG_WRITE
    }
#endif  /* AH_SUPPORT_SCORPION */

    /*
     * Set Mac(BB,Phy) Warm Reset
     */
    OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);

    OS_DELAY(50); /* XXX 50 usec */

    /*
     * Clear resets and force wakeup
     */
    OS_REG_WRITE(ah, AR_RTC_RC, 0);
    if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
            "%s: RTC stuck in MAC reset\n", __FUNCTION__);
        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
            "%s: AR_RTC_RC = 0x%x\n", __func__, OS_REG_READ(ah, AR_RTC_RC));
        return AH_FALSE;
    }

    /* Clear AHB reset */
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), 0);
    ar9300_disable_pll_lock_detect(ah);

    ar9300_attach_hw_platform(ah);

    ahp->ah_chip_reset_done = 1;
    return AH_TRUE;
}

static inline HAL_BOOL
ar9300_set_reset_power_on(struct ath_hal *ah)
{
    /* Force wake */
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_WA), AH9300(ah)->ah_wa_reg_val);
    OS_DELAY(10); /* delay to allow AR_WA reg write to kick in */
    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
        AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
    /*
     * RTC reset and clear. Some delay in between is needed 
     * to give the chip time to settle.
     */
    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
    OS_DELAY(2);
    OS_REG_WRITE(ah, AR_RTC_RESET, 1);

    /*
     * Poll till RTC is ON
     */
    if (!ath_hal_wait(ah,
             AR_RTC_STATUS, AR_RTC_STATUS_M,
             AR_RTC_STATUS_ON))
    {
        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
            "%s: RTC not waking up for %d\n", __FUNCTION__, 1000);
        return AH_FALSE;
    }

    /*
     * Read Revisions from Chip right after RTC is on for the first time.
     * This helps us detect the chip type early and initialize it accordingly.
     */
    ar9300_read_revisions(ah);

    /*
     * Warm reset if we aren't really powering on,
     * just restarting the driver.
     */
    return ar9300_set_reset(ah, HAL_RESET_WARM);
}

/*
 * Write the given reset bit mask into the reset register
 */
HAL_BOOL
ar9300_set_reset_reg(struct ath_hal *ah, u_int32_t type)
{
    HAL_BOOL ret = AH_FALSE;

    /*
     * Set force wake
     */
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_WA), AH9300(ah)->ah_wa_reg_val);
    OS_DELAY(10); /* delay to allow AR_WA reg write to kick in */
    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
        AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);

    switch (type) {
    case HAL_RESET_POWER_ON:
        ret = ar9300_set_reset_power_on(ah);
        break;
    case HAL_RESET_WARM:
    case HAL_RESET_COLD:
        ret = ar9300_set_reset(ah, type);
        break;
    default:
        break;
    }
    
#if ATH_SUPPORT_MCI
    if (AH_PRIVATE(ah)->ah_caps.halMciSupport) {
        OS_REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
    }
#endif

    return ret;
}

/*
 * Places the PHY and Radio chips into reset.  A full reset
 * must be called to leave this state.  The PCI/MAC/PCU are
 * not placed into reset as we must receive interrupt to
 * re-enable the hardware.
 */
HAL_BOOL
ar9300_phy_disable(struct ath_hal *ah)
{
    if (!ar9300_set_reset_reg(ah, HAL_RESET_WARM)) {
        return AH_FALSE;
    }

#ifdef ATH_SUPPORT_LED
#define REG_READ(_reg)          *((volatile u_int32_t *)(_reg))
#define REG_WRITE(_reg, _val)   *((volatile u_int32_t *)(_reg)) = (_val);
#define ATH_GPIO_OE             0xB8040000
#define ATH_GPIO_OUT            0xB8040008 /* GPIO Ouput Value reg.*/
    if (AR_SREV_WASP(ah)) {
        if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) {
            REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 13)));
        }
        else { 
            REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 12)));
        }
    }
    else if (AR_SREV_SCORPION(ah)) {
        if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) {
            REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 13)));
        }
        else {
            REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 12)));
        }
        /* Turn off JMPST led */
        REG_WRITE(ATH_GPIO_OUT, (REG_READ(ATH_GPIO_OUT) | (0x1 << 15)));
    }
    else if (AR_SREV_HONEYBEE(ah)) {
        REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 12)));
    }
#undef REG_READ
#undef REG_WRITE
#endif

    if ( AR_SREV_OSPREY(ah) ) { 
        OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_OUTPUT_MUX1), 0x0, 0x1f);
    }


    ar9300_init_pll(ah, AH_NULL);
    ar9300_disable_pll_lock_detect(ah);

    return AH_TRUE;
}

/*
 * Places all of hardware into reset
 */
HAL_BOOL
ar9300_disable(struct ath_hal *ah)
{
    if (!ar9300_set_power_mode(ah, HAL_PM_AWAKE, AH_TRUE)) {
        return AH_FALSE;
    }
    if (!ar9300_set_reset_reg(ah, HAL_RESET_COLD)) {
        return AH_FALSE;
    }

    ar9300_init_pll(ah, AH_NULL);

    return AH_TRUE;
}

/*
 * TODO: Only write the PLL if we're changing to or from CCK mode
 *
 * WARNING: The order of the PLL and mode registers must be correct.
 */
static inline void
ar9300_set_rf_mode(struct ath_hal *ah, struct ieee80211_channel *chan)
{
    u_int32_t rf_mode = 0;

    if (chan == AH_NULL) {
        return;
    }
    switch (AH9300(ah)->ah_hwp) {
    case HAL_TRUE_CHIP:
        rf_mode |= (IEEE80211_IS_CHAN_B(chan) || IEEE80211_IS_CHAN_G(chan)) ?
            AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
        break;
    default:
        HALASSERT(0);
        break;
    }
    /*  Phy mode bits for 5GHz channels requiring Fast Clock */
    if ( IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
        rf_mode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
    }
    OS_REG_WRITE(ah, AR_PHY_MODE, rf_mode);
}

/*
 * Places the hardware into reset and then pulls it out of reset
 */
HAL_BOOL
ar9300_chip_reset(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_RESET_TYPE reset_type)
{
    struct ath_hal_9300     *ahp = AH9300(ah);
    int type = HAL_RESET_WARM;

    OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);

    /*
     * Warm reset is optimistic.
     *
     * If the TX/RX DMA engines aren't shut down (eg, they're
     * wedged) then we're better off doing a full cold reset
     * to try and shake that condition.
     */
    if (ahp->ah_chip_full_sleep ||
        (ah->ah_config.ah_force_full_reset == 1) ||
        (reset_type == HAL_RESET_FORCE_COLD) ||
        (reset_type == HAL_RESET_BBPANIC) ||
        OS_REG_READ(ah, AR_Q_TXE) ||
        (OS_REG_READ(ah, AR_CR) & AR_CR_RXE)) {
            HALDEBUG(ah, HAL_DEBUG_RESET,
              "%s: full reset; reset_type=%d, full_sleep=%d\n",
              __func__, reset_type, ahp->ah_chip_full_sleep);
            type = HAL_RESET_COLD;
    }

    if (!ar9300_set_reset_reg(ah, type)) {
        return AH_FALSE;
    }

    /* Bring out of sleep mode (AGAIN) */
    if (!ar9300_set_power_mode(ah, HAL_PM_AWAKE, AH_TRUE)) {
        return AH_FALSE;
    }

    ahp->ah_chip_full_sleep = AH_FALSE;

    if (AR_SREV_HORNET(ah)) {
        ar9300_internal_regulator_apply(ah);
    }

    ar9300_init_pll(ah, chan);

    /*
     * Perform warm reset before the mode/PLL/turbo registers
     * are changed in order to deactivate the radio.  Mode changes
     * with an active radio can result in corrupted shifts to the
     * radio device.
     */
    ar9300_set_rf_mode(ah, chan);

    return AH_TRUE;
}

/* ar9300_setup_calibration
 * Setup HW to collect samples used for current cal
 */
inline static void
ar9300_setup_calibration(struct ath_hal *ah, HAL_CAL_LIST *curr_cal)
{
    /* Select calibration to run */
    switch (curr_cal->cal_data->cal_type) {
    case IQ_MISMATCH_CAL:
        /* Start calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
        OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4,
            AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX,
            curr_cal->cal_data->cal_count_max);
        OS_REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);

        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: starting IQ Mismatch Calibration\n", __func__);

        /* Kick-off cal */
        OS_REG_SET_BIT(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);

        break;
    case TEMP_COMP_CAL:
        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) ||
            AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) {
            OS_REG_RMW_FIELD(ah,
                AR_HORNET_CH0_THERM, AR_PHY_65NM_CH0_THERM_LOCAL, 1);
            OS_REG_RMW_FIELD(ah,
                AR_HORNET_CH0_THERM, AR_PHY_65NM_CH0_THERM_START, 1);
        } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
            OS_REG_RMW_FIELD(ah,
                AR_PHY_65NM_CH0_THERM_JUPITER, AR_PHY_65NM_CH0_THERM_LOCAL, 1);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_65NM_CH0_THERM_JUPITER, AR_PHY_65NM_CH0_THERM_START, 1);
        } else {
            OS_REG_RMW_FIELD(ah,
                AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_LOCAL, 1);
            OS_REG_RMW_FIELD(ah,
                AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_START, 1);
        }

        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: starting Temperature Compensation Calibration\n", __func__);
        break;
    default:
        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
            "%s called with incorrect calibration type.\n", __func__);
    }
}

/* ar9300_reset_calibration
 * Initialize shared data structures and prepare a cal to be run.
 */
inline static void
ar9300_reset_calibration(struct ath_hal *ah, HAL_CAL_LIST *curr_cal)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    int i;

    /* Setup HW for new calibration */
    ar9300_setup_calibration(ah, curr_cal);

    /* Change SW state to RUNNING for this calibration */
    curr_cal->cal_state = CAL_RUNNING;

    /* Reset data structures shared between different calibrations */
    for (i = 0; i < AR9300_MAX_CHAINS; i++) {
        ahp->ah_meas0.sign[i] = 0;
        ahp->ah_meas1.sign[i] = 0;
        ahp->ah_meas2.sign[i] = 0;
        ahp->ah_meas3.sign[i] = 0;
    }

    ahp->ah_cal_samples = 0;
}

#ifdef XXX_UNUSED_FUNCTION
/*
 * Find out which of the RX chains are enabled
 */
static u_int32_t
ar9300_get_rx_chain_mask(struct ath_hal *ah)
{
    u_int32_t ret_val = OS_REG_READ(ah, AR_PHY_RX_CHAINMASK);
    /* The bits [2:0] indicate the rx chain mask and are to be
     * interpreted as follows:
     * 00x => Only chain 0 is enabled
     * 01x => Chain 1 and 0 enabled
     * 1xx => Chain 2,1 and 0 enabled
     */
    return (ret_val & 0x7);
}
#endif

static void 
ar9300_get_nf_hist_base(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
    int is_scan, int16_t nf[])
{
    HAL_NFCAL_BASE *h_base;

#ifdef ATH_NF_PER_CHAN
    h_base = &chan->nf_cal_hist.base;
#else
    if (is_scan) {
        /*
         * The channel we are currently on is not the home channel,
         * so we shouldn't use the home channel NF buffer's values on
         * this channel.  Instead, use the NF single value already
         * read for this channel.  (Or, if we haven't read the NF for
         * this channel yet, the SW default for this chip/band will
         * be used.)
         */
        h_base = &chan->nf_cal_hist.base;
    } else {
        /* use the home channel NF info */
        h_base = &AH_PRIVATE(ah)->nf_cal_hist.base;
    }
#endif
    OS_MEMCPY(nf, h_base->priv_nf, sizeof(h_base->priv_nf));
}

HAL_BOOL
ar9300_load_nf(struct ath_hal *ah, int16_t nf[])
{
    int i, j;
    int32_t val;
    /* XXX where are EXT regs defined */
    const u_int32_t ar9300_cca_regs[] = {
        AR_PHY_CCA_0,
        AR_PHY_CCA_1,
        AR_PHY_CCA_2,
        AR_PHY_EXT_CCA,
        AR_PHY_EXT_CCA_1,
        AR_PHY_EXT_CCA_2,
    };
    u_int8_t chainmask;

    /*
     * Force NF calibration for all chains, otherwise Vista station
     * would conduct a bad performance
     */
    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
        chainmask = 0x9;
    } else if (AR_SREV_WASP(ah) || AR_SREV_JUPITER(ah) || AR_SREV_HONEYBEE(ah)) {
        chainmask = 0x1b;
    } else {
        chainmask = 0x3F;
    }

    /*
     * Write filtered NF values into max_cca_pwr register parameter
     * so we can load below.
     */
    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
        if (chainmask & (1 << i)) {
            val = OS_REG_READ(ah, ar9300_cca_regs[i]);
            val &= 0xFFFFFE00;
            val |= (((u_int32_t)(nf[i]) << 1) & 0x1ff);
            OS_REG_WRITE(ah, ar9300_cca_regs[i], val);
        }
    }

    HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s: load %d %d %d %d %d %d\n",
      __func__,
      nf[0], nf[1], nf[2],
      nf[3], nf[4], nf[5]);

    /*
     * Load software filtered NF value into baseband internal min_cca_pwr
     * variable.
     */
    OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
    OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
    OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);

    /* Wait for load to complete, should be fast, a few 10s of us. */
    /* Changed the max delay 250us back to 10000us, since 250us often
     * results in NF load timeout and causes deaf condition
     * during stress testing 12/12/2009
     */
    for (j = 0; j < 10000; j++) {
        if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0){
            break;
        }
        OS_DELAY(10);
    }
    if (j == 10000) {
        /*
         * We timed out waiting for the noisefloor to load, probably
         * due to an in-progress rx.  Simply return here and allow
         * the load plenty of time to complete before the next 
         * calibration interval.  We need to avoid trying to load -50
         * (which happens below) while the previous load is still in
         * progress as this can cause rx deafness (see EV 66368,62830).
         * Instead by returning here, the baseband nf cal will 
         * just be capped by our present noisefloor until the next
         * calibration timer.
         */
        HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
            "%s: *** TIMEOUT while waiting for nf to load: "
            "AR_PHY_AGC_CONTROL=0x%x ***\n", 
            __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
        return AH_FALSE;
    }

    /*
     * Restore max_cca_power register parameter again so that we're not capped
     * by the median we just loaded.  This will be initial (and max) value
     * of next noise floor calibration the baseband does.
     */
    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
        if (chainmask & (1 << i)) {
            val = OS_REG_READ(ah, ar9300_cca_regs[i]);
            val &= 0xFFFFFE00;
            val |= (((u_int32_t)(-50) << 1) & 0x1ff);
            OS_REG_WRITE(ah, ar9300_cca_regs[i], val);
        }
    }
    return AH_TRUE;
}

/* ar9300_per_calibration
 * Generic calibration routine.
 * Recalibrate the lower PHY chips to account for temperature/environment
 * changes.
 */
inline static void
ar9300_per_calibration(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *ichan,
    u_int8_t rxchainmask, HAL_CAL_LIST *curr_cal, HAL_BOOL *is_cal_done)
{
    struct ath_hal_9300 *ahp = AH9300(ah);

    /* Cal is assumed not done until explicitly set below */
    *is_cal_done = AH_FALSE;

    /* Calibration in progress. */
    if (curr_cal->cal_state == CAL_RUNNING) {
        /* Check to see if it has finished. */
        if (!(OS_REG_READ(ah, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
            int i, num_chains = 0;
            for (i = 0; i < AR9300_MAX_CHAINS; i++) {
                if (rxchainmask & (1 << i)) {
                    num_chains++;
                }
            }

            /*
             * Accumulate cal measures for active chains
             */
            curr_cal->cal_data->cal_collect(ah, num_chains);

            ahp->ah_cal_samples++;

            if (ahp->ah_cal_samples >= curr_cal->cal_data->cal_num_samples) {
                /*
                 * Process accumulated data
                 */
                curr_cal->cal_data->cal_post_proc(ah, num_chains);

                /* Calibration has finished. */
                ichan->calValid |= curr_cal->cal_data->cal_type;
                curr_cal->cal_state = CAL_DONE;
                *is_cal_done = AH_TRUE;
            } else {
                /* Set-up collection of another sub-sample until we
                 * get desired number
                 */
                ar9300_setup_calibration(ah, curr_cal);
            }
        }
    } else if (!(ichan->calValid & curr_cal->cal_data->cal_type)) {
        /* If current cal is marked invalid in channel, kick it off */
        ar9300_reset_calibration(ah, curr_cal);
    }
}

static void
ar9300_start_nf_cal(struct ath_hal *ah)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
    OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
    OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
    AH9300(ah)->nf_tsf32 = ar9300_get_tsf32(ah);

/*  
 *  We are reading the NF values before we start the NF operation, because
 *  of that we are getting very high values like -45.
 *  This triggers the CW_INT detected and EACS module triggers the channel change
 *  chip_reset_done value is used to fix this issue.
 *  chip_reset_flag is set during the RTC reset.
 *  chip_reset_flag is cleared during the starting NF operation.
 *  if flag is set we will clear the flag and will not read the NF values.
 */
    ahp->ah_chip_reset_done = 0;    
}

/* ar9300_calibration
 * Wrapper for a more generic Calibration routine. Primarily to abstract to
 * upper layers whether there is 1 or more calibrations to be run.
 */
HAL_BOOL
ar9300_calibration(struct ath_hal *ah, struct ieee80211_channel *chan, u_int8_t rxchainmask,
    HAL_BOOL do_nf_cal, HAL_BOOL *is_cal_done, int is_scan,
    u_int32_t *sched_cals)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    HAL_CAL_LIST *curr_cal = ahp->ah_cal_list_curr;
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
    int16_t nf_buf[HAL_NUM_NF_READINGS];

    *is_cal_done = AH_TRUE;


    /* XXX: For initial wasp bringup - disable periodic calibration */
    /* Invalid channel check */
    if (ichan == AH_NULL) {
        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
            "%s: invalid channel %u/0x%x; no mapping\n",
            __func__, chan->ic_freq, chan->ic_flags);
        return AH_FALSE;
    }

    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
        "%s: Entering, Doing NF Cal = %d\n", __func__, do_nf_cal);
    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: Chain 0 Rx IQ Cal Correction 0x%08x\n",
        __func__, OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
    if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: Chain 1 Rx IQ Cal Correction 0x%08x\n",
            __func__, OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B1));
        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)) {
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "%s: Chain 2 Rx IQ Cal Correction 0x%08x\n",
                __func__, OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B2));
        }
    }

    OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);

    /* For given calibration:
     * 1. Call generic cal routine
     * 2. When this cal is done (is_cal_done) if we have more cals waiting
     *    (eg after reset), mask this to upper layers by not propagating
     *    is_cal_done if it is set to TRUE.
     *    Instead, change is_cal_done to FALSE and setup the waiting cal(s)
     *    to be run.
     */
    if (curr_cal && (curr_cal->cal_data->cal_type & *sched_cals) &&
        (curr_cal->cal_state == CAL_RUNNING ||
         curr_cal->cal_state == CAL_WAITING))
    {
        ar9300_per_calibration(ah, ichan, rxchainmask, curr_cal, is_cal_done);

        if (*is_cal_done == AH_TRUE) {
            ahp->ah_cal_list_curr = curr_cal = curr_cal->cal_next;

            if (curr_cal && curr_cal->cal_state == CAL_WAITING) {
                *is_cal_done = AH_FALSE;
                ar9300_reset_calibration(ah, curr_cal);
            } else {
                *sched_cals &= ~IQ_MISMATCH_CAL;
            }
        }
    }

    /* Do NF cal only at longer intervals */
    if (do_nf_cal) {
        int nf_done;

        /* Get the value from the previous NF cal and update history buffer */
        nf_done = ar9300_store_new_nf(ah, chan, is_scan);
#if 0
        if (ichan->channel_flags & CHANNEL_CW_INT) {
            chan->channel_flags |= CHANNEL_CW_INT;
        }
#endif
        chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;

        if (nf_done) {
            int ret;
            /*
             * Load the NF from history buffer of the current channel.
             * NF is slow time-variant, so it is OK to use a historical value.
             */
            ar9300_get_nf_hist_base(ah, ichan, is_scan, nf_buf);

            ret = ar9300_load_nf(ah, nf_buf);
            /* start NF calibration, without updating BB NF register*/
            ar9300_start_nf_cal(ah);

            /*
             * If we failed the NF cal then tell the upper layer that we
             * failed so we can do a full reset
             */
            if (! ret)
                return AH_FALSE;
        }
    }
    return AH_TRUE;
}

/* ar9300_iq_cal_collect
 * Collect data from HW to later perform IQ Mismatch Calibration
 */
void
ar9300_iq_cal_collect(struct ath_hal *ah, u_int8_t num_chains)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    int i;

    /*
     * Accumulate IQ cal measures for active chains
     */
    for (i = 0; i < num_chains; i++) {
        ahp->ah_total_power_meas_i[i] = OS_REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
        ahp->ah_total_power_meas_q[i] = OS_REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
        ahp->ah_total_iq_corr_meas[i] =
            (int32_t) OS_REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%d: Chn %d "
            "Reg Offset(0x%04x)pmi=0x%08x; "
            "Reg Offset(0x%04x)pmq=0x%08x; "
            "Reg Offset (0x%04x)iqcm=0x%08x;\n",
            ahp->ah_cal_samples,
            i,
            (unsigned) AR_PHY_CAL_MEAS_0(i),
            ahp->ah_total_power_meas_i[i],
            (unsigned) AR_PHY_CAL_MEAS_1(i),
            ahp->ah_total_power_meas_q[i],
            (unsigned) AR_PHY_CAL_MEAS_2(i),
            ahp->ah_total_iq_corr_meas[i]);
    }
}

/* ar9300_iq_calibration
 * Use HW data to perform IQ Mismatch Calibration
 */
void
ar9300_iq_calibration(struct ath_hal *ah, u_int8_t num_chains)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    u_int32_t power_meas_q, power_meas_i, iq_corr_meas;
    u_int32_t q_coff_denom, i_coff_denom;
    int32_t q_coff, i_coff;
    int iq_corr_neg, i;
    HAL_CHANNEL_INTERNAL *ichan;
    static const u_int32_t offset_array[3] = {
        AR_PHY_RX_IQCAL_CORR_B0,
        AR_PHY_RX_IQCAL_CORR_B1,
        AR_PHY_RX_IQCAL_CORR_B2,
    };

    ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);

    for (i = 0; i < num_chains; i++) {
        power_meas_i = ahp->ah_total_power_meas_i[i];
        power_meas_q = ahp->ah_total_power_meas_q[i];
        iq_corr_meas = ahp->ah_total_iq_corr_meas[i];

        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "Starting IQ Cal and Correction for Chain %d\n", i);
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "Orignal: Chn %diq_corr_meas = 0x%08x\n",
            i, ahp->ah_total_iq_corr_meas[i]);

        iq_corr_neg = 0;

        /* iq_corr_meas is always negative. */
        if (iq_corr_meas > 0x80000000)  {
            iq_corr_meas = (0xffffffff - iq_corr_meas) + 1;
            iq_corr_neg = 1;
        }

        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "Chn %d pwr_meas_i = 0x%08x\n", i, power_meas_i);
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "Chn %d pwr_meas_q = 0x%08x\n", i, power_meas_q);
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "iq_corr_neg is 0x%08x\n", iq_corr_neg);

        i_coff_denom = (power_meas_i / 2 + power_meas_q / 2) / 256;
        q_coff_denom = power_meas_q / 64;

        /* Protect against divide-by-0 */
        if ((i_coff_denom != 0) && (q_coff_denom != 0)) {
            /* IQ corr_meas is already negated if iqcorr_neg == 1 */
            i_coff = iq_corr_meas / i_coff_denom;
            q_coff = power_meas_i / q_coff_denom - 64;
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "Chn %d i_coff = 0x%08x\n", i, i_coff);
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "Chn %d q_coff = 0x%08x\n", i, q_coff);

            /* Force bounds on i_coff */
            if (i_coff >= 63) {
                i_coff = 63;
            } else if (i_coff <= -63) {
                i_coff = -63;
            }

            /* Negate i_coff if iq_corr_neg == 0 */
            if (iq_corr_neg == 0x0) {
                i_coff = -i_coff;
            }

            /* Force bounds on q_coff */
            if (q_coff >= 63) {
                q_coff = 63;
            } else if (q_coff <= -63) {
                q_coff = -63;
            }

            i_coff = i_coff & 0x7f;
            q_coff = q_coff & 0x7f;

            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "Chn %d : i_coff = 0x%x  q_coff = 0x%x\n", i, i_coff, q_coff);
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "Register offset (0x%04x) before update = 0x%x\n",
                offset_array[i], OS_REG_READ(ah, offset_array[i]));

            OS_REG_RMW_FIELD(ah, offset_array[i],
                AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
            OS_REG_RMW_FIELD(ah, offset_array[i],
                AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);

            /* store the RX cal results */
	    if (ichan != NULL) {
            ahp->ah_rx_cal_corr[i] = OS_REG_READ(ah, offset_array[i]) & 0x7fff;
            ahp->ah_rx_cal_complete = AH_TRUE;
            ahp->ah_rx_cal_chan = ichan->channel;
//            ahp->ah_rx_cal_chan_flag = ichan->channel_flags &~ CHANNEL_PASSIVE; 
            ahp->ah_rx_cal_chan_flag = 0; /* XXX */
	    } else {
	        /* XXX? Is this what I should do? */
            	ahp->ah_rx_cal_complete = AH_FALSE;

	    }

            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "Register offset (0x%04x) QI COFF (bitfields 0x%08x) "
                "after update = 0x%x\n",
                offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
                OS_REG_READ(ah, offset_array[i]));
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "Register offset (0x%04x) QQ COFF (bitfields 0x%08x) "
                "after update = 0x%x\n",
                offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
                OS_REG_READ(ah, offset_array[i]));
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "IQ Cal and Correction done for Chain %d\n", i);
        }
    }

    OS_REG_SET_BIT(ah,
        AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
        "IQ Cal and Correction (offset 0x%04x) enabled "
        "(bit position 0x%08x). New Value 0x%08x\n",
        (unsigned) (AR_PHY_RX_IQCAL_CORR_B0),
        AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE,
        OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
}

/*
 * When coming back from offchan, we do not perform RX IQ Cal.
 * But the chip reset will clear all previous results
 * We store the previous results and restore here.
 */
static void
ar9300_rx_iq_cal_restore(struct ath_hal *ah)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    u_int32_t   i_coff, q_coff;
    HAL_BOOL is_restore = AH_FALSE;
    int i;
    static const u_int32_t offset_array[3] = {
        AR_PHY_RX_IQCAL_CORR_B0,
        AR_PHY_RX_IQCAL_CORR_B1,
        AR_PHY_RX_IQCAL_CORR_B2,
    };

    for (i=0; i<AR9300_MAX_CHAINS; i++) {
        if (ahp->ah_rx_cal_corr[i]) {
            i_coff = (ahp->ah_rx_cal_corr[i] &
                        AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF) >>
                        AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF_S;
            q_coff = (ahp->ah_rx_cal_corr[i] &
                        AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF) >>
                        AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF_S;

            OS_REG_RMW_FIELD(ah, offset_array[i],
                AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
            OS_REG_RMW_FIELD(ah, offset_array[i],
                AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);

            is_restore = AH_TRUE;
        }
    }

    if (is_restore)
        OS_REG_SET_BIT(ah,
            AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);

    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
        "%s: IQ Cal and Correction (offset 0x%04x) enabled "
        "(bit position 0x%08x). New Value 0x%08x\n",
        __func__,
        (unsigned) (AR_PHY_RX_IQCAL_CORR_B0),
        AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE,
        OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
}

/*
 * Set a limit on the overall output power.  Used for dynamic
 * transmit power control and the like.
 *
 * NB: limit is in units of 0.5 dbM.
 */
HAL_BOOL
ar9300_set_tx_power_limit(struct ath_hal *ah, u_int32_t limit,
    u_int16_t extra_txpow, u_int16_t tpc_in_db)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
    const struct ieee80211_channel *chan = ahpriv->ah_curchan;
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);

    if (NULL == chan) {
        return AH_FALSE;
    }

    ahpriv->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
    ahpriv->ah_extraTxPow = extra_txpow;

    if(chan == NULL) {
        return AH_FALSE;
    }
    if (ar9300_eeprom_set_transmit_power(ah, &ahp->ah_eeprom, chan,
        ath_hal_getctl(ah, chan), ath_hal_getantennaallowed(ah, chan),
        ath_hal_get_twice_max_regpower(ahpriv, ichan, chan),
        AH_MIN(MAX_RATE_POWER, ahpriv->ah_powerLimit)) != HAL_OK)
    {
        return AH_FALSE;
    }
    return AH_TRUE;
}

/*
 * Exported call to check for a recent gain reading and return
 * the current state of the thermal calibration gain engine.
 */
HAL_RFGAIN
ar9300_get_rfgain(struct ath_hal *ah)
{
    return HAL_RFGAIN_INACTIVE;
}

#define HAL_GREEN_AP_RX_MASK 0x1

static inline void
ar9300_init_chain_masks(struct ath_hal *ah, int rx_chainmask, int tx_chainmask)
{
    if (AH9300(ah)->green_ap_ps_on) {
        rx_chainmask = HAL_GREEN_AP_RX_MASK;
    }
    if (rx_chainmask == 0x5) {
        OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
    }
    OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
    OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);

    /*
     * Adaptive Power Management:
     * Some 3 stream chips exceed the PCIe power requirements.
     * This workaround will reduce power consumption by using 2 tx chains
     * for 1 and 2 stream rates (5 GHz only).
     *
     * Set the self gen mask to 2 tx chains when APM is enabled.
     *
     */
    if (AH_PRIVATE(ah)->ah_caps.halApmEnable && (tx_chainmask == 0x7)) {
        OS_REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
    }
    else {
        OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
    }

    if (tx_chainmask == 0x5) {
        OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
    }
}

/*
 * Override INI values with chip specific configuration.
 */
static inline void
ar9300_override_ini(struct ath_hal *ah, struct ieee80211_channel *chan)
{
    u_int32_t val;
    HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;

    /*
     * Set the RX_ABORT and RX_DIS and clear it only after
     * RXE is set for MAC. This prevents frames with
     * corrupted descriptor status.
     */
    OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
    /*
     * For Merlin and above, there is a new feature that allows Multicast
     * search based on both MAC Address and Key ID.
     * By default, this feature is enabled.
     * But since the driver is not using this feature, we switch it off;
     * otherwise multicast search based on MAC addr only will fail.
     */
    val = OS_REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
        val | AR_BUG_58603_FIX_ENABLE | AR_AGG_WEP_ENABLE);


    /* Osprey revision specific configuration */

    /* Osprey 2.0+ - if SW RAC support is disabled, must also disable
     * the Osprey 2.0 hardware RAC fix.
     */
    if (p_cap->halIsrRacSupport == AH_FALSE) {
        OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_MISSING_TX_INTR_FIX_ENABLE);
    }

    /* try to enable old pal if it is needed for h/w green tx */
    ar9300_hwgreentx_set_pal_spare(ah, 1);
}

static inline void
ar9300_prog_ini(struct ath_hal *ah, struct ar9300_ini_array *ini_arr,
    int column)
{
    int i, reg_writes = 0;

    /* New INI format: Array may be undefined (pre, core, post arrays) */
    if (ini_arr->ia_array == NULL) {
        return;
    }

    /*
     * New INI format: Pre, core, and post arrays for a given subsystem may be
     * modal (> 2 columns) or non-modal (2 columns).
     * Determine if the array is non-modal and force the column to 1.
     */
    if (column >= ini_arr->ia_columns) {
        column = 1;
    }

    for (i = 0; i < ini_arr->ia_rows; i++) {
        u_int32_t reg = INI_RA(ini_arr, i, 0);
        u_int32_t val = INI_RA(ini_arr, i, column);

        /*
        ** Determine if this is a shift register value 
        ** (reg >= 0x16000 && reg < 0x17000 for Osprey) , 
        ** and insert the configured delay if so. 
        ** -this delay is not required for Osprey (EV#71410)
        */
        OS_REG_WRITE(ah, reg, val);
        WAR_6773(reg_writes);

    }
}

static inline HAL_STATUS
ar9300_process_ini(struct ath_hal *ah, struct ieee80211_channel *chan,
    HAL_CHANNEL_INTERNAL *ichan, HAL_HT_MACMODE macmode)
{
    int reg_writes = 0;
    struct ath_hal_9300 *ahp = AH9300(ah);
    u_int modes_index, modes_txgaintable_index = 0;
    int i;
    HAL_STATUS status;
    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
    /* Setup the indices for the next set of register array writes */
    /* TODO:
     * If the channel marker is indicative of the current mode rather
     * than capability, we do not need to check the phy mode below.
     */
#if 0
    switch (chan->channel_flags & CHANNEL_ALL) {
    case CHANNEL_A:
    case CHANNEL_A_HT20:
        if (AR_SREV_SCORPION(ah)){
            if (chan->channel <= 5350){
                modes_txgaintable_index = 1;
            }else if ((chan->channel > 5350) && (chan->channel <= 5600)){
                modes_txgaintable_index = 3;
            }else if (chan->channel > 5600){
                modes_txgaintable_index = 5;
            }
        }
        modes_index = 1;
        freq_index  = 1;
        break;

    case CHANNEL_A_HT40PLUS:
    case CHANNEL_A_HT40MINUS:
        if (AR_SREV_SCORPION(ah)){
            if (chan->channel <= 5350){
                modes_txgaintable_index = 2;
            }else if ((chan->channel > 5350) && (chan->channel <= 5600)){
                modes_txgaintable_index = 4;
            }else if (chan->channel > 5600){
                modes_txgaintable_index = 6;
            }
        }
        modes_index = 2;
        freq_index  = 1;
        break;

    case CHANNEL_PUREG:
    case CHANNEL_G_HT20:
    case CHANNEL_B:
        if (AR_SREV_SCORPION(ah)){
            modes_txgaintable_index = 8;
        }else if (AR_SREV_HONEYBEE(ah)){
	    modes_txgaintable_index = 1;
	}
        modes_index = 4;
        freq_index  = 2;
        break;

    case CHANNEL_G_HT40PLUS:
    case CHANNEL_G_HT40MINUS:
        if (AR_SREV_SCORPION(ah)){
            modes_txgaintable_index = 7;
        }else if (AR_SREV_HONEYBEE(ah)){
            modes_txgaintable_index = 1;
        }
        modes_index = 3;
        freq_index  = 2;
        break;

    case CHANNEL_108G:
        modes_index = 5;
        freq_index  = 2;
        break;

    default:
        HALASSERT(0);
        return HAL_EINVAL;
    }
#endif

    /* FreeBSD */
    if (IS_CHAN_5GHZ(ichan)) {
        if (IEEE80211_IS_CHAN_HT40U(chan) || IEEE80211_IS_CHAN_HT40D(chan)) {
            if (AR_SREV_SCORPION(ah)){
                if (ichan->channel <= 5350){
                    modes_txgaintable_index = 2;
                }else if ((ichan->channel > 5350) && (ichan->channel <= 5600)){
                    modes_txgaintable_index = 4;
                }else if (ichan->channel > 5600){
                    modes_txgaintable_index = 6;
                }
            }
            modes_index = 2;
        } else if (IEEE80211_IS_CHAN_A(chan) || IEEE80211_IS_CHAN_HT20(chan)) {
            if (AR_SREV_SCORPION(ah)){
                if (ichan->channel <= 5350){
                    modes_txgaintable_index = 1;
                }else if ((ichan->channel > 5350) && (ichan->channel <= 5600)){
                    modes_txgaintable_index = 3;
                }else if (ichan->channel > 5600){
                    modes_txgaintable_index = 5;
                }
            }
            modes_index = 1;
        } else
            return HAL_EINVAL;
    } else if (IS_CHAN_2GHZ(ichan)) {
        if (IEEE80211_IS_CHAN_108G(chan)) {
            modes_index = 5;
        } else if (IEEE80211_IS_CHAN_HT40U(chan) || IEEE80211_IS_CHAN_HT40D(chan)) {
            if (AR_SREV_SCORPION(ah)){
                modes_txgaintable_index = 7;
            } else if (AR_SREV_HONEYBEE(ah)){
                modes_txgaintable_index = 1;
            }
            modes_index = 3;
        } else if (IEEE80211_IS_CHAN_HT20(chan) || IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_B(chan) || IEEE80211_IS_CHAN_PUREG(chan)) {
            if (AR_SREV_SCORPION(ah)){
                modes_txgaintable_index = 8;
            } else if (AR_SREV_HONEYBEE(ah)){
                modes_txgaintable_index = 1;
            }
            modes_index = 4;
        } else
            return HAL_EINVAL;
    } else
            return HAL_EINVAL;

#if 0
    /* Set correct Baseband to analog shift setting to access analog chips. */
    OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
#endif

    HALDEBUG(ah, HAL_DEBUG_RESET,
        "ar9300_process_ini: "
        "Skipping OS-REG-WRITE(ah, AR-PHY(0), 0x00000007)\n");
    HALDEBUG(ah, HAL_DEBUG_RESET,
        "ar9300_process_ini: no ADDac programming\n");


    /*
     * Osprey 2.0+ - new INI format.
     * Each subsystem has a pre, core, and post array.
     */
    for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
        ar9300_prog_ini(ah, &ahp->ah_ini_soc[i], modes_index);
        ar9300_prog_ini(ah, &ahp->ah_ini_mac[i], modes_index);
        ar9300_prog_ini(ah, &ahp->ah_ini_bb[i], modes_index);
        ar9300_prog_ini(ah, &ahp->ah_ini_radio[i], modes_index);
        if ((i == ATH_INI_POST) && (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah))) {
            ar9300_prog_ini(ah, &ahp->ah_ini_radio_post_sys2ant, modes_index);
        }

    }

	if (!(AR_SREV_SOC(ah))) {
			/* Doubler issue : Some board doesn't work well with MCS15. Turn off doubler after freq locking is complete*/
			//ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
			OS_REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 
			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); /*Set synthon, synthover */
			//ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
			
			OS_REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 
			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); /*Set synthon, synthover */
			OS_REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 
			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); /*Set synthon, synthover */
			OS_DELAY(200);
			
			//ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
			OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH0_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); /* clr synthon */
			OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH1_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); /* clr synthon */
			OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH2_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); /* clr synthon */
			//ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
			
			OS_DELAY(1);
			
			//ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
			OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); /* set synthon */
			OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); /* set synthon */
			OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); /* set synthon */
			//ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
			
			OS_DELAY(200);
			
			//ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_SYNTH12, OS_REG_READ(ah, AR_PHY_65NM_CH0_SYNTH12));
			OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH12, AR_PHY_65NM_CH0_SYNTH12_VREFMUL3, 0xf);
			//OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH0_SYNTH12, 1<< 16); /* clr charge pump */
			//ath_hal_printf(ah, "%s[%d] ==== After  reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_SYNTH12, OS_REG_READ(ah, AR_PHY_65NM_CH0_SYNTH12));
			
			OS_REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 
			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); /*Clr synthon, synthover */
			OS_REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 
			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); /*Clr synthon, synthover */
			OS_REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 
			               1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); /*Clr synthon, synthover */
			//ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2));
		}

    /* Write rxgain Array Parameters */
    REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain, 1, reg_writes);
    HALDEBUG(ah, HAL_DEBUG_RESET, "ar9300_process_ini: Rx Gain programming\n");

    if (AR_SREV_JUPITER_20_OR_LATER(ah)) {
        /*
         * CUS217 mix LNA mode.
         */
        if (ar9300_rx_gain_index_get(ah) == 2) {
            REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_bb_core, 1, reg_writes);
            REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_bb_postamble,
                modes_index, reg_writes);
        }

        /*
         * 5G-XLNA
         */
        if ((ar9300_rx_gain_index_get(ah) == 2) ||
            (ar9300_rx_gain_index_get(ah) == 3)) {
            REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_xlna, modes_index,
              reg_writes);
        }
    }

    if (AR_SREV_SCORPION(ah)) {
        /* Write rxgain bounds Array */
        REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_bounds, modes_index, reg_writes);
        HALDEBUG(ah, HAL_DEBUG_RESET, "ar9300_process_ini: Rx Gain table bounds programming\n");
    }
    /* UB124 xLNA settings */
    if (AR_SREV_WASP(ah) && ar9300_rx_gain_index_get(ah) == 2) {
#define REG_WRITE(_reg,_val)    *((volatile u_int32_t *)(_reg)) = (_val);
#define REG_READ(_reg)          *((volatile u_int32_t *)(_reg))
        u_int32_t val;
        /* B8040000:  bit[0]=0, bit[3]=0; */
        val = REG_READ(0xB8040000);
        val &= 0xfffffff6;
        REG_WRITE(0xB8040000, val);
        /* B804002c:  bit[31:24]=0x2e; bit[7:0]=0x2f; */
        val = REG_READ(0xB804002c);
        val &= 0x00ffff00;
        val |= 0x2e00002f;
        REG_WRITE(0xB804002c, val);
        /* B804006c:  bit[1]=1; */
        val = REG_READ(0xB804006c);
        val |= 0x2;
        REG_WRITE(0xB804006c, val);
#undef REG_READ
#undef REG_WRITE
    }


    /* Write txgain Array Parameters */
    if (AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) {
        REG_WRITE_ARRAY(&ahp->ah_ini_modes_txgain, modes_txgaintable_index, 
            reg_writes);
    }else{
        REG_WRITE_ARRAY(&ahp->ah_ini_modes_txgain, modes_index, reg_writes);
    }
    HALDEBUG(ah, HAL_DEBUG_RESET, "ar9300_process_ini: Tx Gain programming\n");


    /* For 5GHz channels requiring Fast Clock, apply different modal values */
    if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
        HALDEBUG(ah, HAL_DEBUG_RESET,
            "%s: Fast clock enabled, use special ini values\n", __func__);
        REG_WRITE_ARRAY(&ahp->ah_ini_modes_additional, modes_index, reg_writes);
    }

    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
        HALDEBUG(ah, HAL_DEBUG_RESET,
            "%s: use xtal ini for AH9300(ah)->clk_25mhz: %d\n",
            __func__, AH9300(ah)->clk_25mhz);
        REG_WRITE_ARRAY(
            &ahp->ah_ini_modes_additional, 1/*modes_index*/, reg_writes);
    }

    if (AR_SREV_WASP(ah) && (AH9300(ah)->clk_25mhz == 0)) {
        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Apply 40MHz ini settings\n", __func__);
        REG_WRITE_ARRAY(
            &ahp->ah_ini_modes_additional_40mhz, 1/*modesIndex*/, reg_writes);
    }

    /* Handle Japan Channel 14 channel spreading */
    if (2484 == ichan->channel) {
        ar9300_prog_ini(ah, &ahp->ah_ini_japan2484, 1);
    }

#if 0
    /* XXX TODO! */
    if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) {
        ar9300_prog_ini(ah, &ahp->ah_ini_BTCOEX_MAX_TXPWR, 1);
    }
#endif

    /* Override INI with chip specific configuration */
    ar9300_override_ini(ah, chan);

    /* Setup 11n MAC/Phy mode registers */
    ar9300_set_11n_regs(ah, chan, macmode);

    /*
     * Moved ar9300_init_chain_masks() here to ensure the swap bit is set before
     * the pdadc table is written.  Swap must occur before any radio dependent
     * replicated register access.  The pdadc curve addressing in particular
     * depends on the consistent setting of the swap bit.
     */
    ar9300_init_chain_masks(ah, ahp->ah_rx_chainmask, ahp->ah_tx_chainmask);

    /*
     * Setup the transmit power values.
     *
     * After the public to private hal channel mapping, ichan contains the
     * valid regulatory power value.
     * ath_hal_getctl and ath_hal_getantennaallowed look up ichan from chan.
     */
    status = ar9300_eeprom_set_transmit_power(ah, &ahp->ah_eeprom, chan,
             ath_hal_getctl(ah, chan), ath_hal_getantennaallowed(ah, chan),
             ath_hal_get_twice_max_regpower(ahpriv, ichan, chan),
             AH_MIN(MAX_RATE_POWER, ahpriv->ah_powerLimit));
    if (status != HAL_OK) {
        HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
            "%s: error init'ing transmit power\n", __func__);
        return HAL_EIO;
    }


    return HAL_OK;
#undef N
}

/* ar9300_is_cal_supp
 * Determine if calibration is supported by device and channel flags
 */
inline static HAL_BOOL
ar9300_is_cal_supp(struct ath_hal *ah, const struct ieee80211_channel *chan,
    HAL_CAL_TYPES cal_type) 
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    HAL_BOOL retval = AH_FALSE;

    switch (cal_type & ahp->ah_supp_cals) {
    case IQ_MISMATCH_CAL:
        /* Run IQ Mismatch for non-CCK only */
        if (!IEEE80211_IS_CHAN_B(chan)) {
            retval = AH_TRUE;
        }
        break;
    case TEMP_COMP_CAL:
        retval = AH_TRUE;
        break;
    }

    return retval;
}


#if 0
/* ar9285_pa_cal
 * PA Calibration for Kite 1.1 and later versions of Kite.
 * - from system's team.
 */
static inline void
ar9285_pa_cal(struct ath_hal *ah)
{
    u_int32_t reg_val;
    int i, lo_gn, offs_6_1, offs_0;
    u_int8_t reflo;
    u_int32_t phy_test2_reg_val, phy_adc_ctl_reg_val;
    u_int32_t an_top2_reg_val, phy_tst_dac_reg_val;


    /* Kite 1.1 WAR for Bug 35666 
     * Increase the LDO value to 1.28V before accessing analog Reg */
    if (AR_SREV_KITE_11(ah)) {
        OS_REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14) );
    }
    an_top2_reg_val = OS_REG_READ(ah, AR9285_AN_TOP2);

    /* set pdv2i pdrxtxbb */
    reg_val = OS_REG_READ(ah, AR9285_AN_RXTXBB1);
    reg_val |= ((0x1 << 5) | (0x1 << 7));
    OS_REG_WRITE(ah, AR9285_AN_RXTXBB1, reg_val);

    /* clear pwddb */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G7);
    reg_val &= 0xfffffffd;
    OS_REG_WRITE(ah, AR9285_AN_RF2G7, reg_val);

    /* clear enpacal */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1);
    reg_val &= 0xfffff7ff;
    OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val);

    /* set offcal */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G2);
    reg_val |= (0x1 << 12);
    OS_REG_WRITE(ah, AR9285_AN_RF2G2, reg_val);

    /* set pdpadrv1=pdpadrv2=pdpaout=1 */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1);
    reg_val |= (0x7 << 23);
    OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val);

    /* Read back reflo, increase it by 1 and write it. */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
    reflo = ((reg_val >> 26) & 0x7);
    
    if (reflo < 0x7) {
        reflo++;
    }
    reg_val = ((reg_val & 0xe3ffffff) | (reflo << 26));
    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);

    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
    reflo = ((reg_val >> 26) & 0x7);

    /* use TX single carrier to transmit
     * dac const
     * reg. 15
     */
    phy_tst_dac_reg_val = OS_REG_READ(ah, AR_PHY_TSTDAC_CONST);
    OS_REG_WRITE(ah, AR_PHY_TSTDAC_CONST, ((0x7ff << 11) | 0x7ff)); 
    reg_val = OS_REG_READ(ah, AR_PHY_TSTDAC_CONST);

    /* source is dac const
     * reg. 2
     */
    phy_test2_reg_val = OS_REG_READ(ah, AR_PHY_TEST2);
    OS_REG_WRITE(ah, AR_PHY_TEST2, ((0x1 << 7) | (0x1 << 1)));
    reg_val = OS_REG_READ(ah, AR_PHY_TEST2);

    /* set dac on
     * reg. 11
     */
    phy_adc_ctl_reg_val = OS_REG_READ(ah, AR_PHY_ADC_CTL);
    OS_REG_WRITE(ah, AR_PHY_ADC_CTL, 0x80008000);
    reg_val = OS_REG_READ(ah, AR_PHY_ADC_CTL);

    OS_REG_WRITE(ah, AR9285_AN_TOP2, (0x1 << 27) | (0x1 << 17) | (0x1 << 16) |
              (0x1 << 14) | (0x1 << 12) | (0x1 << 11) |
              (0x1 << 7) | (0x1 << 5));

    OS_DELAY(10); /* 10 usec */

    /* clear off[6:0] */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G6);
    reg_val &= 0xfc0fffff;
    OS_REG_WRITE(ah, AR9285_AN_RF2G6, reg_val);
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
    reg_val &= 0xfdffffff;
    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);

    offs_6_1 = 0;
    for (i = 6; i > 0; i--) {
        /* sef off[$k]==1 */
        reg_val = OS_REG_READ(ah, AR9285_AN_RF2G6);
        reg_val &= 0xfc0fffff;
        reg_val = reg_val | (0x1 << (19 + i)) | ((offs_6_1) << 20);
        OS_REG_WRITE(ah, AR9285_AN_RF2G6, reg_val);
        lo_gn = (OS_REG_READ(ah, AR9285_AN_RF2G9)) & 0x1;
        offs_6_1 = offs_6_1 | (lo_gn << (i - 1));
    }

    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G6);
    reg_val &= 0xfc0fffff;
    reg_val = reg_val | ((offs_6_1 - 1) << 20);
    OS_REG_WRITE(ah, AR9285_AN_RF2G6, reg_val);

    /* set off_0=1; */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
    reg_val &= 0xfdffffff;
    reg_val = reg_val | (0x1 << 25);
    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);

    lo_gn = OS_REG_READ(ah, AR9285_AN_RF2G9) & 0x1;
    offs_0 = lo_gn;

    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
    reg_val &= 0xfdffffff;
    reg_val = reg_val | (offs_0 << 25);
    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);

    /* clear pdv2i */
    reg_val = OS_REG_READ(ah, AR9285_AN_RXTXBB1);
    reg_val &= 0xffffff5f;
    OS_REG_WRITE(ah, AR9285_AN_RXTXBB1, reg_val);

    /* set enpacal */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1);
    reg_val |= (0x1 << 11);
    OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val);

    /* clear offcal */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G2);
    reg_val &= 0xffffefff;
    OS_REG_WRITE(ah, AR9285_AN_RF2G2, reg_val);

    /* set pdpadrv1=pdpadrv2=pdpaout=0 */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1);
    reg_val &= 0xfc7fffff;
    OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val);

    /* Read back reflo, decrease it by 1 and write it. */
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
    reflo = (reg_val >> 26) & 0x7;
    if (reflo) {
        reflo--;
    }
    reg_val = ((reg_val & 0xe3ffffff) | (reflo << 26));
    OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val);
    reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3);
    reflo = (reg_val >> 26) & 0x7;

    /* write back registers */
    OS_REG_WRITE(ah, AR_PHY_TSTDAC_CONST, phy_tst_dac_reg_val);
    OS_REG_WRITE(ah, AR_PHY_TEST2, phy_test2_reg_val);
    OS_REG_WRITE(ah, AR_PHY_ADC_CTL, phy_adc_ctl_reg_val);
    OS_REG_WRITE(ah, AR9285_AN_TOP2, an_top2_reg_val);

    /* Kite 1.1 WAR for Bug 35666 
     * Decrease the LDO value back to 1.20V */
    if (AR_SREV_KITE_11(ah)) {
        OS_REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
    }
}
#endif

/* ar9300_run_init_cals
 * Runs non-periodic calibrations
 */
inline static HAL_BOOL
ar9300_run_init_cals(struct ath_hal *ah, int init_cal_count)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    HAL_CHANNEL_INTERNAL ichan; /* bogus */
    HAL_BOOL is_cal_done;
    HAL_CAL_LIST *curr_cal;
    const HAL_PERCAL_DATA *cal_data;
    int i;

    curr_cal = ahp->ah_cal_list_curr;
    if (curr_cal == AH_NULL) {
        return AH_FALSE;
    }
    cal_data = curr_cal->cal_data;
    ichan.calValid = 0;

    for (i = 0; i < init_cal_count; i++) {
        /* Reset this Cal */
        ar9300_reset_calibration(ah, curr_cal);
        /* Poll for offset calibration complete */
        if (!ath_hal_wait(
                ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL, 0))
        {
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "%s: Cal %d failed to complete in 100ms.\n",
                __func__, curr_cal->cal_data->cal_type);
            /* Re-initialize list pointers for periodic cals */
            ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr
                = AH_NULL;
            return AH_FALSE;
        } 
        /* Run this cal */
        ar9300_per_calibration(
            ah, &ichan, ahp->ah_rx_chainmask, curr_cal, &is_cal_done);
        if (is_cal_done == AH_FALSE) {
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "%s: Not able to run Init Cal %d.\n", __func__,
                curr_cal->cal_data->cal_type);
        }
        if (curr_cal->cal_next) {
            curr_cal = curr_cal->cal_next;
        }
    }

    /* Re-initialize list pointers for periodic cals */
    ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = AH_NULL;
    return AH_TRUE;
}

#if 0
static void
ar9300_tx_carrier_leak_war(struct ath_hal *ah)
{
    unsigned long tx_gain_table_max;
    unsigned long reg_bb_cl_map_0_b0 = 0xffffffff;
    unsigned long reg_bb_cl_map_1_b0 = 0xffffffff;
    unsigned long reg_bb_cl_map_2_b0 = 0xffffffff;
    unsigned long reg_bb_cl_map_3_b0 = 0xffffffff;
    unsigned long tx_gain, cal_run = 0;
    unsigned long cal_gain[AR_PHY_TPC_7_TX_GAIN_TABLE_MAX + 1];
    unsigned long cal_gain_index[AR_PHY_TPC_7_TX_GAIN_TABLE_MAX + 1];
    unsigned long new_gain[AR_PHY_TPC_7_TX_GAIN_TABLE_MAX + 1];
    int i, j;

    OS_MEMSET(new_gain, 0, sizeof(new_gain));
    /*printf("     Running TxCarrierLeakWAR\n");*/

    /* process tx gain table, we use cl_map_hw_gen=0. */
    OS_REG_RMW_FIELD(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_MAP_HW_GEN, 0);

	//the table we used is txbb_gc[2:0], 1dB[2:1].
    tx_gain_table_max = OS_REG_READ_FIELD(ah,
        AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX);

    for (i = 0; i <= tx_gain_table_max; i++) {
        tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4);
        cal_gain[i] = (((tx_gain >> 5)& 0x7) << 2) |
            (((tx_gain >> 1) & 0x3) << 0);
        if (i == 0) {
            cal_gain_index[i] = cal_run;
            new_gain[i] = 1;
            cal_run++;
        } else {
            new_gain[i] = 1;
            for (j = 0; j < i; j++) {
                /*
                printf("i=%d, j=%d cal_gain[$i]=0x%04x\n", i, j, cal_gain[i]);
                 */
                if (new_gain[i]) {
                    if ((cal_gain[i] != cal_gain[j])) {
                        new_gain[i] = 1;
                    } else {
                        /* if old gain found, use old cal_run value. */
                        new_gain[i] = 0;
                        cal_gain_index[i] = cal_gain_index[j];
                    }
                }
            }
            /* if new gain found, increase cal_run */
            if (new_gain[i] == 1) {
                cal_gain_index[i] = cal_run;
                cal_run++;
            }
        }

        reg_bb_cl_map_0_b0 = (reg_bb_cl_map_0_b0 & ~(0x1 << i)) |
            ((cal_gain_index[i] >> 0 & 0x1) << i);
        reg_bb_cl_map_1_b0 = (reg_bb_cl_map_1_b0 & ~(0x1 << i)) |
            ((cal_gain_index[i] >> 1 & 0x1) << i);
        reg_bb_cl_map_2_b0 = (reg_bb_cl_map_2_b0 & ~(0x1 << i)) |
            ((cal_gain_index[i] >> 2 & 0x1) << i);
        reg_bb_cl_map_3_b0 = (reg_bb_cl_map_3_b0 & ~(0x1 << i)) |
            ((cal_gain_index[i] >> 3 & 0x1) << i);

        /*
        printf("i=%2d, cal_gain[$i]= 0x%04x, cal_run= %d, "
            "cal_gain_index[i]=%d, new_gain[i] = %d\n",
            i, cal_gain[i], cal_run, cal_gain_index[i], new_gain[i]);
         */
    }
    OS_REG_WRITE(ah, AR_PHY_CL_MAP_0_B0, reg_bb_cl_map_0_b0);
    OS_REG_WRITE(ah, AR_PHY_CL_MAP_1_B0, reg_bb_cl_map_1_b0);
    OS_REG_WRITE(ah, AR_PHY_CL_MAP_2_B0, reg_bb_cl_map_2_b0);
    OS_REG_WRITE(ah, AR_PHY_CL_MAP_3_B0, reg_bb_cl_map_3_b0);
    if (AR_SREV_WASP(ah)) {
        OS_REG_WRITE(ah, AR_PHY_CL_MAP_0_B1, reg_bb_cl_map_0_b0);
        OS_REG_WRITE(ah, AR_PHY_CL_MAP_1_B1, reg_bb_cl_map_1_b0);
        OS_REG_WRITE(ah, AR_PHY_CL_MAP_2_B1, reg_bb_cl_map_2_b0);
        OS_REG_WRITE(ah, AR_PHY_CL_MAP_3_B1, reg_bb_cl_map_3_b0);
    }
}
#endif


static inline void
ar9300_invalidate_saved_cals(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
{
#if ATH_SUPPORT_CAL_REUSE
    if (AH_PRIVATE(ah)->ah_config.ath_hal_cal_reuse &
        ATH_CAL_REUSE_REDO_IN_FULL_RESET)
    {
        ichan->one_time_txiqcal_done = AH_FALSE;
        ichan->one_time_txclcal_done = AH_FALSE;
    }
#endif
}

static inline HAL_BOOL
ar9300_restore_rtt_cals(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
{
    HAL_BOOL restore_status = AH_FALSE;

    return restore_status;
}

/* ar9300_init_cal
 * Initialize Calibration infrastructure
 */
static inline HAL_BOOL
ar9300_init_cal_internal(struct ath_hal *ah, struct ieee80211_channel *chan,
                         HAL_CHANNEL_INTERNAL *ichan,
                         HAL_BOOL enable_rtt, HAL_BOOL do_rtt_cal, HAL_BOOL skip_if_none, HAL_BOOL apply_last_iqcorr)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    HAL_BOOL txiqcal_success_flag = AH_FALSE;
    HAL_BOOL cal_done = AH_FALSE;
    int iqcal_idx = 0;
    HAL_BOOL do_sep_iq_cal = AH_FALSE;
    HAL_BOOL do_agc_cal = do_rtt_cal;
    HAL_BOOL is_cal_reusable = AH_TRUE;
#if ATH_SUPPORT_CAL_REUSE
    HAL_BOOL      cal_reuse_enable = AH_PRIVATE(ah)->ah_config.ath_hal_cal_reuse &
                                 ATH_CAL_REUSE_ENABLE;
    HAL_BOOL      clc_success = AH_FALSE;
    int32_t   ch_idx, j, cl_tab_reg;
    u_int32_t BB_cl_tab_entry = MAX_BB_CL_TABLE_ENTRY;
    u_int32_t BB_cl_tab_b[AR9300_MAX_CHAINS] = {
                    AR_PHY_CL_TAB_0,
                    AR_PHY_CL_TAB_1,
                    AR_PHY_CL_TAB_2
                };
#endif

    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
        /* Hornet: 1 x 1 */
        ahp->ah_rx_cal_chainmask = 0x1;
        ahp->ah_tx_cal_chainmask = 0x1;
    } else if (AR_SREV_WASP(ah) || AR_SREV_JUPITER(ah) || AR_SREV_HONEYBEE(ah)) {
        /* Wasp/Jupiter: 2 x 2 */
        ahp->ah_rx_cal_chainmask = 0x3;
        ahp->ah_tx_cal_chainmask = 0x3;
    } else {
        /*
         * Osprey needs to be configured for the correct chain mode
         * before running AGC/TxIQ cals.
         */
        if (ahp->ah_enterprise_mode & AR_ENT_OTP_CHAIN2_DISABLE) {
            /* chain 2 disabled - 2 chain mode */
            ahp->ah_rx_cal_chainmask = 0x3;
            ahp->ah_tx_cal_chainmask = 0x3;
        } else {
            ahp->ah_rx_cal_chainmask = 0x7;
            ahp->ah_tx_cal_chainmask = 0x7;
        }
    }
        ar9300_init_chain_masks(ah, ahp->ah_rx_cal_chainmask, ahp->ah_tx_cal_chainmask);


    if (ahp->tx_cl_cal_enable) {
#if ATH_SUPPORT_CAL_REUSE
        /* disable Carrie Leak or set do_agc_cal accordingly */
        if (cal_reuse_enable && ichan->one_time_txclcal_done)
        {
            OS_REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
        } else
#endif /* ATH_SUPPORT_CAL_REUSE */
        {
            OS_REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
            do_agc_cal = AH_TRUE;
        }
    }

    /* Do Tx IQ Calibration here for osprey hornet and wasp */
    /* XXX: For initial wasp bringup - check and enable this */
    /* EV 74233: Tx IQ fails to complete for half/quarter rates */
    if (!(IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
        if (ahp->tx_iq_cal_enable) {
            /* this should be eventually moved to INI file */
            OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1(ah),
                AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);

            /*
             * For poseidon and later chips,
             * Tx IQ cal HW run will be a part of AGC calibration
             */
            if (ahp->tx_iq_cal_during_agc_cal) {
                /*
                 * txiqcal_success_flag always set to 1 to run
                 *     ar9300_tx_iq_cal_post_proc
                 * if following AGC cal passes
                */
#if ATH_SUPPORT_CAL_REUSE
                if (!cal_reuse_enable || !ichan->one_time_txiqcal_done)
                {
                    txiqcal_success_flag = AH_TRUE;
                    OS_REG_WRITE(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah),
                        OS_REG_READ(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah)) |
                        AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
                } else {
                    OS_REG_WRITE(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah),
                        OS_REG_READ(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah)) &
                        (~AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL));
                }
#else
		if (OS_REG_READ_FIELD(ah,
					AR_PHY_TX_IQCAL_CONTROL_0(ah),
					AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL)){
			if (apply_last_iqcorr == AH_TRUE) {
				OS_REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah),
						AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
				txiqcal_success_flag = AH_FALSE;
			} else {
				txiqcal_success_flag = AH_TRUE;
			}
		}else{
			txiqcal_success_flag = AH_FALSE;
		}
#endif
                if (txiqcal_success_flag) {
                    do_agc_cal = AH_TRUE;
                }
            } else
#if ATH_SUPPORT_CAL_REUSE
            if (!cal_reuse_enable || !ichan->one_time_txiqcal_done)
#endif
            {
                do_sep_iq_cal = AH_TRUE;
                do_agc_cal = AH_TRUE;
            }
        }
    }

#if ATH_SUPPORT_MCI
    if (AH_PRIVATE(ah)->ah_caps.halMciSupport &&
        IS_CHAN_2GHZ(ichan) &&
        (ahp->ah_mci_bt_state == MCI_BT_AWAKE) &&
        do_agc_cal &&
        !(ah->ah_config.ath_hal_mci_config & 
        ATH_MCI_CONFIG_DISABLE_MCI_CAL))
    {
        u_int32_t payload[4] = {0, 0, 0, 0};

        /* Send CAL_REQ only when BT is AWAKE. */
        HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) %s: Send WLAN_CAL_REQ 0x%X\n",
            __func__, ahp->ah_mci_wlan_cal_seq);
        MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_REQ);
        payload[MCI_GPM_WLAN_CAL_W_SEQUENCE] = ahp->ah_mci_wlan_cal_seq++;
        ar9300_mci_send_message(ah, MCI_GPM, 0, payload, 16, AH_TRUE, AH_FALSE);

        /* Wait BT_CAL_GRANT for 50ms */
        HALDEBUG(ah, HAL_DEBUG_BT_COEX, 
            "(MCI) %s: Wait for BT_CAL_GRANT\n", __func__);
        if (ar9300_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_GRANT, 0, 50000))
        {
            HALDEBUG(ah, HAL_DEBUG_BT_COEX, 
                "(MCI) %s: Got BT_CAL_GRANT.\n", __func__);
        }
        else {
            is_cal_reusable = AH_FALSE;
            HALDEBUG(ah, HAL_DEBUG_BT_COEX, 
                "(MCI) %s: BT is not responding.\n", __func__);
        }
    }
#endif /* ATH_SUPPORT_MCI */

    if (do_sep_iq_cal)
    {
        /* enable Tx IQ Calibration HW for osprey/hornet/wasp */
        txiqcal_success_flag = ar9300_tx_iq_cal_hw_run(ah);
        OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
        OS_DELAY(5);
        OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
    }
#if 0
    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
        ar9300_tx_carrier_leak_war(ah);
    }
#endif
    /*
     * Calibrate the AGC
     *
     * Tx IQ cal is a part of AGC cal for Jupiter/Poseidon, etc.
     * please enable the bit of txiqcal_control_0[31] in INI file
     * for Jupiter/Poseidon/etc.
     */
    if(!AR_SREV_SCORPION(ah)) {
        if (do_agc_cal || !skip_if_none) {
            OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
                OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);

            /* Poll for offset calibration complete */
            cal_done = ath_hal_wait(ah,
                    AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
            if (!cal_done) {
                HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
                    "(FCS) CAL NOT DONE!!! - %d\n", ichan->channel);
            }
        } else { 
            cal_done = AH_TRUE;
        }
            /*
             * Tx IQ cal post-processing in SW
             * This part of code should be common to all chips,
             * no chip specific code for Jupiter/Posdeion except for register names.
             */
            if (txiqcal_success_flag) {
                ar9300_tx_iq_cal_post_proc(ah,ichan, 1, 1,is_cal_reusable, AH_FALSE);
            }
    } else {
        if (!txiqcal_success_flag) {
            OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
                OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
            if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 
                    0)) {
                HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                    "%s: offset calibration failed to complete in 1ms; "
                    "noisy environment?\n", __func__);
                return AH_FALSE;
            }
            if (apply_last_iqcorr == AH_TRUE) {
                ar9300_tx_iq_cal_post_proc(ah, ichan, 0, 0, is_cal_reusable, AH_TRUE);
            }
        } else {
            for (iqcal_idx=0;iqcal_idx<MAXIQCAL;iqcal_idx++) {
                OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
                    OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);

                /* Poll for offset calibration complete */
                if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, 
                        AR_PHY_AGC_CONTROL_CAL, 0)) {
                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                        "%s: offset calibration failed to complete in 1ms; "
                        "noisy environment?\n", __func__);
                    return AH_FALSE;
                }
                /*
                 * Tx IQ cal post-processing in SW
                 * This part of code should be common to all chips,
                 * no chip specific code for Jupiter/Posdeion except for register names.
                 */
                ar9300_tx_iq_cal_post_proc(ah, ichan, iqcal_idx+1, MAXIQCAL, is_cal_reusable, AH_FALSE);
            }
       }
    }


#if ATH_SUPPORT_MCI
    if (AH_PRIVATE(ah)->ah_caps.halMciSupport &&
        IS_CHAN_2GHZ(ichan) &&
        (ahp->ah_mci_bt_state == MCI_BT_AWAKE) &&
        do_agc_cal &&
        !(ah->ah_config.ath_hal_mci_config & 
        ATH_MCI_CONFIG_DISABLE_MCI_CAL))
    {
        u_int32_t payload[4] = {0, 0, 0, 0};

        HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) %s: Send WLAN_CAL_DONE 0x%X\n",
            __func__, ahp->ah_mci_wlan_cal_done);
        MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_DONE);
        payload[MCI_GPM_WLAN_CAL_W_SEQUENCE] = ahp->ah_mci_wlan_cal_done++;
        ar9300_mci_send_message(ah, MCI_GPM, 0, payload, 16, AH_TRUE, AH_FALSE);
    }
#endif /* ATH_SUPPORT_MCI */


    if (!cal_done && !AR_SREV_SCORPION(ah) )
    {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: offset calibration failed to complete in 1ms; "
            "noisy environment?\n", __func__);
        return AH_FALSE;
    }

#if 0
     /* Beacon stuck fix, refer to EV 120056 */
    if(IS_CHAN_2GHZ(chan) && AR_SREV_SCORPION(ah))
        OS_REG_WRITE(ah, AR_PHY_TIMING5, OS_REG_READ(ah,AR_PHY_TIMING5) & ~AR_PHY_TIMING5_CYCPWR_THR1_ENABLE);
#endif

#if 0
    /* Do PA Calibration */
    if (AR_SREV_KITE(ah) && AR_SREV_KITE_11_OR_LATER(ah)) {
        ar9285_pa_cal(ah);
    }
#endif

#if ATH_SUPPORT_CAL_REUSE
     if (ichan->one_time_txiqcal_done) {
        ar9300_tx_iq_cal_apply(ah, ichan);
        HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
            "(FCS) TXIQCAL applied - %d\n", ichan->channel);
    }
#endif /* ATH_SUPPORT_CAL_REUSE */

#if ATH_SUPPORT_CAL_REUSE
    if (cal_reuse_enable && ahp->tx_cl_cal_enable)
    {
        clc_success = (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) &
                  AR_PHY_AGC_CONTROL_CLC_SUCCESS) ? 1 : 0;

        if (ichan->one_time_txclcal_done)
        {
            /* reapply CL cal results */
            for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) {
                if ((ahp->ah_tx_cal_chainmask & (1 << ch_idx)) == 0) {
                    continue;
                }
                cl_tab_reg = BB_cl_tab_b[ch_idx];
                for (j = 0; j < BB_cl_tab_entry; j++) {
                    OS_REG_WRITE(ah, cl_tab_reg, ichan->tx_clcal[ch_idx][j]);
                    cl_tab_reg += 4;;
                }
            }
            HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
                "(FCS) TX CL CAL applied - %d\n", ichan->channel);
        }
        else if (is_cal_reusable && clc_success) {
            /* save CL cal results */
            for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) {
                if ((ahp->ah_tx_cal_chainmask & (1 << ch_idx)) == 0) {
                    continue;
                }
                cl_tab_reg = BB_cl_tab_b[ch_idx];
                for (j = 0; j < BB_cl_tab_entry; j++) {
                    ichan->tx_clcal[ch_idx][j] = OS_REG_READ(ah, cl_tab_reg);
                    cl_tab_reg += 4;
                }
            }
            ichan->one_time_txclcal_done = AH_TRUE;
            HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
                "(FCS) TX CL CAL saved - %d\n", ichan->channel);
        }
    }
#endif /* ATH_SUPPORT_CAL_REUSE */

    /* Revert chainmasks to their original values before NF cal */
    ar9300_init_chain_masks(ah, ahp->ah_rx_chainmask, ahp->ah_tx_chainmask);

#if !FIX_NOISE_FLOOR
    /*
     * Do NF calibration after DC offset and other CALs.
     * Per system engineers, noise floor value can sometimes be 20 dB
     * higher than normal value if DC offset and noise floor cal are
     * triggered at the same time.
     */
    OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
        OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
#endif 

    /* Initialize list pointers */
    ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = AH_NULL;

    /*
     * Enable IQ, ADC Gain, ADC DC Offset Cals
     */
    /* Setup all non-periodic, init time only calibrations */
    /* XXX: Init DC Offset not working yet */
#ifdef not_yet
    if (AH_TRUE == ar9300_is_cal_supp(ah, chan, ADC_DC_INIT_CAL)) {
        INIT_CAL(&ahp->ah_adc_dc_cal_init_data);
        INSERT_CAL(ahp, &ahp->ah_adc_dc_cal_init_data);
    }

    /* Initialize current pointer to first element in list */
    ahp->ah_cal_list_curr = ahp->ah_cal_list;

    if (ahp->ah_cal_list_curr) {
        if (ar9300_run_init_cals(ah, 0) == AH_FALSE) {
            return AH_FALSE;
        }
    }
#endif
    /* end - Init time calibrations */

    /* Do not do RX cal in case of offchan, or cal data already exists on same channel*/
    if (ahp->ah_skip_rx_iq_cal) {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "Skip RX IQ Cal\n");
        return AH_TRUE;
    }

    /* If Cals are supported, add them to list via INIT/INSERT_CAL */
    if (AH_TRUE == ar9300_is_cal_supp(ah, chan, IQ_MISMATCH_CAL)) {
        INIT_CAL(&ahp->ah_iq_cal_data);
        INSERT_CAL(ahp, &ahp->ah_iq_cal_data);
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: enabling IQ Calibration.\n", __func__);
    }
    if (AH_TRUE == ar9300_is_cal_supp(ah, chan, TEMP_COMP_CAL)) {
        INIT_CAL(&ahp->ah_temp_comp_cal_data);
        INSERT_CAL(ahp, &ahp->ah_temp_comp_cal_data);
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: enabling Temperature Compensation Calibration.\n", __func__);
    }

    /* Initialize current pointer to first element in list */
    ahp->ah_cal_list_curr = ahp->ah_cal_list;

    /* Reset state within current cal */
    if (ahp->ah_cal_list_curr) {
        ar9300_reset_calibration(ah, ahp->ah_cal_list_curr);
    }

    /* Mark all calibrations on this channel as being invalid */
    ichan->calValid = 0;

    return AH_TRUE;
}

static inline HAL_BOOL
ar9300_init_cal(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_BOOL skip_if_none, HAL_BOOL apply_last_iqcorr)
{
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
    HAL_BOOL do_rtt_cal = AH_TRUE;
    HAL_BOOL enable_rtt = AH_FALSE;

    HALASSERT(ichan);

    return ar9300_init_cal_internal(ah, chan, ichan, enable_rtt, do_rtt_cal, skip_if_none, apply_last_iqcorr);
}

/* ar9300_reset_cal_valid
 * Entry point for upper layers to restart current cal.
 * Reset the calibration valid bit in channel.
 */
void
ar9300_reset_cal_valid(struct ath_hal *ah, const struct ieee80211_channel *chan,
    HAL_BOOL *is_cal_done, u_int32_t cal_type)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
    HAL_CAL_LIST *curr_cal = ahp->ah_cal_list_curr;

    *is_cal_done = AH_TRUE;

    if (curr_cal == AH_NULL) {
        return;
    }
    if (ichan == AH_NULL) {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: invalid channel %u/0x%x; no mapping\n",
            __func__, chan->ic_freq, chan->ic_flags);
        return;
    }

    if (!(cal_type & IQ_MISMATCH_CAL)) {
        *is_cal_done = AH_FALSE;
        return;
    }

    /* Expected that this calibration has run before, post-reset.
     * Current state should be done
     */
    if (curr_cal->cal_state != CAL_DONE) {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: Calibration state incorrect, %d\n",
            __func__, curr_cal->cal_state);
        return;
    }

    /* Verify Cal is supported on this channel */
    if (ar9300_is_cal_supp(ah, chan, curr_cal->cal_data->cal_type) == AH_FALSE) {
        return;
    }

    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
        "%s: Resetting Cal %d state for channel %u/0x%x\n", __func__,
        curr_cal->cal_data->cal_type, chan->ic_freq, chan->ic_flags);

    /* Disable cal validity in channel */
    ichan->calValid &= ~curr_cal->cal_data->cal_type;
    curr_cal->cal_state = CAL_WAITING;
    /* Indicate to upper layers that we need polling */
    *is_cal_done = AH_FALSE;
}

static inline void
ar9300_set_dma(struct ath_hal *ah)
{
    u_int32_t   regval;
    struct ath_hal_9300 *ahp = AH9300(ah);
    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
    HAL_CAPABILITIES *pCap = &ahpriv->ah_caps;

#if 0
    /*
     * set AHB_MODE not to do cacheline prefetches
     */
    regval = OS_REG_READ(ah, AR_AHB_MODE);
    OS_REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
#endif

    /*
     * let mac dma reads be in 128 byte chunks
     */
    regval = OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
    OS_REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);

    /*
     * Restore TX Trigger Level to its pre-reset value.
     * The initial value depends on whether aggregation is enabled, and is
     * adjusted whenever underruns are detected.
     */
    /*
    OS_REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, AH_PRIVATE(ah)->ah_tx_trig_level);
     */
    /* 
     * Osprey 1.0 bug (EV 61936). Don't change trigger level from .ini default.
     * Osprey 2.0 - hardware recommends using the default INI settings.
     */
#if 0
    OS_REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, 0x3f);
#endif
    /*
     * let mac dma writes be in 128 byte chunks
     */
    regval = OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
    OS_REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);

    /*
     * Setup receive FIFO threshold to hold off TX activities
     */
    OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);

    /*
     * reduce the number of usable entries in PCU TXBUF to avoid
     * wrap around bugs. (bug 20428)
     */
    
    if (AR_SREV_WASP(ah) && 
        (AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_12)) {
        /* Wasp 1.3 fix for EV#85395 requires usable entries 
         * to be set to 0x500 
         */
        OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 0x500);
    } else {
        OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
    }

    /*
     * Enable HPQ for UAPSD
     */
    if (pCap->halHwUapsdTrig == AH_TRUE) {
    /* Only enable this if HAL capabilities says it is OK */
        if (AH_PRIVATE(ah)->ah_opmode == HAL_M_HOSTAP) {
            OS_REG_WRITE(ah, AR_HP_Q_CONTROL,
                    AR_HPQ_ENABLE | AR_HPQ_UAPSD | AR_HPQ_UAPSD_TRIGGER_EN);
        }
    } else {
        /* use default value from ini file - which disable HPQ queue usage */
    }

    /*
     * set the transmit status ring
     */
    ar9300_reset_tx_status_ring(ah);

    /*
     * set rxbp threshold.  Must be non-zero for RX_EOL to occur.
     * For Osprey 2.0+, keep the original thresholds
     * otherwise performance is lost due to excessive RX EOL interrupts.
     */
    OS_REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
    OS_REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);

    /*
     * set receive buffer size.
     */
    if (ahp->rx_buf_size) {
        OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
    }
}

static inline void
ar9300_init_bb(struct ath_hal *ah, struct ieee80211_channel *chan)
{
    u_int32_t synth_delay;

    /*
     * Wait for the frequency synth to settle (synth goes on
     * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
     * Value is in 100ns increments.
     */
    synth_delay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
    if (IEEE80211_IS_CHAN_CCK(chan)) {
        synth_delay = (4 * synth_delay) / 22;
    } else {
        synth_delay /= 10;
    }

    /* Activate the PHY (includes baseband activate + synthesizer on) */
    OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);

    /*
     * There is an issue if the AP starts the calibration before
     * the base band timeout completes.  This could result in the
     * rx_clear false triggering.  As a workaround we add delay an
     * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
     * does not happen.
     */
    OS_DELAY(synth_delay + BASE_ACTIVATE_DELAY);
}

static inline void
ar9300_init_interrupt_masks(struct ath_hal *ah, HAL_OPMODE opmode)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    u_int32_t msi_cfg = 0;
    u_int32_t sync_en_def = AR9300_INTR_SYNC_DEFAULT;

    /*
     * Setup interrupt handling.  Note that ar9300_reset_tx_queue
     * manipulates the secondary IMR's as queues are enabled
     * and disabled.  This is done with RMW ops to insure the
     * settings we make here are preserved.
     */
    ahp->ah_mask_reg =
        AR_IMR_TXERR | AR_IMR_TXURN |
        AR_IMR_RXERR | AR_IMR_RXORN |
        AR_IMR_BCNMISC;

    if (ahp->ah_intr_mitigation_rx) {
        /* enable interrupt mitigation for rx */
        ahp->ah_mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR | AR_IMR_RXOK_HP;
        msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
    } else {
        ahp->ah_mask_reg |= AR_IMR_RXOK_LP | AR_IMR_RXOK_HP;
        msi_cfg |= AR_INTCFG_MSI_RXOK;
    }
    if (ahp->ah_intr_mitigation_tx) {
        /* enable interrupt mitigation for tx */
        ahp->ah_mask_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
        msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
    } else {
        ahp->ah_mask_reg |= AR_IMR_TXOK;
        msi_cfg |= AR_INTCFG_MSI_TXOK;
    }
    if (opmode == HAL_M_HOSTAP) {
        ahp->ah_mask_reg |= AR_IMR_MIB;
    }

    OS_REG_WRITE(ah, AR_IMR, ahp->ah_mask_reg);
    OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
    ahp->ah_mask2Reg = OS_REG_READ(ah, AR_IMR_S2);

    if (ah->ah_config.ath_hal_enable_msi) {
        /* Cache MSI register value */
        ahp->ah_msi_reg = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_PCIE_MSI));
        ahp->ah_msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
        if (AR_SREV_POSEIDON(ah)) {
            ahp->ah_msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
        } else {
            ahp->ah_msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR;
        }
        /* Program MSI configuration */
        OS_REG_WRITE(ah, AR_INTCFG, msi_cfg);
    }

    /*
     * debug - enable to see all synchronous interrupts status
     */
    /* Clear any pending sync cause interrupts */
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE), 0xFFFFFFFF);

    /* Allow host interface sync interrupt sources to set cause bit */
    if (AR_SREV_POSEIDON(ah)) {
        sync_en_def = AR9300_INTR_SYNC_DEF_NO_HOST1_PERR;
    }
    else if (AR_SREV_WASP(ah)) {
        sync_en_def = AR9340_INTR_SYNC_DEFAULT;
    }
    OS_REG_WRITE(ah,
        AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), sync_en_def);
    
    /* _Disable_ host interface sync interrupt when cause bits set */
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_MASK), 0);

    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_ENABLE), 0);
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_MASK), 0);
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_SYNC_ENABLE), 0);
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_SYNC_MASK), 0);
}

static inline void
ar9300_init_qos(struct ath_hal *ah)
{
    OS_REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);  /* XXX magic */
    OS_REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);    /* XXX magic */

    /* Turn on NOACK Support for QoS packets */
    OS_REG_WRITE(ah, AR_QOS_NO_ACK,
        SM(2, AR_QOS_NO_ACK_TWO_BIT) |
        SM(5, AR_QOS_NO_ACK_BIT_OFF) |
        SM(0, AR_QOS_NO_ACK_BYTE_OFF));

    /*
     * initialize TXOP for all TIDs
     */
    OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
    OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
    OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
    OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
    OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
}

static inline void
ar9300_init_user_settings(struct ath_hal *ah)
{
    struct ath_hal_9300 *ahp = AH9300(ah);

    /* Restore user-specified settings */
    HALDEBUG(ah, HAL_DEBUG_RESET,
        "--AP %s ahp->ah_misc_mode 0x%x\n", __func__, ahp->ah_misc_mode);
    if (ahp->ah_misc_mode != 0) {
        OS_REG_WRITE(ah,
            AR_PCU_MISC, OS_REG_READ(ah, AR_PCU_MISC) | ahp->ah_misc_mode);
    }
    if (ahp->ah_get_plcp_hdr) {
        OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_SEL_EVM);
    }
    if (ahp->ah_slot_time != (u_int) -1) {
        ar9300_set_slot_time(ah, ahp->ah_slot_time);
    }
    if (ahp->ah_ack_timeout != (u_int) -1) {
        ar9300_set_ack_timeout(ah, ahp->ah_ack_timeout);
    }
    if (AH_PRIVATE(ah)->ah_diagreg != 0) {
        OS_REG_SET_BIT(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
    }
    if (ahp->ah_beacon_rssi_threshold != 0) {
        ar9300_set_hw_beacon_rssi_threshold(ah, ahp->ah_beacon_rssi_threshold);
    }
//#ifdef ATH_SUPPORT_DFS
    if (ahp->ah_cac_quiet_enabled) {
        ar9300_cac_tx_quiet(ah, 1);
    }
//#endif /* ATH_SUPPORT_DFS */
}

int
ar9300_get_spur_info(struct ath_hal * ah, int *enable, int len, u_int16_t *freq)
{
//    struct ath_hal_private *ap = AH_PRIVATE(ah);
    int i, j;

    for (i = 0; i < len; i++) {
        freq[i] =  0;
    }

    *enable = ah->ah_config.ath_hal_spur_mode;
    for (i = 0, j = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
        if (AH9300(ah)->ath_hal_spur_chans[i][0] != AR_NO_SPUR) {
            freq[j++] = AH9300(ah)->ath_hal_spur_chans[i][0];
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "1. get spur %d\n", AH9300(ah)->ath_hal_spur_chans[i][0]);
        }
        if (AH9300(ah)->ath_hal_spur_chans[i][1] != AR_NO_SPUR) {
            freq[j++] = AH9300(ah)->ath_hal_spur_chans[i][1];
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "2. get spur %d\n", AH9300(ah)->ath_hal_spur_chans[i][1]);
        }
    }

    return 0;
}

#define ATH_HAL_2GHZ_FREQ_MIN   20000
#define ATH_HAL_2GHZ_FREQ_MAX   29999
#define ATH_HAL_5GHZ_FREQ_MIN   50000
#define ATH_HAL_5GHZ_FREQ_MAX   59999

#if 0
int
ar9300_set_spur_info(struct ath_hal * ah, int enable, int len, u_int16_t *freq)
{
    struct ath_hal_private *ap = AH_PRIVATE(ah);
    int i, j, k;

    ap->ah_config.ath_hal_spur_mode = enable;

    if (ap->ah_config.ath_hal_spur_mode == SPUR_ENABLE_IOCTL) {
        for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
            AH9300(ah)->ath_hal_spur_chans[i][0] = AR_NO_SPUR;
            AH9300(ah)->ath_hal_spur_chans[i][1] = AR_NO_SPUR;
        }
        for (i = 0, j = 0, k = 0; i < len; i++) {
            if (freq[i] > ATH_HAL_2GHZ_FREQ_MIN &&
                freq[i] < ATH_HAL_2GHZ_FREQ_MAX)
            {
                /* 2GHz Spur */
                if (j < AR_EEPROM_MODAL_SPURS) {
                    AH9300(ah)->ath_hal_spur_chans[j++][1] =  freq[i];
                    HALDEBUG(ah, HAL_DEBUG_ANI, "1 set spur %d\n", freq[i]);
                }
            } else if (freq[i] > ATH_HAL_5GHZ_FREQ_MIN &&
                       freq[i] < ATH_HAL_5GHZ_FREQ_MAX)
            {
                /* 5Ghz Spur */
                if (k < AR_EEPROM_MODAL_SPURS) {
                    AH9300(ah)->ath_hal_spur_chans[k++][0] =  freq[i];
                    HALDEBUG(ah, HAL_DEBUG_ANI, "2 set spur %d\n", freq[i]);
                }
            }
        }
    }

    return 0;
}
#endif

#define ar9300_check_op_mode(_opmode) \
    ((_opmode == HAL_M_STA) || (_opmode == HAL_M_IBSS) ||\
     (_opmode == HAL_M_HOSTAP) || (_opmode == HAL_M_MONITOR))
 



#ifndef ATH_NF_PER_CHAN
/*
* To fixed first reset noise floor value not correct issue
* For ART need it to fixed low rate sens too low issue	
*/
static int
First_NFCal(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan, 
    int is_scan, struct ieee80211_channel *chan)
{
    HAL_NFCAL_HIST_FULL *nfh;
    int i, j, k;
    int16_t nfarray[HAL_NUM_NF_READINGS] = {0};
    int is_2g = 0;
    int nf_hist_len;
    int stats = 0;
	
    int16_t nf_buf[HAL_NUM_NF_READINGS];
#define IS(_c, _f)       (((_c)->channel_flags & _f) || 0)


    if ((!is_scan) &&
        chan->ic_freq == AH_PRIVATE(ah)->ah_curchan->ic_freq)
    {
        nfh = &AH_PRIVATE(ah)->nf_cal_hist;
    } else {
        nfh = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist;
    }

    ar9300_start_nf_cal(ah);
    for (j = 0; j < 10000; j++) {
        if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0){
            break;
		}
        OS_DELAY(10);
    }
	if (j < 10000) {
        is_2g = IEEE80211_IS_CHAN_2GHZ(chan);
        ar9300_upload_noise_floor(ah, is_2g, nfarray);

	    if (is_scan) {
			/*
			 * This channel's NF cal info is just a HAL_NFCAL_HIST_SMALL struct
			 * rather than a HAL_NFCAL_HIST_FULL struct.
			 * As long as we only use the first history element of nf_cal_buffer
			 * (nf_cal_buffer[0][0:HAL_NUM_NF_READINGS-1]), we can use
			 * HAL_NFCAL_HIST_SMALL and HAL_NFCAL_HIST_FULL interchangeably.
			 */
            nfh = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist;
            nf_hist_len = HAL_NF_CAL_HIST_LEN_SMALL;
		} else {
            nfh = &AH_PRIVATE(ah)->nf_cal_hist;
            nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL;
		}

  	    for (i = 0; i < HAL_NUM_NF_READINGS; i ++) {
    		for (k = 0; k < HAL_NF_CAL_HIST_LEN_FULL; k++) {
                nfh->nf_cal_buffer[k][i] = nfarray[i];
            }
            nfh->base.priv_nf[i] = ar9300_limit_nf_range(ah, 
							ar9300_get_nf_hist_mid(ah, nfh, i, nf_hist_len));
  		}


		//ar9300StoreNewNf(ah, ichan, is_scan);

		/*
		 * See if the NF value from the old channel should be
		 * retained when switching to a new channel.
		 * TBD: this may need to be changed, as it wipes out the
		 * purpose of saving NF values for each channel.
		 */
		for (i = 0; i < HAL_NUM_NF_READINGS; i++)
		{
    		if (IEEE80211_IS_CHAN_2GHZ(chan))
    		{     
    			if (nfh->nf_cal_buffer[0][i] <
					AR_PHY_CCA_MAX_GOOD_VAL_OSPREY_2GHZ)
                {
                    ichan->nf_cal_hist.nf_cal_buffer[0][i] =
							AH_PRIVATE(ah)->nf_cal_hist.nf_cal_buffer[0][i];
				}
    		} else {
                if (AR_SREV_AR9580(ah)) {
                    if (nfh->nf_cal_buffer[0][i] <
                        AR_PHY_CCA_NOM_VAL_PEACOCK_5GHZ)  
                    {
                       ichan->nf_cal_hist.nf_cal_buffer[0][i] =
                       AH_PRIVATE(ah)->nf_cal_hist.nf_cal_buffer[0][i];
                    }
                } else {
                   if (nfh->nf_cal_buffer[0][i] <
                       AR_PHY_CCA_NOM_VAL_OSPREY_5GHZ)  
                    {  
                        ichan->nf_cal_hist.nf_cal_buffer[0][i] =
                            AH_PRIVATE(ah)->nf_cal_hist.nf_cal_buffer[0][i];
                     }
                }
            }
        }
		/*
		 * Copy the channel's NF buffer, which may have been modified
		 * just above here, to the full NF history buffer.
		 */
        ar9300_reset_nf_hist_buff(ah, ichan);
        ar9300_get_nf_hist_base(ah, ichan, is_scan, nf_buf);
        ar9300_load_nf(ah, nf_buf);
        /* XXX TODO: handle failure from load_nf */
        stats = 0;
	} else {
        stats = 1;	
	}
#undef IS
    return stats;
}
#endif


/*
 * Places the device in and out of reset and then places sane
 * values in the registers based on EEPROM config, initialization
 * vectors (as determined by the mode), and station configuration
 *
 * b_channel_change is used to preserve DMA/PCU registers across
 * a HW Reset during channel change.
 */
HAL_BOOL
ar9300_reset(struct ath_hal *ah, HAL_OPMODE opmode, struct ieee80211_channel *chan,
    HAL_HT_MACMODE macmode, u_int8_t txchainmask, u_int8_t rxchainmask,
    HAL_HT_EXTPROTSPACING extprotspacing, HAL_BOOL b_channel_change,
    HAL_STATUS *status, HAL_RESET_TYPE reset_type, int is_scan)
{
#define FAIL(_code)     do { ecode = _code; goto bad; } while (0)
    u_int32_t               save_led_state;
    struct ath_hal_9300     *ahp = AH9300(ah);
    struct ath_hal_private  *ap  = AH_PRIVATE(ah);
    HAL_CHANNEL_INTERNAL    *ichan;
    //const struct ieee80211_channel *curchan = ap->ah_curchan;
#if ATH_SUPPORT_MCI    
    HAL_BOOL                    save_full_sleep = ahp->ah_chip_full_sleep;
#endif    
    u_int32_t               save_def_antenna;
    u_int32_t               mac_sta_id1;
    HAL_STATUS              ecode;
    int                     i, rx_chainmask;
    int                     nf_hist_buff_reset = 0;
    int16_t                 nf_buf[HAL_NUM_NF_READINGS];
#ifdef ATH_FORCE_PPM
    u_int32_t               save_force_val, tmp_reg;
#endif
    u_int8_t                clk_25mhz = AH9300(ah)->clk_25mhz;
    HAL_BOOL                    stopped, cal_ret;
    HAL_BOOL                    apply_last_iqcorr = AH_FALSE;


    if (OS_REG_READ(ah, AR_IER) == AR_IER_ENABLE) {
        HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE, "** Reset called with WLAN "
                "interrupt enabled %08x **\n", ar9300_get_interrupts(ah));
    }

    /*
     * Set the status to "ok" by default to cover the cases
     * where we return false without going to "bad"
     */
    HALASSERT(status);
    *status = HAL_OK;
    if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable)) {
        AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_NONE;
    }

#if ATH_SUPPORT_MCI
    if (AH_PRIVATE(ah)->ah_caps.halMciSupport &&
        (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)))
    {
        ar9300_mci_2g5g_changed(ah, IEEE80211_IS_CHAN_2GHZ(chan));
    }
#endif

    ahp->ah_ext_prot_spacing = extprotspacing;
    ahp->ah_tx_chainmask = txchainmask & ap->ah_caps.halTxChainMask;
    ahp->ah_rx_chainmask = rxchainmask & ap->ah_caps.halRxChainMask;
    ahp->ah_tx_cal_chainmask = ap->ah_caps.halTxChainMask;
    ahp->ah_rx_cal_chainmask = ap->ah_caps.halRxChainMask;

    /* 
     * Keep the previous optinal txchainmask value
     */

    HALASSERT(ar9300_check_op_mode(opmode));

    OS_MARK(ah, AH_MARK_RESET, b_channel_change);

    /*
     * Map public channel to private.
     */
    ichan = ar9300_check_chan(ah, chan);
    if (ichan == AH_NULL) {
        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
            "%s: invalid channel %u/0x%x; no mapping\n",
            __func__, chan->ic_freq, chan->ic_flags);
        FAIL(HAL_EINVAL);
    }
    
    ichan->paprd_table_write_done = 0;  /* Clear PAPRD table write flag */
#if 0
    chan->paprd_table_write_done = 0;  /* Clear PAPRD table write flag */
#endif

    if (ar9300_get_power_mode(ah) != HAL_PM_FULL_SLEEP) {
        /* Need to stop RX DMA before reset otherwise chip might hang */
        stopped = ar9300_set_rx_abort(ah, AH_TRUE); /* abort and disable PCU */
        ar9300_set_rx_filter(ah, 0);
        stopped &= ar9300_stop_dma_receive(ah, 0); /* stop and disable RX DMA */
        if (!stopped) {
            /*
             * During the transition from full sleep to reset,
             * recv DMA regs are not available to be read
             */
            HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
                "%s[%d]: ar9300_stop_dma_receive failed\n", __func__, __LINE__);
            b_channel_change = AH_FALSE;
        }
    } else {
        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
            "%s[%d]: Chip is already in full sleep\n", __func__, __LINE__);
    }

#if ATH_SUPPORT_MCI
    if ((AH_PRIVATE(ah)->ah_caps.halMciSupport) &&
        (ahp->ah_mci_bt_state == MCI_BT_CAL_START))
    {
        u_int32_t payload[4] = {0, 0, 0, 0};

        HALDEBUG(ah, HAL_DEBUG_BT_COEX, 
            "(MCI) %s: Stop rx for BT cal.\n", __func__);
        ahp->ah_mci_bt_state = MCI_BT_CAL;

        /*
         * MCIFIX: disable mci interrupt here. This is to avoid SW_MSG_DONE or
         * RX_MSG bits to trigger MCI_INT and lead to mci_intr reentry.
         */
        ar9300_mci_disable_interrupt(ah);

        HALDEBUG(ah, HAL_DEBUG_BT_COEX, 
            "(MCI) %s: Send WLAN_CAL_GRANT\n", __func__);
        MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
        ar9300_mci_send_message(ah, MCI_GPM, 0, payload, 16, AH_TRUE, AH_FALSE);

        /* Wait BT calibration to be completed for 25ms */
        HALDEBUG(ah, HAL_DEBUG_BT_COEX,
            "(MCI) %s: BT is calibrating.\n", __func__);
        if (ar9300_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE, 0, 25000)) {
            HALDEBUG(ah, HAL_DEBUG_BT_COEX, 
                "(MCI) %s: Got BT_CAL_DONE.\n", __func__);
        }
        else {
            HALDEBUG(ah, HAL_DEBUG_BT_COEX, 
                "(MCI) %s: ### BT cal takes too long. Force bt_state to be bt_awake.\n", 
                __func__);
        }
        ahp->ah_mci_bt_state = MCI_BT_AWAKE;
        /* MCIFIX: enable mci interrupt here */
        ar9300_mci_enable_interrupt(ah);

        return AH_TRUE;
    }
#endif

    /* Bring out of sleep mode */
    if (!ar9300_set_power_mode(ah, HAL_PM_AWAKE, AH_TRUE)) {
        *status = HAL_INV_PMODE;
        return AH_FALSE;
    }

    /* Check the Rx mitigation config again, it might have changed
     * during attach in ath_vap_attach.
     */
    if (ah->ah_config.ath_hal_intr_mitigation_rx != 0) {
        ahp->ah_intr_mitigation_rx = AH_TRUE;
    } else {
        ahp->ah_intr_mitigation_rx = AH_FALSE;
    }

    /*
     * XXX TODO FreeBSD:
     *
     * This is painful because we don't have a non-const channel pointer
     * at this stage.
     *
     * Make sure this gets fixed!
     */
#if 0
    /* Get the value from the previous NF cal and update history buffer */
    if (curchan && (ahp->ah_chip_full_sleep != AH_TRUE)) {

        if(ahp->ah_chip_reset_done){
            ahp->ah_chip_reset_done = 0;
        } else {
        	/*
         	 * is_scan controls updating NF for home channel or off channel.
         	 * Home -> Off, update home channel
         	 * Off -> Home, update off channel
         	 * Home -> Home, uppdate home channel
         	 */
        	if (ap->ah_curchan->channel != chan->channel)
            	ar9300_store_new_nf(ah, curchan, !is_scan);
        	else
            	ar9300_store_new_nf(ah, curchan, is_scan);
        }
    }
#endif

    /*
     * Account for the effect of being in either the 2 GHz or 5 GHz band
     * on the nominal, max allowable, and min allowable noise floor values.
     */
    AH9300(ah)->nfp = IS_CHAN_2GHZ(ichan) ? &ahp->nf_2GHz : &ahp->nf_5GHz;

    /*
     * XXX FreeBSD For now, don't apply the last IQ correction.
     *
     * This should be done when scorpion is enabled on FreeBSD; just be
     * sure to fix this channel match code so it uses net80211 flags
     * instead.
     */
#if 0
    if (AR_SREV_SCORPION(ah) && curchan && (chan->channel == curchan->channel) &&
        ((chan->channel_flags & (CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER)) ==
         (curchan->channel_flags &
          (CHANNEL_ALL | CHANNEL_HALF | CHANNEL_QUARTER)))) {
            apply_last_iqcorr = AH_TRUE;
    }
#endif
    apply_last_iqcorr = AH_FALSE;

 
#ifndef ATH_NF_PER_CHAN
    /*
     * If there's only one full-size home-channel NF history buffer
     * rather than a full-size NF history buffer per channel, decide
     * whether to (re)initialize the home-channel NF buffer.
     * If this is just a channel change for a scan, or if the channel
     * is not being changed, don't mess up the home channel NF history
     * buffer with NF values from this scanned channel.  If we're
     * changing the home channel to a new channel, reset the home-channel
     * NF history buffer with the most accurate NF known for the new channel.
     */
    if (!is_scan && (!ap->ah_curchan ||
        ap->ah_curchan->ic_freq != chan->ic_freq)) // ||
//        ap->ah_curchan->channel_flags != chan->channel_flags))
    {
        nf_hist_buff_reset = 1;
        ar9300_reset_nf_hist_buff(ah, ichan);
    }
#endif
    /*
     * In case of
     * - offchan scan, or
     * - same channel and RX IQ Cal already available
     * disable RX IQ Cal.
     */
    if (is_scan) {
        ahp->ah_skip_rx_iq_cal = AH_TRUE;
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "Skip RX IQ Cal due to scanning\n");
    } else {
#if 0
        /* XXX FreeBSD: always just do the RX IQ cal */
	/* XXX I think it's just going to speed things up; I don't think it's to avoid chan bugs */
        if (ahp->ah_rx_cal_complete &&
            ahp->ah_rx_cal_chan == ichan->channel &&
            ahp->ah_rx_cal_chan_flag == chan->channel_flags) {
            ahp->ah_skip_rx_iq_cal = AH_TRUE;
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                    "Skip RX IQ Cal due to same channel with completed RX IQ Cal\n");
        } else
#endif
            ahp->ah_skip_rx_iq_cal = AH_FALSE;
    }

    /* FreeBSD: clear the channel survey data */
    ath_hal_survey_clear(ah);

    /*
     * Fast channel change (Change synthesizer based on channel freq
     * without resetting chip)
     * Don't do it when
     *   - Flag is not set
     *   - Chip is just coming out of full sleep
     *   - Channel to be set is same as current channel
     *   - Channel flags are different, like when moving from 2GHz to 5GHz
     *     channels
     *   - Merlin: Switching in/out of fast clock enabled channels
     *             (not currently coded, since fast clock is enabled
     *             across the 5GHz band
     *             and we already do a full reset when switching in/out
     *             of 5GHz channels)
     */
#if 0
    if (b_channel_change &&
        (ahp->ah_chip_full_sleep != AH_TRUE) &&
        (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
        ((chan->channel != AH_PRIVATE(ah)->ah_curchan->channel) &&
        (((CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER) & chan->channel_flags) == 
        ((CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER) & AH_PRIVATE(ah)->ah_curchan->channel_flags))))
    {
        if (ar9300_channel_change(ah, chan, ichan, macmode)) {
            chan->channel_flags = ichan->channel_flags;
            chan->priv_flags = ichan->priv_flags;
            AH_PRIVATE(ah)->ah_curchan->ah_channel_time = 0;
            AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar9300_get_tsf64(ah);

            /*
             * Load the NF from history buffer of the current channel.
             * NF is slow time-variant, so it is OK to use a historical value.
             */
            ar9300_get_nf_hist_base(ah,
                AH_PRIVATE(ah)->ah_curchan, is_scan, nf_buf);
            ar9300_load_nf(ah, nf_buf);

            /* start NF calibration, without updating BB NF register*/
            ar9300_start_nf_cal(ah);

            /*
             * If channel_change completed and DMA was stopped
             * successfully - skip the rest of reset
             */
            if (AH9300(ah)->ah_dma_stuck != AH_TRUE) {
                ar9300_disable_pll_lock_detect(ah);
#if ATH_SUPPORT_MCI
                if (AH_PRIVATE(ah)->ah_caps.halMciSupport && ahp->ah_mci_ready)
                {
                    ar9300_mci_2g5g_switch(ah, AH_TRUE);
                }
#endif
                return HAL_OK;
            }
         }
    }
#endif /* #if 0 */

#if ATH_SUPPORT_MCI
    if (AH_PRIVATE(ah)->ah_caps.halMciSupport) {
        ar9300_mci_disable_interrupt(ah);
        if (ahp->ah_mci_ready && !save_full_sleep) {
            ar9300_mci_mute_bt(ah);
            OS_DELAY(20);
            OS_REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
        }

        ahp->ah_mci_bt_state = MCI_BT_SLEEP;
        ahp->ah_mci_ready = AH_FALSE;
    }
#endif

    AH9300(ah)->ah_dma_stuck = AH_FALSE;
#ifdef ATH_FORCE_PPM
    /* Preserve force ppm state */
    save_force_val =
        OS_REG_READ(ah, AR_PHY_TIMING2) &
        (AR_PHY_TIMING2_USE_FORCE | AR_PHY_TIMING2_FORCE_VAL);
#endif
    /*
     * Preserve the antenna on a channel change
     */
    save_def_antenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
    if (0 == ahp->ah_smartantenna_enable )
    {
        if (save_def_antenna == 0) {
            save_def_antenna = 1;
        }
    } 

    /* Save hardware flag before chip reset clears the register */
    mac_sta_id1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;

    /* Save led state from pci config register */
    save_led_state = OS_REG_READ(ah, AR_CFG_LED) &
        (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
        AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);

    /* Mark PHY inactive prior to reset, to be undone in ar9300_init_bb () */
    ar9300_mark_phy_inactive(ah);

    if (!ar9300_chip_reset(ah, chan, reset_type)) {
        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: chip reset failed\n", __func__);
        FAIL(HAL_EIO);
    }

    OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);


    /* Disable JTAG */
    OS_REG_SET_BIT(ah,
        AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL), AR_GPIO_JTAG_DISABLE);

    /*
     * Note that ar9300_init_chain_masks() is called from within
     * ar9300_process_ini() to ensure the swap bit is set before
     * the pdadc table is written.
     */
    ecode = ar9300_process_ini(ah, chan, ichan, macmode);
    if (ecode != HAL_OK) {
        goto bad;
    }
 
    /*
     * Configuring WMAC PLL values for 25/40 MHz 
     */
    if(AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah) || AR_SREV_SCORPION(ah) ) {
        if(clk_25mhz) {
            OS_REG_WRITE(ah, AR_RTC_DERIVED_RTC_CLK, (0x17c << 1)); // 32KHz sleep clk
        } else {
            OS_REG_WRITE(ah, AR_RTC_DERIVED_RTC_CLK, (0x261 << 1)); // 32KHz sleep clk
        }
        OS_DELAY(100);
    }

    ahp->ah_immunity_on = AH_FALSE;

    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
        ahp->tx_iq_cal_enable = OS_REG_READ_FIELD(ah,
                                AR_PHY_TX_IQCAL_CONTROL_0(ah),
                                AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL) ?
                                1 : 0;
    }
    ahp->tx_cl_cal_enable = (OS_REG_READ(ah, AR_PHY_CL_CAL_CTL) &
                                AR_PHY_CL_CAL_ENABLE) ? 1 : 0;

    /* For devices with full HW RIFS Rx support (Sowl/Howl/Merlin, etc),
     * restore register settings from prior to reset.
     */
    if ((AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
        (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK))
    {
        /* Re-program RIFS Rx policy after reset */
        ar9300_set_rifs_delay(ah, ahp->ah_rifs_enabled);
    }

#if ATH_SUPPORT_MCI
    if (AH_PRIVATE(ah)->ah_caps.halMciSupport) {
        ar9300_mci_reset(ah, AH_FALSE, IS_CHAN_2GHZ(ichan), save_full_sleep);
    }
#endif

    /* Initialize Management Frame Protection */
    ar9300_init_mfp(ah);

    ahp->ah_immunity_vals[0] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR_LOW,
        AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
    ahp->ah_immunity_vals[1] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR_LOW,
        AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
    ahp->ah_immunity_vals[2] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR,
        AR_PHY_SFCORR_M1_THRESH);
    ahp->ah_immunity_vals[3] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR,
        AR_PHY_SFCORR_M2_THRESH);
    ahp->ah_immunity_vals[4] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR,
        AR_PHY_SFCORR_M2COUNT_THR);
    ahp->ah_immunity_vals[5] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR_LOW,
        AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);

    /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
    if (IEEE80211_IS_CHAN_OFDM(chan) || IEEE80211_IS_CHAN_HT(chan)) {
        ar9300_set_delta_slope(ah, chan);
    }

    ar9300_spur_mitigate(ah, chan);
    if (!ar9300_eeprom_set_board_values(ah, chan)) {
        HALDEBUG(ah, HAL_DEBUG_EEPROM,
            "%s: error setting board options\n", __func__);
        FAIL(HAL_EIO);
    }

#ifdef ATH_HAL_WAR_REG16284_APH128
    /* temp work around, will be removed. */
    if (AR_SREV_WASP(ah)) {
        OS_REG_WRITE(ah, 0x16284, 0x1553e000); 
    }
#endif

    OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

    OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
    OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
            | mac_sta_id1
            | AR_STA_ID1_RTS_USE_DEF
            | (ah->ah_config.ath_hal_6mb_ack ? AR_STA_ID1_ACKCTS_6MB : 0)
            | ahp->ah_sta_id1_defaults
    );
    ar9300_set_operating_mode(ah, opmode);

    /* Set Venice BSSID mask according to current state */
    OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
    OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));

    /* Restore previous antenna */
    OS_REG_WRITE(ah, AR_DEF_ANTENNA, save_def_antenna);
#ifdef ATH_FORCE_PPM
    /* Restore force ppm state */
    tmp_reg = OS_REG_READ(ah, AR_PHY_TIMING2) &
        ~(AR_PHY_TIMING2_USE_FORCE | AR_PHY_TIMING2_FORCE_VAL);
    OS_REG_WRITE(ah, AR_PHY_TIMING2, tmp_reg | save_force_val);
#endif

    /* then our BSSID and assocID */
    OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
    OS_REG_WRITE(ah, AR_BSS_ID1,
        LE_READ_2(ahp->ah_bssid + 4) |
        ((ahp->ah_assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));

    OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */

    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_BM_THR, INIT_RSSI_THR);

    /* HW beacon processing */
    /*
     * XXX what happens if I just leave filter_interval=0?
     * it stays disabled?
     */
    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_BCN_WEIGHT,
            INIT_RSSI_BEACON_WEIGHT);
    OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
            AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
    if (ah->ah_config.ath_hal_beacon_filter_interval) {
        OS_REG_RMW_FIELD(ah, AR_HWBCNPROC2, AR_HWBCNPROC2_FILTER_INTERVAL,
                ah->ah_config.ath_hal_beacon_filter_interval);
        OS_REG_SET_BIT(ah, AR_HWBCNPROC2,
                AR_HWBCNPROC2_FILTER_INTERVAL_ENABLE);
    }


    /*
     * Set Channel now modifies bank 6 parameters for FOWL workaround
     * to force rf_pwd_icsyndiv bias current as function of synth
     * frequency.Thus must be called after ar9300_process_ini() to ensure
     * analog register cache is valid.
     */
    if (!ahp->ah_rf_hal.set_channel(ah, chan)) {
        FAIL(HAL_EIO);
    }


    OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

    /* Set 1:1 QCU to DCU mapping for all queues */
    for (i = 0; i < AR_NUM_DCU; i++) {
        OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
    }

    ahp->ah_intr_txqs = 0;
    for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) {
        ar9300_reset_tx_queue(ah, i);
    }

    ar9300_init_interrupt_masks(ah, opmode);

    /* Reset ier reference count to disabled */
//    OS_ATOMIC_SET(&ahp->ah_ier_ref_count, 1); 
    if (ath_hal_isrfkillenabled(ah)) {
        ar9300_enable_rf_kill(ah);
    }

    /* must be called AFTER ini is processed */
    ar9300_ani_init_defaults(ah, macmode);

    ar9300_init_qos(ah);

    ar9300_init_user_settings(ah);


    AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */

    OS_MARK(ah, AH_MARK_RESET_DONE, 0);

    /*
     * disable seq number generation in hw
     */
    OS_REG_WRITE(ah, AR_STA_ID1,
        OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);

    ar9300_set_dma(ah);

    /*
     * program OBS bus to see MAC interrupts
     */
#if ATH_SUPPORT_MCI
    if (!AH_PRIVATE(ah)->ah_caps.halMciSupport) {
        OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_OBS), 8);
    }
#else
    OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_OBS), 8);
#endif


    /* enabling AR_GTTM_IGNORE_IDLE in GTTM register so that
       GTT timer will not increment if the channel idle indicates 
       the air is busy or NAV is still counting down */
    OS_REG_WRITE(ah, AR_GTTM, AR_GTTM_IGNORE_IDLE);

    /*
     * GTT debug mode setting
     */
    /*
    OS_REG_WRITE(ah, 0x64, 0x00320000);
    OS_REG_WRITE(ah, 0x68, 7);
    OS_REG_WRITE(ah, 0x4080, 0xC);
     */
    /*
     * Disable general interrupt mitigation by setting MIRT = 0x0
     * Rx and tx interrupt mitigation are conditionally enabled below.
     */
    OS_REG_WRITE(ah, AR_MIRT, 0);
    if (ahp->ah_intr_mitigation_rx) {
        /*
         * Enable Interrupt Mitigation for Rx.
         * If no build-specific limits for the rx interrupt mitigation
         * timer have been specified, use conservative defaults.
         */
        #ifndef AH_RIMT_VAL_LAST
            #define AH_RIMT_LAST_MICROSEC 500
        #endif
        #ifndef AH_RIMT_VAL_FIRST
            #define AH_RIMT_FIRST_MICROSEC 2000
        #endif
#ifndef HOST_OFFLOAD
        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
#else
        /* lower mitigation level to reduce latency for offload arch. */
        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 
            (AH_RIMT_LAST_MICROSEC >> 2));
        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 
            (AH_RIMT_FIRST_MICROSEC >> 2));
#endif
    }

    if (ahp->ah_intr_mitigation_tx) {
        /*
         * Enable Interrupt Mitigation for Tx.
         * If no build-specific limits for the tx interrupt mitigation
         * timer have been specified, use the values preferred for
         * the carrier group's products.
         */
        #ifndef AH_TIMT_LAST
            #define AH_TIMT_LAST_MICROSEC 300
        #endif
        #ifndef AH_TIMT_FIRST
            #define AH_TIMT_FIRST_MICROSEC 750
        #endif
        OS_REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, AH_TIMT_LAST_MICROSEC);
        OS_REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, AH_TIMT_FIRST_MICROSEC);
    }

    rx_chainmask = ahp->ah_rx_chainmask;

    OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
    OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);

    ar9300_init_bb(ah, chan);

    /* BB Step 7: Calibration */
    /*
     * Only kick off calibration not on offchan.
     * If coming back from offchan, restore prevous Cal results
     * since chip reset will clear existings.
     */
    if (!ahp->ah_skip_rx_iq_cal) {
        int i;
        /* clear existing RX cal data */
        for (i=0; i<AR9300_MAX_CHAINS; i++)
            ahp->ah_rx_cal_corr[i] = 0;

        ahp->ah_rx_cal_complete = AH_FALSE;
//        ahp->ah_rx_cal_chan = chan->channel;
//        ahp->ah_rx_cal_chan_flag = ichan->channel_flags;
        ahp->ah_rx_cal_chan = 0;
        ahp->ah_rx_cal_chan_flag = 0; /* XXX FreeBSD */
    }
    ar9300_invalidate_saved_cals(ah, ichan);
    cal_ret = ar9300_init_cal(ah, chan, AH_FALSE, apply_last_iqcorr);

#if ATH_SUPPORT_MCI
    if (AH_PRIVATE(ah)->ah_caps.halMciSupport && ahp->ah_mci_ready) {
        if (IS_CHAN_2GHZ(ichan) &&
            (ahp->ah_mci_bt_state == MCI_BT_SLEEP))
        {
            if (ar9300_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) ||
                ar9300_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE))
            {
                /* 
                 * BT is sleeping. Check if BT wakes up duing WLAN 
                 * calibration. If BT wakes up during WLAN calibration, need
                 * to go through all message exchanges again and recal.
                 */
                HALDEBUG(ah, HAL_DEBUG_BT_COEX,
                    "(MCI) ### %s: BT wakes up during WLAN calibration.\n",
                    __func__);
                OS_REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
                        AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
                        AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE);
                HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) send REMOTE_RESET\n");
                ar9300_mci_remote_reset(ah, AH_TRUE);
                ar9300_mci_send_sys_waking(ah, AH_TRUE);
                OS_DELAY(1);
                if (IS_CHAN_2GHZ(ichan)) {
                    ar9300_mci_send_lna_transfer(ah, AH_TRUE);
                }
                ahp->ah_mci_bt_state = MCI_BT_AWAKE;

                /* Redo calibration */
                HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) %s: Re-calibrate.\n",
                    __func__);
                ar9300_invalidate_saved_cals(ah, ichan);
                cal_ret = ar9300_init_cal(ah, chan, AH_FALSE, apply_last_iqcorr);
            }
        }
        ar9300_mci_enable_interrupt(ah);
    }
#endif

    if (!cal_ret) {
        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Init Cal Failed\n", __func__);
        FAIL(HAL_ESELFTEST);
    }

    ar9300_init_txbf(ah);
#if 0
    /*
     * WAR for owl 1.0 - restore chain mask for 2-chain cfgs after cal
     */
    rx_chainmask = ahp->ah_rx_chainmask;
    if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
        OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
        OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
    }
#endif

    /* Restore previous led state */
    OS_REG_WRITE(ah, AR_CFG_LED, save_led_state | AR_CFG_SCLK_32KHZ);

#if ATH_BT_COEX
    if (ahp->ah_bt_coex_config_type != HAL_BT_COEX_CFG_NONE) {
        ar9300_init_bt_coex(ah);

#if ATH_SUPPORT_MCI
        if (AH_PRIVATE(ah)->ah_caps.halMciSupport && ahp->ah_mci_ready) {
            /* Check BT state again to make sure it's not changed. */
            ar9300_mci_sync_bt_state(ah);
            ar9300_mci_2g5g_switch(ah, AH_TRUE);

            if ((ahp->ah_mci_bt_state == MCI_BT_AWAKE) &&
                (ahp->ah_mci_query_bt == AH_TRUE))
            {
                ahp->ah_mci_need_flush_btinfo = AH_TRUE;
            }
        }
#endif
    }
#endif

    /* Start TSF2 for generic timer 8-15. */
    ar9300_start_tsf2(ah);

    /* MIMO Power save setting */
    if (ar9300_get_capability(ah, HAL_CAP_DYNAMIC_SMPS, 0, AH_NULL) == HAL_OK) {
        ar9300_set_sm_power_mode(ah, ahp->ah_sm_power_mode);
    }

    /*
     * For big endian systems turn on swapping for descriptors
     */
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
    if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) {
        OS_REG_RMW(ah, AR_CFG, AR_CFG_SWTB | AR_CFG_SWRB, 0);
    } else {
        ar9300_init_cfg_reg(ah);
    }
#endif

    if ( AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah) ) {
        OS_REG_RMW(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, AR_CFG_LED_ASSOC_CTL);
    }

#if !(defined(ART_BUILD)) && defined(ATH_SUPPORT_LED)
#define REG_WRITE(_reg, _val)   *((volatile u_int32_t *)(_reg)) = (_val);
#define REG_READ(_reg)          *((volatile u_int32_t *)(_reg))
#define ATH_GPIO_OUT_FUNCTION3  0xB8040038
#define ATH_GPIO_OE             0xB8040000
    if ( AR_SREV_WASP(ah)) {
        if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) {
            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff << 8))) | (0x33 << 8) );
            REG_WRITE(ATH_GPIO_OE, ( REG_READ(ATH_GPIO_OE) & (~(0x1 << 13) )));
        }
        else {

            /* Disable 2G WLAN LED. During ath_open, reset function is called even before channel is set. 
            So 2GHz is taken as default and it also blinks. Hence 
            to avoid both from blinking, disable 2G led while in 5G mode */

            REG_WRITE(ATH_GPIO_OE, ( REG_READ(ATH_GPIO_OE) | (1 << 13) ));
            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff))) | (0x33) );
            REG_WRITE(ATH_GPIO_OE, ( REG_READ(ATH_GPIO_OE) & (~(0x1 << 12) )));		
        }
 
    }
    else if (AR_SREV_SCORPION(ah)) {
        if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) {
            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff << 8))) | (0x2F << 8) );
    	    REG_WRITE(ATH_GPIO_OE, (( REG_READ(ATH_GPIO_OE) & (~(0x1 << 13) )) | (0x1 << 12)));
        } else if (IS_CHAN_5GHZ((AH_PRIVATE(ah)->ah_curchan))) {
            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff))) | (0x2F) );
    	    REG_WRITE(ATH_GPIO_OE, (( REG_READ(ATH_GPIO_OE) & (~(0x1 << 12) )) | (0x1 << 13)));
        }
    }
    else if (AR_SREV_HONEYBEE(ah)) {
            REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff))) | (0x32) );
            REG_WRITE(ATH_GPIO_OE, (( REG_READ(ATH_GPIO_OE) & (~(0x1 << 12) ))));
    }
#undef REG_READ
#undef REG_WRITE
#endif

    /* XXX FreeBSD What's this? -adrian */
#if 0
    chan->channel_flags = ichan->channel_flags;
    chan->priv_flags = ichan->priv_flags;
#endif

#if FIX_NOISE_FLOOR
    /* XXX FreeBSD is ichan appropariate? It was curchan.. */
    ar9300_get_nf_hist_base(ah, ichan, is_scan, nf_buf);
    ar9300_load_nf(ah, nf_buf);
    /* XXX TODO: handle NF load failure */
    if (nf_hist_buff_reset == 1)    
    {
        nf_hist_buff_reset = 0;
    #ifndef ATH_NF_PER_CHAN
	    if (First_NFCal(ah, ichan, is_scan, chan)){
            if (ahp->ah_skip_rx_iq_cal && !is_scan) {
                /* restore RX Cal result if existing */
                ar9300_rx_iq_cal_restore(ah);
                ahp->ah_skip_rx_iq_cal = AH_FALSE;
            }
        }
    #endif /* ATH_NF_PER_CHAN */
    } 
    else{
        ar9300_start_nf_cal(ah); 
    }
#endif

#ifdef AH_SUPPORT_AR9300
    /* BB Panic Watchdog */
    if (ar9300_get_capability(ah, HAL_CAP_BB_PANIC_WATCHDOG, 0, AH_NULL) ==
        HAL_OK)
    {
        ar9300_config_bb_panic_watchdog(ah);
    }
#endif

    /* While receiving unsupported rate frame receive state machine
     * gets into a state 0xb and if phy_restart happens when rx
     * state machine is in 0xb state, BB would go hang, if we
     * see 0xb state after first bb panic, make sure that we
     * disable the phy_restart.
     * 
     * There may be multiple panics, make sure that we always do
     * this if we see this panic at least once. This is required
     * because reset seems to be writing from INI file.
     */
    if ((ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
         == HAL_OK) && (((MS((AH9300(ah)->ah_bb_panic_last_status),
                AR_PHY_BB_WD_RX_OFDM_SM)) == 0xb) ||
            AH9300(ah)->ah_phyrestart_disabled) )
    {
        ar9300_disable_phy_restart(ah, 1);
    }



    ahp->ah_radar1 = MS(OS_REG_READ(ah, AR_PHY_RADAR_1),
                        AR_PHY_RADAR_1_CF_BIN_THRESH);
    ahp->ah_dc_offset = MS(OS_REG_READ(ah, AR_PHY_TIMING2),
                        AR_PHY_TIMING2_DC_OFFSET);
    ahp->ah_disable_cck = MS(OS_REG_READ(ah, AR_PHY_MODE),
                        AR_PHY_MODE_DISABLE_CCK);

    if (AH9300(ah)->ah_enable_keysearch_always) {
        ar9300_enable_keysearch_always(ah, 1);
    }

#if ATH_LOW_POWER_ENABLE
#define REG_WRITE(_reg, _val)   *((volatile u_int32_t *)(_reg)) = (_val)
#define REG_READ(_reg)      *((volatile u_int32_t *)(_reg))
    if (AR_SREV_OSPREY(ah)) {
        REG_WRITE(0xb4000080, REG_READ(0xb4000080) | 3);
        OS_REG_WRITE(ah, AR_RTC_RESET, 1);
        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_PCIE_PM_CTRL),
                        AR_PCIE_PM_CTRL_ENA);
        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_SPARE), 0xffffffff);
    }
#undef REG_READ
#undef REG_WRITE
#endif  /* ATH_LOW_POWER_ENABLE */

    ar9300_disable_pll_lock_detect(ah);

    /* H/W Green TX */
    ar9300_control_signals_for_green_tx_mode(ah);
    /* Smart Antenna, only for 5GHz on Scropion */
    if (IEEE80211_IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan)) && AR_SREV_SCORPION(ah)) {
        ahp->ah_smartantenna_enable = 0;
    }

    ar9300_set_smart_antenna(ah, ahp->ah_smartantenna_enable);

    if (AR_SREV_APHRODITE(ah) && ahp->ah_lna_div_use_bt_ant_enable)
        OS_REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);

    if (ahp->ah_skip_rx_iq_cal && !is_scan) {
        /* restore RX Cal result if existing */
        ar9300_rx_iq_cal_restore(ah);
        ahp->ah_skip_rx_iq_cal = AH_FALSE;
    }


    return AH_TRUE;
bad:
    OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
    *status = ecode;

    if (ahp->ah_skip_rx_iq_cal && !is_scan) {
        /* restore RX Cal result if existing */
        ar9300_rx_iq_cal_restore(ah);
        ahp->ah_skip_rx_iq_cal = AH_FALSE;
    }

    return AH_FALSE;
#undef FAIL
}

void
ar9300_green_ap_ps_on_off( struct ath_hal *ah, u_int16_t on_off)
{
    /* Set/reset the ps flag */
    AH9300(ah)->green_ap_ps_on = !!on_off;
}

/*
 * This function returns 1, where it is possible to do
 * single-chain power save.
 */
u_int16_t
ar9300_is_single_ant_power_save_possible(struct ath_hal *ah)
{
    return AH_TRUE;
}

/* To avoid compilation warnings. Functions not used when EMULATION. */
/*
 * ar9300_find_mag_approx()
 */
static int32_t
ar9300_find_mag_approx(struct ath_hal *ah, int32_t in_re, int32_t in_im)
{
    int32_t abs_i = abs(in_re);
    int32_t abs_q = abs(in_im);
    int32_t max_abs, min_abs;

    if (abs_i > abs_q) {
        max_abs = abs_i;
        min_abs = abs_q;
    } else {
        max_abs = abs_q;
        min_abs = abs_i; 
    }

    return (max_abs - (max_abs / 32) + (min_abs / 8) + (min_abs / 4));
}

/* 
 * ar9300_solve_iq_cal()       
 * solve 4x4 linear equation used in loopback iq cal.
 */
static HAL_BOOL
ar9300_solve_iq_cal(
    struct ath_hal *ah,
    int32_t sin_2phi_1,
    int32_t cos_2phi_1,
    int32_t sin_2phi_2,
    int32_t cos_2phi_2,
    int32_t mag_a0_d0,
    int32_t phs_a0_d0,
    int32_t mag_a1_d0,
    int32_t phs_a1_d0,
    int32_t solved_eq[])
{
    int32_t f1 = cos_2phi_1 - cos_2phi_2;
    int32_t f3 = sin_2phi_1 - sin_2phi_2;
    int32_t f2;
    int32_t mag_tx, phs_tx, mag_rx, phs_rx;
    const int32_t result_shift = 1 << 15;

    f2 = (((int64_t)f1 * (int64_t)f1) / result_shift) + (((int64_t)f3 * (int64_t)f3) / result_shift);

    if (0 == f2) {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: Divide by 0(%d).\n",
            __func__, __LINE__);
        return AH_FALSE;
    }

    /* magnitude mismatch, tx */
    mag_tx = f1 * (mag_a0_d0  - mag_a1_d0) + f3 * (phs_a0_d0 - phs_a1_d0);
    /* phase mismatch, tx */
    phs_tx = f3 * (-mag_a0_d0 + mag_a1_d0) + f1 * (phs_a0_d0 - phs_a1_d0);

    mag_tx = (mag_tx / f2);
    phs_tx = (phs_tx / f2);

    /* magnitude mismatch, rx */
    mag_rx =
        mag_a0_d0 - (cos_2phi_1 * mag_tx + sin_2phi_1 * phs_tx) / result_shift;
    /* phase mismatch, rx */
    phs_rx =
        phs_a0_d0 + (sin_2phi_1 * mag_tx - cos_2phi_1 * phs_tx) / result_shift;

    solved_eq[0] = mag_tx;
    solved_eq[1] = phs_tx;
    solved_eq[2] = mag_rx;
    solved_eq[3] = phs_rx;

    return AH_TRUE;
}

/*
 * ar9300_calc_iq_corr()
 */
static HAL_BOOL
ar9300_calc_iq_corr(struct ath_hal *ah, int32_t chain_idx,
    const int32_t iq_res[], int32_t iqc_coeff[])
{
    int32_t i2_m_q2_a0_d0, i2_p_q2_a0_d0, iq_corr_a0_d0;
    int32_t i2_m_q2_a0_d1, i2_p_q2_a0_d1, iq_corr_a0_d1;
    int32_t i2_m_q2_a1_d0, i2_p_q2_a1_d0, iq_corr_a1_d0;
    int32_t i2_m_q2_a1_d1, i2_p_q2_a1_d1, iq_corr_a1_d1;
    int32_t mag_a0_d0, mag_a1_d0, mag_a0_d1, mag_a1_d1;
    int32_t phs_a0_d0, phs_a1_d0, phs_a0_d1, phs_a1_d1;
    int32_t sin_2phi_1, cos_2phi_1, sin_2phi_2, cos_2phi_2;
    int32_t mag_tx, phs_tx, mag_rx, phs_rx;
    int32_t solved_eq[4], mag_corr_tx, phs_corr_tx, mag_corr_rx, phs_corr_rx;
    int32_t q_q_coff, q_i_coff;
    const int32_t res_scale = 1 << 15;
    const int32_t delpt_shift = 1 << 8;
    int32_t mag1, mag2;

    i2_m_q2_a0_d0 = iq_res[0] & 0xfff;
    i2_p_q2_a0_d0 = (iq_res[0] >> 12) & 0xfff;
    iq_corr_a0_d0 = ((iq_res[0] >> 24) & 0xff) + ((iq_res[1] & 0xf) << 8);

    if (i2_m_q2_a0_d0 > 0x800)  {
        i2_m_q2_a0_d0 = -((0xfff - i2_m_q2_a0_d0) + 1);
    }
    if (iq_corr_a0_d0 > 0x800)  {
        iq_corr_a0_d0 = -((0xfff - iq_corr_a0_d0) + 1);
    }

    i2_m_q2_a0_d1 = (iq_res[1] >> 4) & 0xfff;
    i2_p_q2_a0_d1 = (iq_res[2] & 0xfff); 
    iq_corr_a0_d1 = (iq_res[2] >> 12) & 0xfff;

    if (i2_m_q2_a0_d1 > 0x800)  {
        i2_m_q2_a0_d1 = -((0xfff - i2_m_q2_a0_d1) + 1);
    }
    if (iq_corr_a0_d1 > 0x800)  {
        iq_corr_a0_d1 = -((0xfff - iq_corr_a0_d1) + 1);
    }

    i2_m_q2_a1_d0 = ((iq_res[2] >> 24) & 0xff) + ((iq_res[3] & 0xf) << 8);
    i2_p_q2_a1_d0 = (iq_res[3] >> 4) & 0xfff; 
    iq_corr_a1_d0 = iq_res[4] & 0xfff;

    if (i2_m_q2_a1_d0 > 0x800)  {
        i2_m_q2_a1_d0 = -((0xfff - i2_m_q2_a1_d0) + 1);
    }
    if (iq_corr_a1_d0 > 0x800)  {
        iq_corr_a1_d0 = -((0xfff - iq_corr_a1_d0) + 1);
    }

    i2_m_q2_a1_d1 = (iq_res[4] >> 12) & 0xfff;
    i2_p_q2_a1_d1 = ((iq_res[4] >> 24) & 0xff) + ((iq_res[5] & 0xf) << 8); 
    iq_corr_a1_d1 = (iq_res[5] >> 4) & 0xfff;

    if (i2_m_q2_a1_d1 > 0x800)  {
        i2_m_q2_a1_d1 = -((0xfff - i2_m_q2_a1_d1) + 1);
    }
    if (iq_corr_a1_d1 > 0x800)  {
        iq_corr_a1_d1 = -((0xfff - iq_corr_a1_d1) + 1);
    }

    if ((i2_p_q2_a0_d0 == 0) ||
        (i2_p_q2_a0_d1 == 0) ||
        (i2_p_q2_a1_d0 == 0) ||
        (i2_p_q2_a1_d1 == 0)) {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: Divide by 0(%d):\na0_d0=%d\na0_d1=%d\na2_d0=%d\na1_d1=%d\n",
            __func__, __LINE__,
            i2_p_q2_a0_d0, i2_p_q2_a0_d1, i2_p_q2_a1_d0, i2_p_q2_a1_d1);
        return AH_FALSE;
    }

    if ((i2_p_q2_a0_d0 <= 1024) || (i2_p_q2_a0_d0 > 2047) ||
            (i2_p_q2_a1_d0 < 0) || (i2_p_q2_a1_d1 < 0) ||
            (i2_p_q2_a0_d0 <= i2_m_q2_a0_d0) ||
            (i2_p_q2_a0_d0 <= iq_corr_a0_d0) ||
            (i2_p_q2_a0_d1 <= i2_m_q2_a0_d1) ||
            (i2_p_q2_a0_d1 <= iq_corr_a0_d1) ||
            (i2_p_q2_a1_d0 <= i2_m_q2_a1_d0) ||
            (i2_p_q2_a1_d0 <= iq_corr_a1_d0) ||
            (i2_p_q2_a1_d1 <= i2_m_q2_a1_d1) ||
            (i2_p_q2_a1_d1 <= iq_corr_a1_d1)) {
        return AH_FALSE;
    }

    mag_a0_d0 = (i2_m_q2_a0_d0 * res_scale) / i2_p_q2_a0_d0;
    phs_a0_d0 = (iq_corr_a0_d0 * res_scale) / i2_p_q2_a0_d0;

    mag_a0_d1 = (i2_m_q2_a0_d1 * res_scale) / i2_p_q2_a0_d1;
    phs_a0_d1 = (iq_corr_a0_d1 * res_scale) / i2_p_q2_a0_d1;

    mag_a1_d0 = (i2_m_q2_a1_d0 * res_scale) / i2_p_q2_a1_d0;
    phs_a1_d0 = (iq_corr_a1_d0 * res_scale) / i2_p_q2_a1_d0;

    mag_a1_d1 = (i2_m_q2_a1_d1 * res_scale) / i2_p_q2_a1_d1;
    phs_a1_d1 = (iq_corr_a1_d1 * res_scale) / i2_p_q2_a1_d1;

    /* without analog phase shift */
    sin_2phi_1 = (((mag_a0_d0 - mag_a0_d1) * delpt_shift) / DELPT);
    /* without analog phase shift */
    cos_2phi_1 = (((phs_a0_d1 - phs_a0_d0) * delpt_shift) / DELPT);
    /* with  analog phase shift */
    sin_2phi_2 = (((mag_a1_d0 - mag_a1_d1) * delpt_shift) / DELPT);
    /* with analog phase shift */
    cos_2phi_2 = (((phs_a1_d1 - phs_a1_d0) * delpt_shift) / DELPT);

    /* force sin^2 + cos^2 = 1; */
    /* find magnitude by approximation */
    mag1 = ar9300_find_mag_approx(ah, cos_2phi_1, sin_2phi_1);
    mag2 = ar9300_find_mag_approx(ah, cos_2phi_2, sin_2phi_2);

    if ((mag1 == 0) || (mag2 == 0)) {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: Divide by 0(%d): mag1=%d, mag2=%d\n",
            __func__, __LINE__, mag1, mag2);
        return AH_FALSE;
    }

    /* normalization sin and cos by mag */
    sin_2phi_1 = (sin_2phi_1 * res_scale / mag1);
    cos_2phi_1 = (cos_2phi_1 * res_scale / mag1);
    sin_2phi_2 = (sin_2phi_2 * res_scale / mag2);
    cos_2phi_2 = (cos_2phi_2 * res_scale / mag2);

    /* calculate IQ mismatch */
    if (AH_FALSE == ar9300_solve_iq_cal(ah,
            sin_2phi_1, cos_2phi_1, sin_2phi_2, cos_2phi_2, mag_a0_d0,
            phs_a0_d0, mag_a1_d0, phs_a1_d0, solved_eq))
    {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: Call to ar9300_solve_iq_cal failed.\n", __func__);
        return AH_FALSE;
    }
   
    mag_tx = solved_eq[0];
    phs_tx = solved_eq[1];
    mag_rx = solved_eq[2];
    phs_rx = solved_eq[3];

    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
        "%s: chain %d: mag mismatch=%d phase mismatch=%d\n",
        __func__, chain_idx, mag_tx / res_scale, phs_tx / res_scale);
  
    if (res_scale == mag_tx) {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: Divide by 0(%d): mag_tx=%d, res_scale=%d\n",
            __func__, __LINE__, mag_tx, res_scale);
        return AH_FALSE;
    }

    /* calculate and quantize Tx IQ correction factor */
    mag_corr_tx = (mag_tx * res_scale) / (res_scale - mag_tx);
    phs_corr_tx = -phs_tx;

    q_q_coff = (mag_corr_tx * 128 / res_scale);
    q_i_coff = (phs_corr_tx * 256 / res_scale);

    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
        "%s: tx chain %d: mag corr=%d  phase corr=%d\n",
        __func__, chain_idx, q_q_coff, q_i_coff);

    if (q_i_coff < -63) {
        q_i_coff = -63;
    }
    if (q_i_coff > 63) {
        q_i_coff = 63;
    }
    if (q_q_coff < -63) {
        q_q_coff = -63;
    }
    if (q_q_coff > 63) {
        q_q_coff = 63;
    }

    iqc_coeff[0] = (q_q_coff * 128) + (0x7f & q_i_coff);

    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: tx chain %d: iq corr coeff=%x\n",
        __func__, chain_idx, iqc_coeff[0]);  

    if (-mag_rx == res_scale) {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: Divide by 0(%d): mag_rx=%d, res_scale=%d\n",
            __func__, __LINE__, mag_rx, res_scale);
        return AH_FALSE;
    }

    /* calculate and quantize Rx IQ correction factors */
    mag_corr_rx = (-mag_rx * res_scale) / (res_scale + mag_rx);
    phs_corr_rx = -phs_rx;

    q_q_coff = (mag_corr_rx * 128 / res_scale);
    q_i_coff = (phs_corr_rx * 256 / res_scale);

    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
        "%s: rx chain %d: mag corr=%d  phase corr=%d\n",
        __func__, chain_idx, q_q_coff, q_i_coff);

    if (q_i_coff < -63) {
        q_i_coff = -63;
    }
    if (q_i_coff > 63) {
        q_i_coff = 63;
    }
    if (q_q_coff < -63) {
        q_q_coff = -63;
    }
    if (q_q_coff > 63) {
        q_q_coff = 63;
    }
   
    iqc_coeff[1] = (q_q_coff * 128) + (0x7f & q_i_coff);

    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: rx chain %d: iq corr coeff=%x\n",
        __func__, chain_idx, iqc_coeff[1]);  

    return AH_TRUE;
}

#define MAX_MAG_DELTA 11 //maximum magnitude mismatch delta across gains
#define MAX_PHS_DELTA 10 //maximum phase mismatch delta across gains
#define ABS(x) ((x) >= 0 ? (x) : (-(x)))

    u_int32_t tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS] = {
    {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
        AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
        AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
    {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
        AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
        AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
    {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
        AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
        AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
    {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
        AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
        AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
    {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
        AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
        AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
    {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
        AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
        AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
    {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
        AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
        AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
    {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
        AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
        AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
    };

static void
ar9300_tx_iq_cal_outlier_detection(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan, u_int32_t num_chains,
    struct coeff_t *coeff, HAL_BOOL is_cal_reusable)
{
    int nmeasurement, ch_idx, im;
    int32_t magnitude, phase;
    int32_t magnitude_max, phase_max;
    int32_t magnitude_min, phase_min;

    int32_t magnitude_max_idx, phase_max_idx;
    int32_t magnitude_min_idx, phase_min_idx;

    int32_t magnitude_avg, phase_avg;
    int32_t outlier_mag_idx = 0;
    int32_t outlier_phs_idx = 0;


    if (AR_SREV_POSEIDON(ah)) {
        HALASSERT(num_chains == 0x1);

        tx_corr_coeff[0][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON;
        tx_corr_coeff[1][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON;
        tx_corr_coeff[2][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON;
        tx_corr_coeff[3][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON;
        tx_corr_coeff[4][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON;
        tx_corr_coeff[5][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON;
        tx_corr_coeff[6][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON;
        tx_corr_coeff[7][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON;
    }

    for (ch_idx = 0; ch_idx < num_chains; ch_idx++) {
        nmeasurement = OS_REG_READ_FIELD(ah,
            AR_PHY_TX_IQCAL_STATUS_B0(ah), AR_PHY_CALIBRATED_GAINS_0);
        if (nmeasurement > MAX_MEASUREMENT) {
            nmeasurement = MAX_MEASUREMENT;
        }

        if (!AR_SREV_SCORPION(ah)) {
            /*
             * reset max/min variable to min/max values so that
             * we always start with 1st calibrated gain value
             */
            magnitude_max = -64;
            phase_max     = -64;
            magnitude_min = 63;
            phase_min     = 63;
            magnitude_avg = 0;
            phase_avg     = 0;
            magnitude_max_idx = 0;
            magnitude_min_idx = 0;
            phase_max_idx = 0;
            phase_min_idx = 0;

            /* detect outlier only if nmeasurement > 1 */
            if (nmeasurement > 1) {
                /* printf("----------- start outlier detection -----------\n"); */
                /*
                 * find max/min and phase/mag mismatch across all calibrated gains
                 */
                for (im = 0; im < nmeasurement; im++) {
                    magnitude = coeff->mag_coeff[ch_idx][im][0];
                    phase = coeff->phs_coeff[ch_idx][im][0];

                    magnitude_avg = magnitude_avg + magnitude;
                    phase_avg = phase_avg + phase;
                    if (magnitude > magnitude_max) {
                        magnitude_max = magnitude;
                        magnitude_max_idx = im;
                    }
                    if (magnitude < magnitude_min) {
                        magnitude_min = magnitude;
                        magnitude_min_idx = im;
                    }
                    if (phase > phase_max) {
                        phase_max = phase;
                        phase_max_idx = im;
                    }
                    if (phase < phase_min) {
                        phase_min = phase;
                        phase_min_idx = im;
                    }
                }
                /* find average (exclude max abs value) */
                for (im = 0; im < nmeasurement; im++) {
                    magnitude = coeff->mag_coeff[ch_idx][im][0];
                    phase = coeff->phs_coeff[ch_idx][im][0];
                    if ((ABS(magnitude) < ABS(magnitude_max)) ||
                        (ABS(magnitude) < ABS(magnitude_min)))
                    {
                        magnitude_avg = magnitude_avg + magnitude;
                    }
                    if ((ABS(phase) < ABS(phase_max)) ||
                        (ABS(phase) < ABS(phase_min)))
                    {
                        phase_avg = phase_avg + phase;
                    }
                }
                magnitude_avg = magnitude_avg / (nmeasurement - 1);
                phase_avg = phase_avg / (nmeasurement - 1);

                /* detect magnitude outlier */
                if (ABS(magnitude_max - magnitude_min) > MAX_MAG_DELTA) {
                    if (ABS(magnitude_max - magnitude_avg) >
                        ABS(magnitude_min - magnitude_avg))
                    {
                        /* max is outlier, force to avg */
                        outlier_mag_idx = magnitude_max_idx;
                    } else {
                        /* min is outlier, force to avg */
                        outlier_mag_idx = magnitude_min_idx;
                    }
                    coeff->mag_coeff[ch_idx][outlier_mag_idx][0] = magnitude_avg;
                    coeff->phs_coeff[ch_idx][outlier_mag_idx][0] = phase_avg;
                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 
                        "[ch%d][outlier mag gain%d]:: "
                        "mag_avg = %d (/128), phase_avg = %d (/256)\n",
                        ch_idx, outlier_mag_idx, magnitude_avg, phase_avg);
                }
                /* detect phase outlier */
                if (ABS(phase_max - phase_min) > MAX_PHS_DELTA) {
                    if (ABS(phase_max-phase_avg) > ABS(phase_min - phase_avg)) {
                        /* max is outlier, force to avg */
                        outlier_phs_idx = phase_max_idx;
                    } else{
                        /* min is outlier, force to avg */
                        outlier_phs_idx = phase_min_idx;
                    }
                    coeff->mag_coeff[ch_idx][outlier_phs_idx][0] = magnitude_avg;
                    coeff->phs_coeff[ch_idx][outlier_phs_idx][0] = phase_avg;
                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 
                        "[ch%d][outlier phs gain%d]:: " 
                        "mag_avg = %d (/128), phase_avg = %d (/256)\n",
                        ch_idx, outlier_phs_idx, magnitude_avg, phase_avg);
                }
            }
        }

        /*printf("------------ after outlier detection -------------\n");*/
        for (im = 0; im < nmeasurement; im++) {
            magnitude = coeff->mag_coeff[ch_idx][im][0];
            phase = coeff->phs_coeff[ch_idx][im][0];

            #if 0
            printf("[ch%d][gain%d]:: mag = %d (/128), phase = %d (/256)\n",
                ch_idx, im, magnitude, phase);
            #endif

            coeff->iqc_coeff[0] = (phase & 0x7f) | ((magnitude & 0x7f) << 7);

            if ((im % 2) == 0) {
                OS_REG_RMW_FIELD(ah,
                    tx_corr_coeff[im][ch_idx],
                    AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
                    coeff->iqc_coeff[0]);
            } else {
                OS_REG_RMW_FIELD(ah,
                    tx_corr_coeff[im][ch_idx],
                    AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
                    coeff->iqc_coeff[0]);
            }
#if ATH_SUPPORT_CAL_REUSE
            ichan->tx_corr_coeff[im][ch_idx] = coeff->iqc_coeff[0];
#endif
        }
#if ATH_SUPPORT_CAL_REUSE
        ichan->num_measures[ch_idx] = nmeasurement;
#endif
    }

    OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
                     AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
    OS_REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
                     AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);

#if ATH_SUPPORT_CAL_REUSE
    if (is_cal_reusable) {
        ichan->one_time_txiqcal_done = AH_TRUE;
        HALDEBUG(ah, HAL_DEBUG_FCS_RTT,
            "(FCS) TXIQCAL saved - %d\n", ichan->channel);
    }
#endif
}

#if ATH_SUPPORT_CAL_REUSE
static void
ar9300_tx_iq_cal_apply(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    int nmeasurement, ch_idx, im;

    u_int32_t tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS] = {
        {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
            AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
            AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
        {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
            AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
            AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
        {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
            AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
            AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
        {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
            AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
            AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
        {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
            AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
            AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
        {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
            AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
            AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
        {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
            AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
            AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
        {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
            AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
            AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
    };

    if (AR_SREV_POSEIDON(ah)) {
        HALASSERT(ahp->ah_tx_cal_chainmask == 0x1);

        tx_corr_coeff[0][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON;
        tx_corr_coeff[1][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON;
        tx_corr_coeff[2][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON;
        tx_corr_coeff[3][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON;
        tx_corr_coeff[4][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON;
        tx_corr_coeff[5][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON;
        tx_corr_coeff[6][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON;
        tx_corr_coeff[7][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON;
    }

    for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) {
        if ((ahp->ah_tx_cal_chainmask & (1 << ch_idx)) == 0) {
            continue;
        }
        nmeasurement = ichan->num_measures[ch_idx];

        for (im = 0; im < nmeasurement; im++) {
            if ((im % 2) == 0) {
                OS_REG_RMW_FIELD(ah,
                    tx_corr_coeff[im][ch_idx],
                    AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
                    ichan->tx_corr_coeff[im][ch_idx]);
            } else {
                OS_REG_RMW_FIELD(ah,
                    tx_corr_coeff[im][ch_idx],
                    AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
                    ichan->tx_corr_coeff[im][ch_idx]);
            }
        }
    }

    OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
                     AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
    OS_REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
                     AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
}
#endif

/*
 * ar9300_tx_iq_cal_hw_run is only needed for osprey/wasp/hornet
 * It is not needed for jupiter/poseidon.
 */
HAL_BOOL
ar9300_tx_iq_cal_hw_run(struct ath_hal *ah)
{
    int is_tx_gain_forced;

    is_tx_gain_forced = OS_REG_READ_FIELD(ah,
        AR_PHY_TX_FORCED_GAIN, AR_PHY_TXGAIN_FORCE);
    if (is_tx_gain_forced) {
        /*printf("Tx gain can not be forced during tx I/Q cal!\n");*/
        OS_REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TXGAIN_FORCE, 0);
    }

    /* enable tx IQ cal */
    OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_START(ah),
        AR_PHY_TX_IQCAL_START_DO_CAL, AR_PHY_TX_IQCAL_START_DO_CAL);

    if (!ath_hal_wait(ah,
            AR_PHY_TX_IQCAL_START(ah), AR_PHY_TX_IQCAL_START_DO_CAL, 0))
    {
        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
            "%s: Tx IQ Cal is never completed.\n", __func__);
        return AH_FALSE;
    }
    return AH_TRUE;
}

static void
ar9300_tx_iq_cal_post_proc(struct ath_hal *ah,HAL_CHANNEL_INTERNAL *ichan,
                           int iqcal_idx, int max_iqcal,HAL_BOOL is_cal_reusable, HAL_BOOL apply_last_corr)
{
    int nmeasurement=0, im, ix, iy, temp;
    struct ath_hal_9300     *ahp = AH9300(ah);
    u_int32_t txiqcal_status[AR9300_MAX_CHAINS] = {
        AR_PHY_TX_IQCAL_STATUS_B0(ah),
        AR_PHY_TX_IQCAL_STATUS_B1,
        AR_PHY_TX_IQCAL_STATUS_B2,
    };
    const u_int32_t chan_info_tab[] = {
        AR_PHY_CHAN_INFO_TAB_0,
        AR_PHY_CHAN_INFO_TAB_1,
        AR_PHY_CHAN_INFO_TAB_2,
    };
    int32_t iq_res[6];
    int32_t ch_idx, j;
    u_int32_t num_chains = 0;
    static struct coeff_t coeff;
    txiqcal_status[0] = AR_PHY_TX_IQCAL_STATUS_B0(ah);

    for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) {
        if (ahp->ah_tx_chainmask & (1 << ch_idx)) {
            num_chains++;
        }
    }

    if (apply_last_corr) {
	    if (coeff.last_cal == AH_TRUE) {
		    int32_t magnitude, phase;
		    int ch_idx, im;
		    u_int32_t tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS] = {
			    {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
				    AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
				    AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
			    {   AR_PHY_TX_IQCAL_CORR_COEFF_01_B0,
				    AR_PHY_TX_IQCAL_CORR_COEFF_01_B1,
				    AR_PHY_TX_IQCAL_CORR_COEFF_01_B2},
			    {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
				    AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
				    AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
			    {   AR_PHY_TX_IQCAL_CORR_COEFF_23_B0,
				    AR_PHY_TX_IQCAL_CORR_COEFF_23_B1,
				    AR_PHY_TX_IQCAL_CORR_COEFF_23_B2},
			    {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
				    AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
				    AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
			    {   AR_PHY_TX_IQCAL_CORR_COEFF_45_B0,
				    AR_PHY_TX_IQCAL_CORR_COEFF_45_B1,
				    AR_PHY_TX_IQCAL_CORR_COEFF_45_B2},
			    {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
				    AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
				    AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
			    {   AR_PHY_TX_IQCAL_CORR_COEFF_67_B0,
				    AR_PHY_TX_IQCAL_CORR_COEFF_67_B1,
				    AR_PHY_TX_IQCAL_CORR_COEFF_67_B2},
		    };
		    for (ch_idx = 0; ch_idx < num_chains; ch_idx++) {
			    for (im = 0; im < coeff.last_nmeasurement; im++) {
				    magnitude = coeff.mag_coeff[ch_idx][im][0];
				    phase = coeff.phs_coeff[ch_idx][im][0];

#if 0
				    printf("[ch%d][gain%d]:: mag = %d (/128), phase = %d (/256)\n",
						    ch_idx, im, magnitude, phase);
#endif

				    coeff.iqc_coeff[0] = (phase & 0x7f) | ((magnitude & 0x7f) << 7);
				    if ((im % 2) == 0) {
					    OS_REG_RMW_FIELD(ah,
							    tx_corr_coeff[im][ch_idx],
							    AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
							    coeff.iqc_coeff[0]);
				    } else {
					    OS_REG_RMW_FIELD(ah,
							    tx_corr_coeff[im][ch_idx],
							    AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
							    coeff.iqc_coeff[0]);
				    }
			    }
		    }
		    OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
				    AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
	    }
	    return;
    }


    for (ch_idx = 0; ch_idx < num_chains; ch_idx++) {
        nmeasurement = OS_REG_READ_FIELD(ah,
            AR_PHY_TX_IQCAL_STATUS_B0(ah), AR_PHY_CALIBRATED_GAINS_0);
        if (nmeasurement > MAX_MEASUREMENT) {
            nmeasurement = MAX_MEASUREMENT;
        }

        for (im = 0; im < nmeasurement; im++) {
            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                "%s: Doing Tx IQ Cal for chain %d.\n", __func__, ch_idx);
            if (OS_REG_READ(ah, txiqcal_status[ch_idx]) &
                AR_PHY_TX_IQCAL_STATUS_FAILED)
            {
                HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                    "%s: Tx IQ Cal failed for chain %d.\n", __func__, ch_idx);
                goto TX_IQ_CAL_FAILED_;
            }

            for (j = 0; j < 3; j++) {
                u_int32_t idx = 2 * j;
                /* 3 registers for each calibration result */
                u_int32_t offset = 4 * (3 * im + j);

                OS_REG_RMW_FIELD(ah, AR_PHY_CHAN_INFO_MEMORY,
                    AR_PHY_CHAN_INFO_TAB_S2_READ, 0);
                /* 32 bits */    
                iq_res[idx] = OS_REG_READ(ah, chan_info_tab[ch_idx] + offset);
                OS_REG_RMW_FIELD(ah, AR_PHY_CHAN_INFO_MEMORY,
                    AR_PHY_CHAN_INFO_TAB_S2_READ, 1);
                /* 16 bits */
                iq_res[idx + 1] = 0xffff &
                    OS_REG_READ(ah, chan_info_tab[ch_idx] + offset);
    
                HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                    "%s: IQ RES[%d]=0x%x IQ_RES[%d]=0x%x\n",
                    __func__, idx, iq_res[idx], idx + 1, iq_res[idx + 1]);
            }

            if (AH_FALSE == ar9300_calc_iq_corr(
                             ah, ch_idx, iq_res, coeff.iqc_coeff))
            {
                HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
                    "%s: Failed in calculation of IQ correction.\n",
                     __func__);
                goto TX_IQ_CAL_FAILED_;
            }

            coeff.phs_coeff[ch_idx][im][iqcal_idx-1] = coeff.iqc_coeff[0] & 0x7f;
            coeff.mag_coeff[ch_idx][im][iqcal_idx-1] = (coeff.iqc_coeff[0] >> 7) & 0x7f;
            if (coeff.mag_coeff[ch_idx][im][iqcal_idx-1] > 63) {
                coeff.mag_coeff[ch_idx][im][iqcal_idx-1] -= 128;
            }
            if (coeff.phs_coeff[ch_idx][im][iqcal_idx-1] > 63) {
                coeff.phs_coeff[ch_idx][im][iqcal_idx-1] -= 128;     
            }
#if 0
            ath_hal_printf(ah, "IQCAL::[ch%d][gain%d]:: mag = %d phase = %d \n",
                ch_idx, im, coeff.mag_coeff[ch_idx][im][iqcal_idx-1],
                coeff.phs_coeff[ch_idx][im][iqcal_idx-1]);
#endif
        }
    }
    //last iteration; calculate mag and phs
    if (iqcal_idx == max_iqcal) {
        if (max_iqcal>1) {
            for (ch_idx = 0; ch_idx < num_chains; ch_idx++) {
                for (im = 0; im < nmeasurement; im++) {
                    //sort mag and phs
                    for( ix=0;ix<max_iqcal-1;ix++){
                        for( iy=ix+1;iy<=max_iqcal-1;iy++){
                            if(coeff.mag_coeff[ch_idx][im][iy] < 
                                coeff.mag_coeff[ch_idx][im][ix]) {
                                //swap
                                temp=coeff.mag_coeff[ch_idx][im][ix];
                                coeff.mag_coeff[ch_idx][im][ix] = coeff.mag_coeff[ch_idx][im][iy];
                                coeff.mag_coeff[ch_idx][im][iy] = temp;
                            }
                            if(coeff.phs_coeff[ch_idx][im][iy] < 
                                coeff.phs_coeff[ch_idx][im][ix]){
                                //swap
                                temp=coeff.phs_coeff[ch_idx][im][ix];
                                coeff.phs_coeff[ch_idx][im][ix]=coeff.phs_coeff[ch_idx][im][iy];
                                coeff.phs_coeff[ch_idx][im][iy]=temp;
                            }
                        }  
                    }
                    //select median; 3rd entry in the sorted array
                    coeff.mag_coeff[ch_idx][im][0] = 
                        coeff.mag_coeff[ch_idx][im][max_iqcal/2];
                    coeff.phs_coeff[ch_idx][im][0] =
                        coeff.phs_coeff[ch_idx][im][max_iqcal/2];
                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 
                        "IQCAL: Median [ch%d][gain%d]:: mag = %d phase = %d \n", 
                        ch_idx, im,coeff.mag_coeff[ch_idx][im][0], 
                        coeff.phs_coeff[ch_idx][im][0]);
                }
            }	
        }
        ar9300_tx_iq_cal_outlier_detection(ah,ichan, num_chains, &coeff,is_cal_reusable);
    }


    coeff.last_nmeasurement = nmeasurement;
    coeff.last_cal = AH_TRUE;

    return;

TX_IQ_CAL_FAILED_:
    /* no need to print this, it is AGC failure not chip stuck */
    /*ath_hal_printf(ah, "Tx IQ Cal failed(%d)\n", line);*/
    coeff.last_cal = AH_FALSE;
    return;
}


/*
 * ar9300_disable_phy_restart
 *
 * In some BBpanics, we can disable the phyrestart
 * disable_phy_restart
 *      != 0, disable the phy restart in h/w
 *      == 0, enable the phy restart in h/w
 */
void ar9300_disable_phy_restart(struct ath_hal *ah, int disable_phy_restart)
{
    u_int32_t val;

    val = OS_REG_READ(ah, AR_PHY_RESTART);
    if (disable_phy_restart) {
        val &= ~AR_PHY_RESTART_ENA;
        AH9300(ah)->ah_phyrestart_disabled = 1;
    } else {
        val |= AR_PHY_RESTART_ENA;
        AH9300(ah)->ah_phyrestart_disabled = 0;
    }
    OS_REG_WRITE(ah, AR_PHY_RESTART, val);

    val = OS_REG_READ(ah, AR_PHY_RESTART);
}

HAL_BOOL
ar9300_interference_is_present(struct ath_hal *ah)
{
    int i;
    struct ath_hal_private  *ahpriv = AH_PRIVATE(ah);
    const struct ieee80211_channel *chan = ahpriv->ah_curchan;
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);

    if (ichan == NULL) {
        ath_hal_printf(ah, "%s: called with ichan=NULL\n", __func__);
        return AH_FALSE;
    }

    /* This function is called after a stuck beacon, if EACS is enabled.
     * If CW interference is severe, then HW goes into a loop of continuous
     * stuck beacons and resets. On reset the NF cal history is cleared.
     * So the median value of the history cannot be used -
     * hence check if any value (Chain 0/Primary Channel)
     * is outside the bounds.
     */
    HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
    for (i = 0; i < HAL_NF_CAL_HIST_LEN_FULL; i++) {
        if (h->nf_cal_buffer[i][0] >
            AH9300(ah)->nfp->nominal + AH9300(ah)->nf_cw_int_delta)
        {
            return AH_TRUE;
        }

    }
    return AH_FALSE;
}

#if ATH_SUPPORT_CRDC
void
ar9300_crdc_rx_notify(struct ath_hal *ah, struct ath_rx_status *rxs)
{
    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
    int rssi_index;
    
    if ((!AR_SREV_WASP(ah)) ||
        (!ahpriv->ah_config.ath_hal_crdc_enable)) {
        return;
    }

    if (rxs->rs_isaggr && rxs->rs_moreaggr) {
        return;
    }

    if ((rxs->rs_rssi_ctl0 >= HAL_RSSI_BAD) ||
        (rxs->rs_rssi_ctl1 >= HAL_RSSI_BAD)) {
        return;
    }

    rssi_index = ah->ah_crdc_rssi_ptr % HAL_MAX_CRDC_RSSI_SAMPLE;

    ah->ah_crdc_rssi_sample[0][rssi_index] = rxs->rs_rssi_ctl0;
    ah->ah_crdc_rssi_sample[1][rssi_index] = rxs->rs_rssi_ctl1;

    ah->ah_crdc_rssi_ptr++;
}

static int
ar9300_crdc_avg_rssi(struct ath_hal *ah, int chain)
{
    int crdc_rssi_sum = 0;
    int crdc_rssi_ptr = ah->ah_crdc_rssi_ptr, i;
    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
    int crdc_window = ahpriv->ah_config.ath_hal_crdc_window;

    if (crdc_window > HAL_MAX_CRDC_RSSI_SAMPLE) {
        crdc_window = HAL_MAX_CRDC_RSSI_SAMPLE;
    }

    for (i = 1; i <= crdc_window; i++) {
        crdc_rssi_sum += 
            ah->ah_crdc_rssi_sample[chain]
            [(crdc_rssi_ptr - i) % HAL_MAX_CRDC_RSSI_SAMPLE];
    }

    return crdc_rssi_sum / crdc_window;
}

static void
ar9300_crdc_activate(struct ath_hal *ah, int rssi_diff, int enable)
{
    int val, orig_val;
    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
    int crdc_numerator = ahpriv->ah_config.ath_hal_crdc_numerator;
    int crdc_denominator = ahpriv->ah_config.ath_hal_crdc_denominator;
    int c = (rssi_diff * crdc_numerator) / crdc_denominator;

    val = orig_val = OS_REG_READ(ah, AR_PHY_MULTICHAIN_CTRL);
    val &= 0xffffff00;
    if (enable) {
        val |= 0x1;
        val |= ((c << 1) & 0xff);
    }
    OS_REG_WRITE(ah, AR_PHY_MULTICHAIN_CTRL, val);
    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "diff: %02d comp: %02d reg: %08x %08x\n", 
        rssi_diff, c, orig_val, val);
}


void ar9300_chain_rssi_diff_compensation(struct ath_hal *ah)
{
    struct ath_hal_private  *ahpriv = AH_PRIVATE(ah);
    int crdc_window = ahpriv->ah_config.ath_hal_crdc_window;
    int crdc_rssi_ptr = ah->ah_crdc_rssi_ptr;
    int crdc_rssi_thresh = ahpriv->ah_config.ath_hal_crdc_rssithresh;
    int crdc_diff_thresh = ahpriv->ah_config.ath_hal_crdc_diffthresh;
    int avg_rssi[2], avg_rssi_diff;

    if ((!AR_SREV_WASP(ah)) ||
        (!ahpriv->ah_config.ath_hal_crdc_enable)) {
        if (ah->ah_crdc_rssi_ptr) {
            ar9300_crdc_activate(ah, 0, 0);
            ah->ah_crdc_rssi_ptr = 0;
        }
        return;
    }

    if (crdc_window > HAL_MAX_CRDC_RSSI_SAMPLE) {
        crdc_window = HAL_MAX_CRDC_RSSI_SAMPLE;
    }

    if (crdc_rssi_ptr < crdc_window) {
        return;
    }

    avg_rssi[0] = ar9300_crdc_avg_rssi(ah, 0);
    avg_rssi[1] = ar9300_crdc_avg_rssi(ah, 1);
    avg_rssi_diff = avg_rssi[1] - avg_rssi[0];

    HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "crdc: avg: %02d %02d ", 
        avg_rssi[0], avg_rssi[1]);

    if ((avg_rssi[0] < crdc_rssi_thresh) &&
        (avg_rssi[1] < crdc_rssi_thresh)) {
        ar9300_crdc_activate(ah, 0, 0);
    } else {
        if (ABS(avg_rssi_diff) >= crdc_diff_thresh) {
            ar9300_crdc_activate(ah, avg_rssi_diff, 1);
        } else {
            ar9300_crdc_activate(ah, 0, 1);
        }
    }
}
#endif

#if ATH_ANT_DIV_COMB
HAL_BOOL
ar9300_ant_ctrl_set_lna_div_use_bt_ant(struct ath_hal *ah, HAL_BOOL enable, const struct ieee80211_channel *chan)
{
    u_int32_t value;
    u_int32_t regval;
    struct ath_hal_9300 *ahp = AH9300(ah);
    HAL_CHANNEL_INTERNAL *ichan;
    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
    HAL_CAPABILITIES *pcap = &ahpriv->ah_caps;

    HALDEBUG(ah, HAL_DEBUG_RESET | HAL_DEBUG_BT_COEX,
      "%s: called; enable=%d\n", __func__, enable);

    if (AR_SREV_POSEIDON(ah)) {
        // Make sure this scheme is only used for WB225(Astra)
        ahp->ah_lna_div_use_bt_ant_enable = enable;

        ichan = ar9300_check_chan(ah, chan);
        if ( ichan == AH_NULL ) {
            HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: invalid channel %u/0x%x; no mapping\n",
                     __func__, chan->ic_freq, chan->ic_flags);
            return AH_FALSE;
        }

        if ( enable == TRUE ) {
            pcap->halAntDivCombSupport = TRUE;
        } else {
            pcap->halAntDivCombSupport = pcap->halAntDivCombSupportOrg;
        }

#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
#define AR_SWITCH_TABLE_COM2_ALL_S (0)
        value = ar9300_ant_ctrl_common2_get(ah, IS_CHAN_2GHZ(ichan));
        if ( enable == TRUE ) {
            value &= ~AR_SWITCH_TABLE_COM2_ALL;
            value |= ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable;
        }
	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__, value);
        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);

        value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control);
        /* main_lnaconf, alt_lnaconf, main_tb, alt_tb */
        regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
        regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */     
        regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S; 
        /* enable_lnadiv */
        regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK);
        regval |= ((value >> 6) & 0x1) << 
                  MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT;
        if ( enable == TRUE ) {
            regval |= ANT_DIV_ENABLE;
        }
        OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);

        /* enable fast_div */
        regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
        regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
        regval |= ((value >> 7) & 0x1) << 
                  BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT;
        if ( enable == TRUE ) {
            regval |= FAST_DIV_ENABLE;
        }
        OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
  
        if ( AR_SREV_POSEIDON_11_OR_LATER(ah) ) {
            if (pcap->halAntDivCombSupport) {
                /* If support DivComb, set MAIN to LNA1 and ALT to LNA2 at the first beginning */
                regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
                /* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */
                regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK | 
                             MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK | 
                             MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK | 
                             MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK)); 
                regval |= (HAL_ANT_DIV_COMB_LNA1 << 
                           MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT); 
                regval |= (HAL_ANT_DIV_COMB_LNA2 << 
                           MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT); 
                OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
            }
        }

        return AH_TRUE;
    } else if (AR_SREV_APHRODITE(ah)) {
        ahp->ah_lna_div_use_bt_ant_enable = enable;
        if (enable) {
                OS_REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, ANT_DIV_ENABLE);
                OS_REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT));
                OS_REG_SET_BIT(ah, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
                OS_REG_SET_BIT(ah, AR_PHY_RESTART, RESTART__ENABLE_ANT_FAST_DIV_M2FLAG__MASK);
                OS_REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
        } else {
                OS_REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, ANT_DIV_ENABLE);
                OS_REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT));
                OS_REG_CLR_BIT(ah, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
                OS_REG_CLR_BIT(ah, AR_PHY_RESTART, RESTART__ENABLE_ANT_FAST_DIV_M2FLAG__MASK);
                OS_REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);

                regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
                regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
                             MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
                             MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK |
                             MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK));
                regval |= (HAL_ANT_DIV_COMB_LNA1 <<
                           MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
                regval |= (HAL_ANT_DIV_COMB_LNA2 <<
                           MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
 
                OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
        }
        return AH_TRUE;
    }
    return AH_TRUE;
}
#endif /* ATH_ANT_DIV_COMB */