aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/icp/algs/modes/gcm.c
blob: e666b45b5f4474c429e08f737669ae4f8ac0ec6d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <modes/modes.h>
#include <sys/crypto/common.h>
#include <sys/crypto/icp.h>
#include <sys/crypto/impl.h>
#include <sys/byteorder.h>
#include <sys/simd.h>
#include <modes/gcm_impl.h>
#ifdef CAN_USE_GCM_ASM
#include <aes/aes_impl.h>
#endif

#define	GHASH(c, d, t, o) \
	xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \
	(o)->mul((uint64_t *)(void *)(c)->gcm_ghash, (c)->gcm_H, \
	(uint64_t *)(void *)(t));

/* Select GCM implementation */
#define	IMPL_FASTEST	(UINT32_MAX)
#define	IMPL_CYCLE	(UINT32_MAX-1)
#ifdef CAN_USE_GCM_ASM
#define	IMPL_AVX	(UINT32_MAX-2)
#endif
#define	GCM_IMPL_READ(i) (*(volatile uint32_t *) &(i))
static uint32_t icp_gcm_impl = IMPL_FASTEST;
static uint32_t user_sel_impl = IMPL_FASTEST;

#ifdef CAN_USE_GCM_ASM
/* Does the architecture we run on support the MOVBE instruction? */
boolean_t gcm_avx_can_use_movbe = B_FALSE;
/*
 * Whether to use the optimized openssl gcm and ghash implementations.
 * Set to true if module parameter icp_gcm_impl == "avx".
 */
static boolean_t gcm_use_avx = B_FALSE;
#define	GCM_IMPL_USE_AVX	(*(volatile boolean_t *)&gcm_use_avx)

extern boolean_t atomic_toggle_boolean_nv(volatile boolean_t *);

static inline boolean_t gcm_avx_will_work(void);
static inline void gcm_set_avx(boolean_t);
static inline boolean_t gcm_toggle_avx(void);
static inline size_t gcm_simd_get_htab_size(boolean_t);

static int gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *, char *, size_t,
    crypto_data_t *, size_t);

static int gcm_encrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t);
static int gcm_decrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t);
static int gcm_init_avx(gcm_ctx_t *, unsigned char *, size_t, unsigned char *,
    size_t, size_t);
#endif /* ifdef CAN_USE_GCM_ASM */

/*
 * Encrypt multiple blocks of data in GCM mode.  Decrypt for GCM mode
 * is done in another function.
 */
int
gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
    crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
	if (ctx->gcm_use_avx == B_TRUE)
		return (gcm_mode_encrypt_contiguous_blocks_avx(
		    ctx, data, length, out, block_size));
#endif

	const gcm_impl_ops_t *gops;
	size_t remainder = length;
	size_t need = 0;
	uint8_t *datap = (uint8_t *)data;
	uint8_t *blockp;
	uint8_t *lastp;
	void *iov_or_mp;
	offset_t offset;
	uint8_t *out_data_1;
	uint8_t *out_data_2;
	size_t out_data_1_len;
	uint64_t counter;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);

	if (length + ctx->gcm_remainder_len < block_size) {
		/* accumulate bytes here and return */
		memcpy((uint8_t *)ctx->gcm_remainder + ctx->gcm_remainder_len,
		    datap,
		    length);
		ctx->gcm_remainder_len += length;
		if (ctx->gcm_copy_to == NULL) {
			ctx->gcm_copy_to = datap;
		}
		return (CRYPTO_SUCCESS);
	}

	lastp = (uint8_t *)ctx->gcm_cb;
	crypto_init_ptrs(out, &iov_or_mp, &offset);

	gops = gcm_impl_get_ops();
	do {
		/* Unprocessed data from last call. */
		if (ctx->gcm_remainder_len > 0) {
			need = block_size - ctx->gcm_remainder_len;

			if (need > remainder)
				return (CRYPTO_DATA_LEN_RANGE);

			memcpy(&((uint8_t *)ctx->gcm_remainder)
			    [ctx->gcm_remainder_len], datap, need);

			blockp = (uint8_t *)ctx->gcm_remainder;
		} else {
			blockp = datap;
		}

		/*
		 * Increment counter. Counter bits are confined
		 * to the bottom 32 bits of the counter block.
		 */
		counter = ntohll(ctx->gcm_cb[1] & counter_mask);
		counter = htonll(counter + 1);
		counter &= counter_mask;
		ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

		encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
		    (uint8_t *)ctx->gcm_tmp);
		xor_block(blockp, (uint8_t *)ctx->gcm_tmp);

		lastp = (uint8_t *)ctx->gcm_tmp;

		ctx->gcm_processed_data_len += block_size;

		crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
		    &out_data_1_len, &out_data_2, block_size);

		/* copy block to where it belongs */
		if (out_data_1_len == block_size) {
			copy_block(lastp, out_data_1);
		} else {
			memcpy(out_data_1, lastp, out_data_1_len);
			if (out_data_2 != NULL) {
				memcpy(out_data_2,
				    lastp + out_data_1_len,
				    block_size - out_data_1_len);
			}
		}
		/* update offset */
		out->cd_offset += block_size;

		/* add ciphertext to the hash */
		GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gops);

		/* Update pointer to next block of data to be processed. */
		if (ctx->gcm_remainder_len != 0) {
			datap += need;
			ctx->gcm_remainder_len = 0;
		} else {
			datap += block_size;
		}

		remainder = (size_t)&data[length] - (size_t)datap;

		/* Incomplete last block. */
		if (remainder > 0 && remainder < block_size) {
			memcpy(ctx->gcm_remainder, datap, remainder);
			ctx->gcm_remainder_len = remainder;
			ctx->gcm_copy_to = datap;
			goto out;
		}
		ctx->gcm_copy_to = NULL;

	} while (remainder > 0);
out:
	return (CRYPTO_SUCCESS);
}

int
gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	(void) copy_block;
#ifdef CAN_USE_GCM_ASM
	if (ctx->gcm_use_avx == B_TRUE)
		return (gcm_encrypt_final_avx(ctx, out, block_size));
#endif

	const gcm_impl_ops_t *gops;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	uint8_t *ghash, *macp = NULL;
	int i, rv;

	if (out->cd_length <
	    (ctx->gcm_remainder_len + ctx->gcm_tag_len)) {
		return (CRYPTO_DATA_LEN_RANGE);
	}

	gops = gcm_impl_get_ops();
	ghash = (uint8_t *)ctx->gcm_ghash;

	if (ctx->gcm_remainder_len > 0) {
		uint64_t counter;
		uint8_t *tmpp = (uint8_t *)ctx->gcm_tmp;

		/*
		 * Here is where we deal with data that is not a
		 * multiple of the block size.
		 */

		/*
		 * Increment counter.
		 */
		counter = ntohll(ctx->gcm_cb[1] & counter_mask);
		counter = htonll(counter + 1);
		counter &= counter_mask;
		ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

		encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
		    (uint8_t *)ctx->gcm_tmp);

		macp = (uint8_t *)ctx->gcm_remainder;
		memset(macp + ctx->gcm_remainder_len, 0,
		    block_size - ctx->gcm_remainder_len);

		/* XOR with counter block */
		for (i = 0; i < ctx->gcm_remainder_len; i++) {
			macp[i] ^= tmpp[i];
		}

		/* add ciphertext to the hash */
		GHASH(ctx, macp, ghash, gops);

		ctx->gcm_processed_data_len += ctx->gcm_remainder_len;
	}

	ctx->gcm_len_a_len_c[1] =
	    htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
	GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
	    (uint8_t *)ctx->gcm_J0);
	xor_block((uint8_t *)ctx->gcm_J0, ghash);

	if (ctx->gcm_remainder_len > 0) {
		rv = crypto_put_output_data(macp, out, ctx->gcm_remainder_len);
		if (rv != CRYPTO_SUCCESS)
			return (rv);
	}
	out->cd_offset += ctx->gcm_remainder_len;
	ctx->gcm_remainder_len = 0;
	rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
	if (rv != CRYPTO_SUCCESS)
		return (rv);
	out->cd_offset += ctx->gcm_tag_len;

	return (CRYPTO_SUCCESS);
}

/*
 * This will only deal with decrypting the last block of the input that
 * might not be a multiple of block length.
 */
static void
gcm_decrypt_incomplete_block(gcm_ctx_t *ctx, size_t block_size, size_t index,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	uint8_t *datap, *outp, *counterp;
	uint64_t counter;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	int i;

	/*
	 * Increment counter.
	 * Counter bits are confined to the bottom 32 bits
	 */
	counter = ntohll(ctx->gcm_cb[1] & counter_mask);
	counter = htonll(counter + 1);
	counter &= counter_mask;
	ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

	datap = (uint8_t *)ctx->gcm_remainder;
	outp = &((ctx->gcm_pt_buf)[index]);
	counterp = (uint8_t *)ctx->gcm_tmp;

	/* authentication tag */
	memset((uint8_t *)ctx->gcm_tmp, 0, block_size);
	memcpy((uint8_t *)ctx->gcm_tmp, datap, ctx->gcm_remainder_len);

	/* add ciphertext to the hash */
	GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gcm_impl_get_ops());

	/* decrypt remaining ciphertext */
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, counterp);

	/* XOR with counter block */
	for (i = 0; i < ctx->gcm_remainder_len; i++) {
		outp[i] = datap[i] ^ counterp[i];
	}
}

int
gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
    crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	(void) out, (void) block_size, (void) encrypt_block, (void) copy_block,
	    (void) xor_block;
	size_t new_len;
	uint8_t *new;

	/*
	 * Copy contiguous ciphertext input blocks to plaintext buffer.
	 * Ciphertext will be decrypted in the final.
	 */
	if (length > 0) {
		new_len = ctx->gcm_pt_buf_len + length;
		new = vmem_alloc(new_len, KM_SLEEP);
		if (new == NULL) {
			vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
			ctx->gcm_pt_buf = NULL;
			return (CRYPTO_HOST_MEMORY);
		}

		if (ctx->gcm_pt_buf != NULL) {
			memcpy(new, ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
			vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
		} else {
			ASSERT0(ctx->gcm_pt_buf_len);
		}

		ctx->gcm_pt_buf = new;
		ctx->gcm_pt_buf_len = new_len;
		memcpy(&ctx->gcm_pt_buf[ctx->gcm_processed_data_len], data,
		    length);
		ctx->gcm_processed_data_len += length;
	}

	ctx->gcm_remainder_len = 0;
	return (CRYPTO_SUCCESS);
}

int
gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
	if (ctx->gcm_use_avx == B_TRUE)
		return (gcm_decrypt_final_avx(ctx, out, block_size));
#endif

	const gcm_impl_ops_t *gops;
	size_t pt_len;
	size_t remainder;
	uint8_t *ghash;
	uint8_t *blockp;
	uint8_t *cbp;
	uint64_t counter;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	int processed = 0, rv;

	ASSERT(ctx->gcm_processed_data_len == ctx->gcm_pt_buf_len);

	gops = gcm_impl_get_ops();
	pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
	ghash = (uint8_t *)ctx->gcm_ghash;
	blockp = ctx->gcm_pt_buf;
	remainder = pt_len;
	while (remainder > 0) {
		/* Incomplete last block */
		if (remainder < block_size) {
			memcpy(ctx->gcm_remainder, blockp, remainder);
			ctx->gcm_remainder_len = remainder;
			/*
			 * not expecting anymore ciphertext, just
			 * compute plaintext for the remaining input
			 */
			gcm_decrypt_incomplete_block(ctx, block_size,
			    processed, encrypt_block, xor_block);
			ctx->gcm_remainder_len = 0;
			goto out;
		}
		/* add ciphertext to the hash */
		GHASH(ctx, blockp, ghash, gops);

		/*
		 * Increment counter.
		 * Counter bits are confined to the bottom 32 bits
		 */
		counter = ntohll(ctx->gcm_cb[1] & counter_mask);
		counter = htonll(counter + 1);
		counter &= counter_mask;
		ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

		cbp = (uint8_t *)ctx->gcm_tmp;
		encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, cbp);

		/* XOR with ciphertext */
		xor_block(cbp, blockp);

		processed += block_size;
		blockp += block_size;
		remainder -= block_size;
	}
out:
	ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
	GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
	    (uint8_t *)ctx->gcm_J0);
	xor_block((uint8_t *)ctx->gcm_J0, ghash);

	/* compare the input authentication tag with what we calculated */
	if (memcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
		/* They don't match */
		return (CRYPTO_INVALID_MAC);
	} else {
		rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
		if (rv != CRYPTO_SUCCESS)
			return (rv);
		out->cd_offset += pt_len;
	}
	return (CRYPTO_SUCCESS);
}

static int
gcm_validate_args(CK_AES_GCM_PARAMS *gcm_param)
{
	size_t tag_len;

	/*
	 * Check the length of the authentication tag (in bits).
	 */
	tag_len = gcm_param->ulTagBits;
	switch (tag_len) {
	case 32:
	case 64:
	case 96:
	case 104:
	case 112:
	case 120:
	case 128:
		break;
	default:
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

	if (gcm_param->ulIvLen == 0)
		return (CRYPTO_MECHANISM_PARAM_INVALID);

	return (CRYPTO_SUCCESS);
}

static void
gcm_format_initial_blocks(uchar_t *iv, ulong_t iv_len,
    gcm_ctx_t *ctx, size_t block_size,
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	const gcm_impl_ops_t *gops;
	uint8_t *cb;
	ulong_t remainder = iv_len;
	ulong_t processed = 0;
	uint8_t *datap, *ghash;
	uint64_t len_a_len_c[2];

	gops = gcm_impl_get_ops();
	ghash = (uint8_t *)ctx->gcm_ghash;
	cb = (uint8_t *)ctx->gcm_cb;
	if (iv_len == 12) {
		memcpy(cb, iv, 12);
		cb[12] = 0;
		cb[13] = 0;
		cb[14] = 0;
		cb[15] = 1;
		/* J0 will be used again in the final */
		copy_block(cb, (uint8_t *)ctx->gcm_J0);
	} else {
		/* GHASH the IV */
		do {
			if (remainder < block_size) {
				memset(cb, 0, block_size);
				memcpy(cb, &(iv[processed]), remainder);
				datap = (uint8_t *)cb;
				remainder = 0;
			} else {
				datap = (uint8_t *)(&(iv[processed]));
				processed += block_size;
				remainder -= block_size;
			}
			GHASH(ctx, datap, ghash, gops);
		} while (remainder > 0);

		len_a_len_c[0] = 0;
		len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(iv_len));
		GHASH(ctx, len_a_len_c, ctx->gcm_J0, gops);

		/* J0 will be used again in the final */
		copy_block((uint8_t *)ctx->gcm_J0, (uint8_t *)cb);
	}
}

static int
gcm_init(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
    unsigned char *auth_data, size_t auth_data_len, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	const gcm_impl_ops_t *gops;
	uint8_t *ghash, *datap, *authp;
	size_t remainder, processed;

	/* encrypt zero block to get subkey H */
	memset(ctx->gcm_H, 0, sizeof (ctx->gcm_H));
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_H,
	    (uint8_t *)ctx->gcm_H);

	gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
	    copy_block, xor_block);

	gops = gcm_impl_get_ops();
	authp = (uint8_t *)ctx->gcm_tmp;
	ghash = (uint8_t *)ctx->gcm_ghash;
	memset(authp, 0, block_size);
	memset(ghash, 0, block_size);

	processed = 0;
	remainder = auth_data_len;
	do {
		if (remainder < block_size) {
			/*
			 * There's not a block full of data, pad rest of
			 * buffer with zero
			 */

			if (auth_data != NULL) {
				memset(authp, 0, block_size);
				memcpy(authp, &(auth_data[processed]),
				    remainder);
			} else {
				ASSERT0(remainder);
			}

			datap = (uint8_t *)authp;
			remainder = 0;
		} else {
			datap = (uint8_t *)(&(auth_data[processed]));
			processed += block_size;
			remainder -= block_size;
		}

		/* add auth data to the hash */
		GHASH(ctx, datap, ghash, gops);

	} while (remainder > 0);

	return (CRYPTO_SUCCESS);
}

/*
 * The following function is called at encrypt or decrypt init time
 * for AES GCM mode.
 *
 * Init the GCM context struct. Handle the cycle and avx implementations here.
 */
int
gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	int rv;
	CK_AES_GCM_PARAMS *gcm_param;

	if (param != NULL) {
		gcm_param = (CK_AES_GCM_PARAMS *)(void *)param;

		if ((rv = gcm_validate_args(gcm_param)) != 0) {
			return (rv);
		}

		gcm_ctx->gcm_tag_len = gcm_param->ulTagBits;
		gcm_ctx->gcm_tag_len >>= 3;
		gcm_ctx->gcm_processed_data_len = 0;

		/* these values are in bits */
		gcm_ctx->gcm_len_a_len_c[0]
		    = htonll(CRYPTO_BYTES2BITS(gcm_param->ulAADLen));

		rv = CRYPTO_SUCCESS;
		gcm_ctx->gcm_flags |= GCM_MODE;
	} else {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

#ifdef CAN_USE_GCM_ASM
	if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) {
		gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX;
	} else {
		/*
		 * Handle the "cycle" implementation by creating avx and
		 * non-avx contexts alternately.
		 */
		gcm_ctx->gcm_use_avx = gcm_toggle_avx();
		/*
		 * We don't handle byte swapped key schedules in the avx
		 * code path.
		 */
		aes_key_t *ks = (aes_key_t *)gcm_ctx->gcm_keysched;
		if (ks->ops->needs_byteswap == B_TRUE) {
			gcm_ctx->gcm_use_avx = B_FALSE;
		}
		/* Use the MOVBE and the BSWAP variants alternately. */
		if (gcm_ctx->gcm_use_avx == B_TRUE &&
		    zfs_movbe_available() == B_TRUE) {
			(void) atomic_toggle_boolean_nv(
			    (volatile boolean_t *)&gcm_avx_can_use_movbe);
		}
	}
	/* Allocate Htab memory as needed. */
	if (gcm_ctx->gcm_use_avx == B_TRUE) {
		size_t htab_len = gcm_simd_get_htab_size(gcm_ctx->gcm_use_avx);

		if (htab_len == 0) {
			return (CRYPTO_MECHANISM_PARAM_INVALID);
		}
		gcm_ctx->gcm_htab_len = htab_len;
		gcm_ctx->gcm_Htable =
		    (uint64_t *)kmem_alloc(htab_len, KM_SLEEP);

		if (gcm_ctx->gcm_Htable == NULL) {
			return (CRYPTO_HOST_MEMORY);
		}
	}
	/* Avx and non avx context initialization differs from here on. */
	if (gcm_ctx->gcm_use_avx == B_FALSE) {
#endif /* ifdef CAN_USE_GCM_ASM */
		if (gcm_init(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
		    gcm_param->pAAD, gcm_param->ulAADLen, block_size,
		    encrypt_block, copy_block, xor_block) != 0) {
			rv = CRYPTO_MECHANISM_PARAM_INVALID;
		}
#ifdef CAN_USE_GCM_ASM
	} else {
		if (gcm_init_avx(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
		    gcm_param->pAAD, gcm_param->ulAADLen, block_size) != 0) {
			rv = CRYPTO_MECHANISM_PARAM_INVALID;
		}
	}
#endif /* ifdef CAN_USE_GCM_ASM */

	return (rv);
}

int
gmac_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	int rv;
	CK_AES_GMAC_PARAMS *gmac_param;

	if (param != NULL) {
		gmac_param = (CK_AES_GMAC_PARAMS *)(void *)param;

		gcm_ctx->gcm_tag_len = CRYPTO_BITS2BYTES(AES_GMAC_TAG_BITS);
		gcm_ctx->gcm_processed_data_len = 0;

		/* these values are in bits */
		gcm_ctx->gcm_len_a_len_c[0]
		    = htonll(CRYPTO_BYTES2BITS(gmac_param->ulAADLen));

		rv = CRYPTO_SUCCESS;
		gcm_ctx->gcm_flags |= GMAC_MODE;
	} else {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

#ifdef CAN_USE_GCM_ASM
	/*
	 * Handle the "cycle" implementation by creating avx and non avx
	 * contexts alternately.
	 */
	if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) {
		gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX;
	} else {
		gcm_ctx->gcm_use_avx = gcm_toggle_avx();
	}
	/* We don't handle byte swapped key schedules in the avx code path. */
	aes_key_t *ks = (aes_key_t *)gcm_ctx->gcm_keysched;
	if (ks->ops->needs_byteswap == B_TRUE) {
		gcm_ctx->gcm_use_avx = B_FALSE;
	}
	/* Allocate Htab memory as needed. */
	if (gcm_ctx->gcm_use_avx == B_TRUE) {
		size_t htab_len = gcm_simd_get_htab_size(gcm_ctx->gcm_use_avx);

		if (htab_len == 0) {
			return (CRYPTO_MECHANISM_PARAM_INVALID);
		}
		gcm_ctx->gcm_htab_len = htab_len;
		gcm_ctx->gcm_Htable =
		    (uint64_t *)kmem_alloc(htab_len, KM_SLEEP);

		if (gcm_ctx->gcm_Htable == NULL) {
			return (CRYPTO_HOST_MEMORY);
		}
	}

	/* Avx and non avx context initialization differs from here on. */
	if (gcm_ctx->gcm_use_avx == B_FALSE) {
#endif	/* ifdef CAN_USE_GCM_ASM */
		if (gcm_init(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
		    gmac_param->pAAD, gmac_param->ulAADLen, block_size,
		    encrypt_block, copy_block, xor_block) != 0) {
			rv = CRYPTO_MECHANISM_PARAM_INVALID;
		}
#ifdef CAN_USE_GCM_ASM
	} else {
		if (gcm_init_avx(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
		    gmac_param->pAAD, gmac_param->ulAADLen, block_size) != 0) {
			rv = CRYPTO_MECHANISM_PARAM_INVALID;
		}
	}
#endif /* ifdef CAN_USE_GCM_ASM */

	return (rv);
}

void *
gcm_alloc_ctx(int kmflag)
{
	gcm_ctx_t *gcm_ctx;

	if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
		return (NULL);

	gcm_ctx->gcm_flags = GCM_MODE;
	return (gcm_ctx);
}

void *
gmac_alloc_ctx(int kmflag)
{
	gcm_ctx_t *gcm_ctx;

	if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
		return (NULL);

	gcm_ctx->gcm_flags = GMAC_MODE;
	return (gcm_ctx);
}

/* GCM implementation that contains the fastest methods */
static gcm_impl_ops_t gcm_fastest_impl = {
	.name = "fastest"
};

/* All compiled in implementations */
static const gcm_impl_ops_t *gcm_all_impl[] = {
	&gcm_generic_impl,
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
	&gcm_pclmulqdq_impl,
#endif
};

/* Indicate that benchmark has been completed */
static boolean_t gcm_impl_initialized = B_FALSE;

/* Hold all supported implementations */
static size_t gcm_supp_impl_cnt = 0;
static gcm_impl_ops_t *gcm_supp_impl[ARRAY_SIZE(gcm_all_impl)];

/*
 * Returns the GCM operations for encrypt/decrypt/key setup.  When a
 * SIMD implementation is not allowed in the current context, then
 * fallback to the fastest generic implementation.
 */
const gcm_impl_ops_t *
gcm_impl_get_ops()
{
	if (!kfpu_allowed())
		return (&gcm_generic_impl);

	const gcm_impl_ops_t *ops = NULL;
	const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);

	switch (impl) {
	case IMPL_FASTEST:
		ASSERT(gcm_impl_initialized);
		ops = &gcm_fastest_impl;
		break;
	case IMPL_CYCLE:
		/* Cycle through supported implementations */
		ASSERT(gcm_impl_initialized);
		ASSERT3U(gcm_supp_impl_cnt, >, 0);
		static size_t cycle_impl_idx = 0;
		size_t idx = (++cycle_impl_idx) % gcm_supp_impl_cnt;
		ops = gcm_supp_impl[idx];
		break;
#ifdef CAN_USE_GCM_ASM
	case IMPL_AVX:
		/*
		 * Make sure that we return a valid implementation while
		 * switching to the avx implementation since there still
		 * may be unfinished non-avx contexts around.
		 */
		ops = &gcm_generic_impl;
		break;
#endif
	default:
		ASSERT3U(impl, <, gcm_supp_impl_cnt);
		ASSERT3U(gcm_supp_impl_cnt, >, 0);
		if (impl < ARRAY_SIZE(gcm_all_impl))
			ops = gcm_supp_impl[impl];
		break;
	}

	ASSERT3P(ops, !=, NULL);

	return (ops);
}

/*
 * Initialize all supported implementations.
 */
void
gcm_impl_init(void)
{
	gcm_impl_ops_t *curr_impl;
	int i, c;

	/* Move supported implementations into gcm_supp_impls */
	for (i = 0, c = 0; i < ARRAY_SIZE(gcm_all_impl); i++) {
		curr_impl = (gcm_impl_ops_t *)gcm_all_impl[i];

		if (curr_impl->is_supported())
			gcm_supp_impl[c++] = (gcm_impl_ops_t *)curr_impl;
	}
	gcm_supp_impl_cnt = c;

	/*
	 * Set the fastest implementation given the assumption that the
	 * hardware accelerated version is the fastest.
	 */
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
	if (gcm_pclmulqdq_impl.is_supported()) {
		memcpy(&gcm_fastest_impl, &gcm_pclmulqdq_impl,
		    sizeof (gcm_fastest_impl));
	} else
#endif
	{
		memcpy(&gcm_fastest_impl, &gcm_generic_impl,
		    sizeof (gcm_fastest_impl));
	}

	strlcpy(gcm_fastest_impl.name, "fastest", GCM_IMPL_NAME_MAX);

#ifdef CAN_USE_GCM_ASM
	/*
	 * Use the avx implementation if it's available and the implementation
	 * hasn't changed from its default value of fastest on module load.
	 */
	if (gcm_avx_will_work()) {
#ifdef HAVE_MOVBE
		if (zfs_movbe_available() == B_TRUE) {
			atomic_swap_32(&gcm_avx_can_use_movbe, B_TRUE);
		}
#endif
		if (GCM_IMPL_READ(user_sel_impl) == IMPL_FASTEST) {
			gcm_set_avx(B_TRUE);
		}
	}
#endif
	/* Finish initialization */
	atomic_swap_32(&icp_gcm_impl, user_sel_impl);
	gcm_impl_initialized = B_TRUE;
}

static const struct {
	char *name;
	uint32_t sel;
} gcm_impl_opts[] = {
		{ "cycle",	IMPL_CYCLE },
		{ "fastest",	IMPL_FASTEST },
#ifdef CAN_USE_GCM_ASM
		{ "avx",	IMPL_AVX },
#endif
};

/*
 * Function sets desired gcm implementation.
 *
 * If we are called before init(), user preference will be saved in
 * user_sel_impl, and applied in later init() call. This occurs when module
 * parameter is specified on module load. Otherwise, directly update
 * icp_gcm_impl.
 *
 * @val		Name of gcm implementation to use
 * @param	Unused.
 */
int
gcm_impl_set(const char *val)
{
	int err = -EINVAL;
	char req_name[GCM_IMPL_NAME_MAX];
	uint32_t impl = GCM_IMPL_READ(user_sel_impl);
	size_t i;

	/* sanitize input */
	i = strnlen(val, GCM_IMPL_NAME_MAX);
	if (i == 0 || i >= GCM_IMPL_NAME_MAX)
		return (err);

	strlcpy(req_name, val, GCM_IMPL_NAME_MAX);
	while (i > 0 && isspace(req_name[i-1]))
		i--;
	req_name[i] = '\0';

	/* Check mandatory options */
	for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
#ifdef CAN_USE_GCM_ASM
		/* Ignore avx implementation if it won't work. */
		if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
			continue;
		}
#endif
		if (strcmp(req_name, gcm_impl_opts[i].name) == 0) {
			impl = gcm_impl_opts[i].sel;
			err = 0;
			break;
		}
	}

	/* check all supported impl if init() was already called */
	if (err != 0 && gcm_impl_initialized) {
		/* check all supported implementations */
		for (i = 0; i < gcm_supp_impl_cnt; i++) {
			if (strcmp(req_name, gcm_supp_impl[i]->name) == 0) {
				impl = i;
				err = 0;
				break;
			}
		}
	}
#ifdef CAN_USE_GCM_ASM
	/*
	 * Use the avx implementation if available and the requested one is
	 * avx or fastest.
	 */
	if (gcm_avx_will_work() == B_TRUE &&
	    (impl == IMPL_AVX || impl == IMPL_FASTEST)) {
		gcm_set_avx(B_TRUE);
	} else {
		gcm_set_avx(B_FALSE);
	}
#endif

	if (err == 0) {
		if (gcm_impl_initialized)
			atomic_swap_32(&icp_gcm_impl, impl);
		else
			atomic_swap_32(&user_sel_impl, impl);
	}

	return (err);
}

#if defined(_KERNEL) && defined(__linux__)

static int
icp_gcm_impl_set(const char *val, zfs_kernel_param_t *kp)
{
	return (gcm_impl_set(val));
}

static int
icp_gcm_impl_get(char *buffer, zfs_kernel_param_t *kp)
{
	int i, cnt = 0;
	char *fmt;
	const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);

	ASSERT(gcm_impl_initialized);

	/* list mandatory options */
	for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
#ifdef CAN_USE_GCM_ASM
		/* Ignore avx implementation if it won't work. */
		if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
			continue;
		}
#endif
		fmt = (impl == gcm_impl_opts[i].sel) ? "[%s] " : "%s ";
		cnt += sprintf(buffer + cnt, fmt, gcm_impl_opts[i].name);
	}

	/* list all supported implementations */
	for (i = 0; i < gcm_supp_impl_cnt; i++) {
		fmt = (i == impl) ? "[%s] " : "%s ";
		cnt += sprintf(buffer + cnt, fmt, gcm_supp_impl[i]->name);
	}

	return (cnt);
}

module_param_call(icp_gcm_impl, icp_gcm_impl_set, icp_gcm_impl_get,
    NULL, 0644);
MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation.");
#endif /* defined(__KERNEL) */

#ifdef CAN_USE_GCM_ASM
#define	GCM_BLOCK_LEN 16
/*
 * The openssl asm routines are 6x aggregated and need that many bytes
 * at minimum.
 */
#define	GCM_AVX_MIN_DECRYPT_BYTES (GCM_BLOCK_LEN * 6)
#define	GCM_AVX_MIN_ENCRYPT_BYTES (GCM_BLOCK_LEN * 6 * 3)
/*
 * Ensure the chunk size is reasonable since we are allocating a
 * GCM_AVX_MAX_CHUNK_SIZEd buffer and disabling preemption and interrupts.
 */
#define	GCM_AVX_MAX_CHUNK_SIZE \
	(((128*1024)/GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES)

/* Clear the FPU registers since they hold sensitive internal state. */
#define	clear_fpu_regs() clear_fpu_regs_avx()
#define	GHASH_AVX(ctx, in, len) \
    gcm_ghash_avx((ctx)->gcm_ghash, (const uint64_t *)(ctx)->gcm_Htable, \
    in, len)

#define	gcm_incr_counter_block(ctx) gcm_incr_counter_block_by(ctx, 1)

/* Get the chunk size module parameter. */
#define	GCM_CHUNK_SIZE_READ *(volatile uint32_t *) &gcm_avx_chunk_size

/*
 * Module parameter: number of bytes to process at once while owning the FPU.
 * Rounded down to the next GCM_AVX_MIN_DECRYPT_BYTES byte boundary and is
 * ensured to be greater or equal than GCM_AVX_MIN_DECRYPT_BYTES.
 */
static uint32_t gcm_avx_chunk_size =
	((32 * 1024) / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES;

extern void clear_fpu_regs_avx(void);
extern void gcm_xor_avx(const uint8_t *src, uint8_t *dst);
extern void aes_encrypt_intel(const uint32_t rk[], int nr,
    const uint32_t pt[4], uint32_t ct[4]);

extern void gcm_init_htab_avx(uint64_t *Htable, const uint64_t H[2]);
extern void gcm_ghash_avx(uint64_t ghash[2], const uint64_t *Htable,
    const uint8_t *in, size_t len);

extern size_t aesni_gcm_encrypt(const uint8_t *, uint8_t *, size_t,
    const void *, uint64_t *, uint64_t *);

extern size_t aesni_gcm_decrypt(const uint8_t *, uint8_t *, size_t,
    const void *, uint64_t *, uint64_t *);

static inline boolean_t
gcm_avx_will_work(void)
{
	/* Avx should imply aes-ni and pclmulqdq, but make sure anyhow. */
	return (kfpu_allowed() &&
	    zfs_avx_available() && zfs_aes_available() &&
	    zfs_pclmulqdq_available());
}

static inline void
gcm_set_avx(boolean_t val)
{
	if (gcm_avx_will_work() == B_TRUE) {
		atomic_swap_32(&gcm_use_avx, val);
	}
}

static inline boolean_t
gcm_toggle_avx(void)
{
	if (gcm_avx_will_work() == B_TRUE) {
		return (atomic_toggle_boolean_nv(&GCM_IMPL_USE_AVX));
	} else {
		return (B_FALSE);
	}
}

static inline size_t
gcm_simd_get_htab_size(boolean_t simd_mode)
{
	switch (simd_mode) {
	case B_TRUE:
		return (2 * 6 * 2 * sizeof (uint64_t));

	default:
		return (0);
	}
}

/*
 * Clear sensitive data in the context.
 *
 * ctx->gcm_remainder may contain a plaintext remainder. ctx->gcm_H and
 * ctx->gcm_Htable contain the hash sub key which protects authentication.
 *
 * Although extremely unlikely, ctx->gcm_J0 and ctx->gcm_tmp could be used for
 * a known plaintext attack, they consists of the IV and the first and last
 * counter respectively. If they should be cleared is debatable.
 */
static inline void
gcm_clear_ctx(gcm_ctx_t *ctx)
{
	memset(ctx->gcm_remainder, 0, sizeof (ctx->gcm_remainder));
	memset(ctx->gcm_H, 0, sizeof (ctx->gcm_H));
	memset(ctx->gcm_J0, 0, sizeof (ctx->gcm_J0));
	memset(ctx->gcm_tmp, 0, sizeof (ctx->gcm_tmp));
}

/* Increment the GCM counter block by n. */
static inline void
gcm_incr_counter_block_by(gcm_ctx_t *ctx, int n)
{
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	uint64_t counter = ntohll(ctx->gcm_cb[1] & counter_mask);

	counter = htonll(counter + n);
	counter &= counter_mask;
	ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
}

/*
 * Encrypt multiple blocks of data in GCM mode.
 * This is done in gcm_avx_chunk_size chunks, utilizing AVX assembler routines
 * if possible. While processing a chunk the FPU is "locked".
 */
static int
gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *ctx, char *data,
    size_t length, crypto_data_t *out, size_t block_size)
{
	size_t bleft = length;
	size_t need = 0;
	size_t done = 0;
	uint8_t *datap = (uint8_t *)data;
	size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
	const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
	uint64_t *ghash = ctx->gcm_ghash;
	uint64_t *cb = ctx->gcm_cb;
	uint8_t *ct_buf = NULL;
	uint8_t *tmp = (uint8_t *)ctx->gcm_tmp;
	int rv = CRYPTO_SUCCESS;

	ASSERT(block_size == GCM_BLOCK_LEN);
	/*
	 * If the last call left an incomplete block, try to fill
	 * it first.
	 */
	if (ctx->gcm_remainder_len > 0) {
		need = block_size - ctx->gcm_remainder_len;
		if (length < need) {
			/* Accumulate bytes here and return. */
			memcpy((uint8_t *)ctx->gcm_remainder +
			    ctx->gcm_remainder_len, datap, length);

			ctx->gcm_remainder_len += length;
			if (ctx->gcm_copy_to == NULL) {
				ctx->gcm_copy_to = datap;
			}
			return (CRYPTO_SUCCESS);
		} else {
			/* Complete incomplete block. */
			memcpy((uint8_t *)ctx->gcm_remainder +
			    ctx->gcm_remainder_len, datap, need);

			ctx->gcm_copy_to = NULL;
		}
	}

	/* Allocate a buffer to encrypt to if there is enough input. */
	if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) {
		ct_buf = vmem_alloc(chunk_size, KM_SLEEP);
		if (ct_buf == NULL) {
			return (CRYPTO_HOST_MEMORY);
		}
	}

	/* If we completed an incomplete block, encrypt and write it out. */
	if (ctx->gcm_remainder_len > 0) {
		kfpu_begin();
		aes_encrypt_intel(key->encr_ks.ks32, key->nr,
		    (const uint32_t *)cb, (uint32_t *)tmp);

		gcm_xor_avx((const uint8_t *) ctx->gcm_remainder, tmp);
		GHASH_AVX(ctx, tmp, block_size);
		clear_fpu_regs();
		kfpu_end();
		rv = crypto_put_output_data(tmp, out, block_size);
		out->cd_offset += block_size;
		gcm_incr_counter_block(ctx);
		ctx->gcm_processed_data_len += block_size;
		bleft -= need;
		datap += need;
		ctx->gcm_remainder_len = 0;
	}

	/* Do the bulk encryption in chunk_size blocks. */
	for (; bleft >= chunk_size; bleft -= chunk_size) {
		kfpu_begin();
		done = aesni_gcm_encrypt(
		    datap, ct_buf, chunk_size, key, cb, ghash);

		clear_fpu_regs();
		kfpu_end();
		if (done != chunk_size) {
			rv = CRYPTO_FAILED;
			goto out_nofpu;
		}
		rv = crypto_put_output_data(ct_buf, out, chunk_size);
		if (rv != CRYPTO_SUCCESS) {
			goto out_nofpu;
		}
		out->cd_offset += chunk_size;
		datap += chunk_size;
		ctx->gcm_processed_data_len += chunk_size;
	}
	/* Check if we are already done. */
	if (bleft == 0) {
		goto out_nofpu;
	}
	/* Bulk encrypt the remaining data. */
	kfpu_begin();
	if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) {
		done = aesni_gcm_encrypt(datap, ct_buf, bleft, key, cb, ghash);
		if (done == 0) {
			rv = CRYPTO_FAILED;
			goto out;
		}
		rv = crypto_put_output_data(ct_buf, out, done);
		if (rv != CRYPTO_SUCCESS) {
			goto out;
		}
		out->cd_offset += done;
		ctx->gcm_processed_data_len += done;
		datap += done;
		bleft -= done;

	}
	/* Less than GCM_AVX_MIN_ENCRYPT_BYTES remain, operate on blocks. */
	while (bleft > 0) {
		if (bleft < block_size) {
			memcpy(ctx->gcm_remainder, datap, bleft);
			ctx->gcm_remainder_len = bleft;
			ctx->gcm_copy_to = datap;
			goto out;
		}
		/* Encrypt, hash and write out. */
		aes_encrypt_intel(key->encr_ks.ks32, key->nr,
		    (const uint32_t *)cb, (uint32_t *)tmp);

		gcm_xor_avx(datap, tmp);
		GHASH_AVX(ctx, tmp, block_size);
		rv = crypto_put_output_data(tmp, out, block_size);
		if (rv != CRYPTO_SUCCESS) {
			goto out;
		}
		out->cd_offset += block_size;
		gcm_incr_counter_block(ctx);
		ctx->gcm_processed_data_len += block_size;
		datap += block_size;
		bleft -= block_size;
	}
out:
	clear_fpu_regs();
	kfpu_end();
out_nofpu:
	if (ct_buf != NULL) {
		vmem_free(ct_buf, chunk_size);
	}
	return (rv);
}

/*
 * Finalize the encryption: Zero fill, encrypt, hash and write out an eventual
 * incomplete last block. Encrypt the ICB. Calculate the tag and write it out.
 */
static int
gcm_encrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
{
	uint8_t *ghash = (uint8_t *)ctx->gcm_ghash;
	uint32_t *J0 = (uint32_t *)ctx->gcm_J0;
	uint8_t *remainder = (uint8_t *)ctx->gcm_remainder;
	size_t rem_len = ctx->gcm_remainder_len;
	const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32;
	int aes_rounds = ((aes_key_t *)keysched)->nr;
	int rv;

	ASSERT(block_size == GCM_BLOCK_LEN);

	if (out->cd_length < (rem_len + ctx->gcm_tag_len)) {
		return (CRYPTO_DATA_LEN_RANGE);
	}

	kfpu_begin();
	/* Pad last incomplete block with zeros, encrypt and hash. */
	if (rem_len > 0) {
		uint8_t *tmp = (uint8_t *)ctx->gcm_tmp;
		const uint32_t *cb = (uint32_t *)ctx->gcm_cb;

		aes_encrypt_intel(keysched, aes_rounds, cb, (uint32_t *)tmp);
		memset(remainder + rem_len, 0, block_size - rem_len);
		for (int i = 0; i < rem_len; i++) {
			remainder[i] ^= tmp[i];
		}
		GHASH_AVX(ctx, remainder, block_size);
		ctx->gcm_processed_data_len += rem_len;
		/* No need to increment counter_block, it's the last block. */
	}
	/* Finish tag. */
	ctx->gcm_len_a_len_c[1] =
	    htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
	GHASH_AVX(ctx, (const uint8_t *)ctx->gcm_len_a_len_c, block_size);
	aes_encrypt_intel(keysched, aes_rounds, J0, J0);

	gcm_xor_avx((uint8_t *)J0, ghash);
	clear_fpu_regs();
	kfpu_end();

	/* Output remainder. */
	if (rem_len > 0) {
		rv = crypto_put_output_data(remainder, out, rem_len);
		if (rv != CRYPTO_SUCCESS)
			return (rv);
	}
	out->cd_offset += rem_len;
	ctx->gcm_remainder_len = 0;
	rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
	if (rv != CRYPTO_SUCCESS)
		return (rv);

	out->cd_offset += ctx->gcm_tag_len;
	/* Clear sensitive data in the context before returning. */
	gcm_clear_ctx(ctx);
	return (CRYPTO_SUCCESS);
}

/*
 * Finalize decryption: We just have accumulated crypto text, so now we
 * decrypt it here inplace.
 */
static int
gcm_decrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
{
	ASSERT3U(ctx->gcm_processed_data_len, ==, ctx->gcm_pt_buf_len);
	ASSERT3U(block_size, ==, 16);

	size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
	size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
	uint8_t *datap = ctx->gcm_pt_buf;
	const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
	uint32_t *cb = (uint32_t *)ctx->gcm_cb;
	uint64_t *ghash = ctx->gcm_ghash;
	uint32_t *tmp = (uint32_t *)ctx->gcm_tmp;
	int rv = CRYPTO_SUCCESS;
	size_t bleft, done;

	/*
	 * Decrypt in chunks of gcm_avx_chunk_size, which is asserted to be
	 * greater or equal than GCM_AVX_MIN_ENCRYPT_BYTES, and a multiple of
	 * GCM_AVX_MIN_DECRYPT_BYTES.
	 */
	for (bleft = pt_len; bleft >= chunk_size; bleft -= chunk_size) {
		kfpu_begin();
		done = aesni_gcm_decrypt(datap, datap, chunk_size,
		    (const void *)key, ctx->gcm_cb, ghash);
		clear_fpu_regs();
		kfpu_end();
		if (done != chunk_size) {
			return (CRYPTO_FAILED);
		}
		datap += done;
	}
	/* Decrypt remainder, which is less than chunk size, in one go. */
	kfpu_begin();
	if (bleft >= GCM_AVX_MIN_DECRYPT_BYTES) {
		done = aesni_gcm_decrypt(datap, datap, bleft,
		    (const void *)key, ctx->gcm_cb, ghash);
		if (done == 0) {
			clear_fpu_regs();
			kfpu_end();
			return (CRYPTO_FAILED);
		}
		datap += done;
		bleft -= done;
	}
	ASSERT(bleft < GCM_AVX_MIN_DECRYPT_BYTES);

	/*
	 * Now less than GCM_AVX_MIN_DECRYPT_BYTES bytes remain,
	 * decrypt them block by block.
	 */
	while (bleft > 0) {
		/* Incomplete last block. */
		if (bleft < block_size) {
			uint8_t *lastb = (uint8_t *)ctx->gcm_remainder;

			memset(lastb, 0, block_size);
			memcpy(lastb, datap, bleft);
			/* The GCM processing. */
			GHASH_AVX(ctx, lastb, block_size);
			aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp);
			for (size_t i = 0; i < bleft; i++) {
				datap[i] = lastb[i] ^ ((uint8_t *)tmp)[i];
			}
			break;
		}
		/* The GCM processing. */
		GHASH_AVX(ctx, datap, block_size);
		aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp);
		gcm_xor_avx((uint8_t *)tmp, datap);
		gcm_incr_counter_block(ctx);

		datap += block_size;
		bleft -= block_size;
	}
	if (rv != CRYPTO_SUCCESS) {
		clear_fpu_regs();
		kfpu_end();
		return (rv);
	}
	/* Decryption done, finish the tag. */
	ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
	GHASH_AVX(ctx, (uint8_t *)ctx->gcm_len_a_len_c, block_size);
	aes_encrypt_intel(key->encr_ks.ks32, key->nr, (uint32_t *)ctx->gcm_J0,
	    (uint32_t *)ctx->gcm_J0);

	gcm_xor_avx((uint8_t *)ctx->gcm_J0, (uint8_t *)ghash);

	/* We are done with the FPU, restore its state. */
	clear_fpu_regs();
	kfpu_end();

	/* Compare the input authentication tag with what we calculated. */
	if (memcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
		/* They don't match. */
		return (CRYPTO_INVALID_MAC);
	}
	rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
	if (rv != CRYPTO_SUCCESS) {
		return (rv);
	}
	out->cd_offset += pt_len;
	gcm_clear_ctx(ctx);
	return (CRYPTO_SUCCESS);
}

/*
 * Initialize the GCM params H, Htabtle and the counter block. Save the
 * initial counter block.
 */
static int
gcm_init_avx(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
    unsigned char *auth_data, size_t auth_data_len, size_t block_size)
{
	uint8_t *cb = (uint8_t *)ctx->gcm_cb;
	uint64_t *H = ctx->gcm_H;
	const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32;
	int aes_rounds = ((aes_key_t *)ctx->gcm_keysched)->nr;
	uint8_t *datap = auth_data;
	size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
	size_t bleft;

	ASSERT(block_size == GCM_BLOCK_LEN);

	/* Init H (encrypt zero block) and create the initial counter block. */
	memset(ctx->gcm_ghash, 0, sizeof (ctx->gcm_ghash));
	memset(H, 0, sizeof (ctx->gcm_H));
	kfpu_begin();
	aes_encrypt_intel(keysched, aes_rounds,
	    (const uint32_t *)H, (uint32_t *)H);

	gcm_init_htab_avx(ctx->gcm_Htable, H);

	if (iv_len == 12) {
		memcpy(cb, iv, 12);
		cb[12] = 0;
		cb[13] = 0;
		cb[14] = 0;
		cb[15] = 1;
		/* We need the ICB later. */
		memcpy(ctx->gcm_J0, cb, sizeof (ctx->gcm_J0));
	} else {
		/*
		 * Most consumers use 12 byte IVs, so it's OK to use the
		 * original routines for other IV sizes, just avoid nesting
		 * kfpu_begin calls.
		 */
		clear_fpu_regs();
		kfpu_end();
		gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
		    aes_copy_block, aes_xor_block);
		kfpu_begin();
	}

	/* Openssl post increments the counter, adjust for that. */
	gcm_incr_counter_block(ctx);

	/* Ghash AAD in chunk_size blocks. */
	for (bleft = auth_data_len; bleft >= chunk_size; bleft -= chunk_size) {
		GHASH_AVX(ctx, datap, chunk_size);
		datap += chunk_size;
		clear_fpu_regs();
		kfpu_end();
		kfpu_begin();
	}
	/* Ghash the remainder and handle possible incomplete GCM block. */
	if (bleft > 0) {
		size_t incomp = bleft % block_size;

		bleft -= incomp;
		if (bleft > 0) {
			GHASH_AVX(ctx, datap, bleft);
			datap += bleft;
		}
		if (incomp > 0) {
			/* Zero pad and hash incomplete last block. */
			uint8_t *authp = (uint8_t *)ctx->gcm_tmp;

			memset(authp, 0, block_size);
			memcpy(authp, datap, incomp);
			GHASH_AVX(ctx, authp, block_size);
		}
	}
	clear_fpu_regs();
	kfpu_end();
	return (CRYPTO_SUCCESS);
}

#if defined(_KERNEL)
static int
icp_gcm_avx_set_chunk_size(const char *buf, zfs_kernel_param_t *kp)
{
	unsigned long val;
	char val_rounded[16];
	int error = 0;

	error = kstrtoul(buf, 0, &val);
	if (error)
		return (error);

	val = (val / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES;

	if (val < GCM_AVX_MIN_ENCRYPT_BYTES || val > GCM_AVX_MAX_CHUNK_SIZE)
		return (-EINVAL);

	snprintf(val_rounded, 16, "%u", (uint32_t)val);
	error = param_set_uint(val_rounded, kp);
	return (error);
}

module_param_call(icp_gcm_avx_chunk_size, icp_gcm_avx_set_chunk_size,
    param_get_uint, &gcm_avx_chunk_size, 0644);

MODULE_PARM_DESC(icp_gcm_avx_chunk_size,
	"How many bytes to process while owning the FPU");

#endif /* defined(__KERNEL) */
#endif /* ifdef CAN_USE_GCM_ASM */