aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/zfs/vdev_draid.c
blob: 6b7ad7021a507ab7105967df1ddb295b5c94fca2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2018 Intel Corporation.
 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
 */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_draid.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_rebuild.h>
#include <sys/abd.h>
#include <sys/zio.h>
#include <sys/nvpair.h>
#include <sys/zio_checksum.h>
#include <sys/fs/zfs.h>
#include <sys/fm/fs/zfs.h>
#include <zfs_fletcher.h>

#ifdef ZFS_DEBUG
#include <sys/vdev.h>	/* For vdev_xlate() in vdev_draid_io_verify() */
#endif

/*
 * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
 * comprised of multiple raidz redundancy groups which are spread over the
 * dRAID children. To ensure an even distribution, and avoid hot spots, a
 * permutation mapping is applied to the order of the dRAID children.
 * This mixing effectively distributes the parity columns evenly over all
 * of the disks in the dRAID.
 *
 * This is beneficial because it means when resilvering all of the disks
 * can participate thereby increasing the available IOPs and bandwidth.
 * Furthermore, by reserving a small fraction of each child's total capacity
 * virtual distributed spare disks can be created. These spares similarly
 * benefit from the performance gains of spanning all of the children. The
 * consequence of which is that resilvering to a distributed spare can
 * substantially reduce the time required to restore full parity to pool
 * with a failed disks.
 *
 * === dRAID group layout ===
 *
 * First, let's define a "row" in the configuration to be a 16M chunk from
 * each physical drive at the same offset. This is the minimum allowable
 * size since it must be possible to store a full 16M block when there is
 * only a single data column. Next, we define a "group" to be a set of
 * sequential disks containing both the parity and data columns. We allow
 * groups to span multiple rows in order to align any group size to any
 * number of physical drives. Finally, a "slice" is comprised of the rows
 * which contain the target number of groups. The permutation mappings
 * are applied in a round robin fashion to each slice.
 *
 * Given D+P drives in a group (including parity drives) and C-S physical
 * drives (not including the spare drives), we can distribute the groups
 * across R rows without remainder by selecting the least common multiple
 * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
 *
 * In the example below, there are C=14 physical drives in the configuration
 * with S=2 drives worth of spare capacity. Each group has a width of 9
 * which includes D=8 data and P=1 parity drive. There are 4 groups and
 * 3 rows per slice.  Each group has a size of 144M (16M * 9) and a slice
 * size is 576M (144M * 4). When allocating from a dRAID each group is
 * filled before moving on to the next as show in slice0 below.
 *
 *             data disks (8 data + 1 parity)          spares (2)
 *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
 *  ^  | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
 *  |  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
 *  |  |              group 0              |  group 1..|       |
 *  |  +-----------------------------------+-----------+-------|
 *  |  | 0   1   2   3   4   5   6   7   8 | 36  37  38|       |  r
 *  |  | 9   10  11  12  13  14  15  16  17| 45  46  47|       |  o
 *  |  | 18  19  20  21  22  23  24  25  26| 54  55  56|       |  w
 *     | 27  28  29  30  31  32  33  34  35| 63  64  65|       |  0
 *  s  +-----------------------+-----------------------+-------+
 *  l  |       ..group 1       |        group 2..      |       |
 *  i  +-----------------------+-----------------------+-------+
 *  c  | 39  40  41  42  43  44| 72  73  74  75  76  77|       |  r
 *  e  | 48  49  50  51  52  53| 81  82  83  84  85  86|       |  o
 *  0  | 57  58  59  60  61  62| 90  91  92  93  94  95|       |  w
 *     | 66  67  68  69  70  71| 99 100 101 102 103 104|       |  1
 *  |  +-----------+-----------+-----------------------+-------+
 *  |  |..group 2  |            group 3                |       |
 *  |  +-----------+-----------+-----------------------+-------+
 *  |  | 78  79  80|108 109 110 111 112 113 114 115 116|       |  r
 *  |  | 87  88  89|117 118 119 120 121 122 123 124 125|       |  o
 *  |  | 96  97  98|126 127 128 129 130 131 132 133 134|       |  w
 *  v  |105 106 107|135 136 137 138 139 140 141 142 143|       |  2
 *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
 *     | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
 *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
 *  l  |              group 4              |  group 5..|       | row 3
 *  i  +-----------------------+-----------+-----------+-------|
 *  c  |       ..group 5       |        group 6..      |       | row 4
 *  e  +-----------+-----------+-----------------------+-------+
 *  1  |..group 6  |            group 7                |       | row 5
 *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
 *     | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
 *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
 *  l  |              group 8              |  group 9..|       | row 6
 *  i  +-----------------------------------------------+-------|
 *  c  |       ..group 9       |        group 10..     |       | row 7
 *  e  +-----------------------+-----------------------+-------+
 *  2  |..group 10 |            group 11               |       | row 8
 *     +-----------+-----------------------------------+-------+
 *
 * This layout has several advantages over requiring that each row contain
 * a whole number of groups.
 *
 * 1. The group count is not a relevant parameter when defining a dRAID
 *    layout. Only the group width is needed, and *all* groups will have
 *    the desired size.
 *
 * 2. All possible group widths (<= physical disk count) can be supported.
 *
 * 3. The logic within vdev_draid.c is simplified when the group width is
 *    the same for all groups (although some of the logic around computing
 *    permutation numbers and drive offsets is more complicated).
 *
 * N.B. The following array describes all valid dRAID permutation maps.
 * Each row is used to generate a permutation map for a different number
 * of children from a unique seed. The seeds were generated and carefully
 * evaluated by the 'draid' utility in order to provide balanced mappings.
 * In addition to the seed a checksum of the in-memory mapping is stored
 * for verification.
 *
 * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
 * with a given permutation map) is the ratio of the amounts of I/O that will
 * be sent to the least and most busy disks when resilvering. The average
 * imbalance ratio (of a given number of disks and permutation map) is the
 * average of the ratios of all possible single and double disk failures.
 *
 * In order to achieve a low imbalance ratio the number of permutations in
 * the mapping must be significantly larger than the number of children.
 * For dRAID the number of permutations has been limited to 512 to minimize
 * the map size. This does result in a gradually increasing imbalance ratio
 * as seen in the table below. Increasing the number of permutations for
 * larger child counts would reduce the imbalance ratio. However, in practice
 * when there are a large number of children each child is responsible for
 * fewer total IOs so it's less of a concern.
 *
 * Note these values are hard coded and must never be changed.  Existing
 * pools depend on the same mapping always being generated in order to
 * read and write from the correct locations.  Any change would make
 * existing pools completely inaccessible.
 */
static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
	{   2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d },	/* 1.000 */
	{   3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 },	/* 1.000 */
	{   4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 },	/* 1.000 */
	{   5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 },	/* 1.010 */
	{   6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 },	/* 1.031 */
	{   7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee },	/* 1.043 */
	{   8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 },	/* 1.059 */
	{   9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 },	/* 1.056 */
	{  10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 },	/* 1.072 */
	{  11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c },	/* 1.083 */
	{  12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e },	/* 1.097 */
	{  13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 },	/* 1.100 */
	{  14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 },	/* 1.121 */
	{  15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 },	/* 1.103 */
	{  16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 },	/* 1.111 */
	{  17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe },	/* 1.133 */
	{  18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 },	/* 1.131 */
	{  19, 256, 0x892e343f2f31d690, 0x00000029eb392835 },	/* 1.130 */
	{  20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c },	/* 1.141 */
	{  21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 },	/* 1.139 */
	{  22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 },	/* 1.150 */
	{  23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f },	/* 1.174 */
	{  24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 },	/* 1.168 */
	{  25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 },	/* 1.180 */
	{  26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba },	/* 1.226 */
	{  27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 },	/* 1.228 */
	{  28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c },	/* 1.217 */
	{  29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c },	/* 1.239 */
	{  30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 },	/* 1.238 */
	{  31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f },	/* 1.273 */
	{  32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 },	/* 1.191 */
	{  33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 },	/* 1.199 */
	{  34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 },	/* 1.195 */
	{  35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 },	/* 1.201 */
	{  36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef },	/* 1.194 */
	{  37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 },	/* 1.237 */
	{  38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 },	/* 1.242 */
	{  39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd },	/* 1.231 */
	{  40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 },	/* 1.233 */
	{  41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 },	/* 1.271 */
	{  42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 },	/* 1.263 */
	{  43, 512, 0xbaa5125faa781854, 0x000001c76789e278 },	/* 1.270 */
	{  44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb },	/* 1.281 */
	{  45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 },	/* 1.282 */
	{  46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b },	/* 1.286 */
	{  47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 },	/* 1.329 */
	{  48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b },	/* 1.286 */
	{  49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 },	/* 1.322 */
	{  50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 },	/* 1.335 */
	{  51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 },	/* 1.305 */
	{  52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf },	/* 1.330 */
	{  53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 },	/* 1.365 */
	{  54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 },	/* 1.334 */
	{  55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 },	/* 1.364 */
	{  56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e },	/* 1.374 */
	{  57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 },	/* 1.363 */
	{  58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 },	/* 1.401 */
	{  59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c },	/* 1.392 */
	{  60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 },	/* 1.360 */
	{  61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd },	/* 1.396 */
	{  62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c },	/* 1.453 */
	{  63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 },	/* 1.437 */
	{  64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 },	/* 1.402 */
	{  65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 },	/* 1.459 */
	{  66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 },	/* 1.423 */
	{  67, 512, 0x910b9714f698a877, 0x00000451ea65d5db },	/* 1.447 */
	{  68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 },	/* 1.450 */
	{  69, 512, 0x836d4968fbaa3706, 0x000004954068a380 },	/* 1.455 */
	{  70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d },	/* 1.463 */
	{  71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 },	/* 1.463 */
	{  72, 512, 0x42763a680d5bed8e, 0x000005084275c680 },	/* 1.452 */
	{  73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab },	/* 1.498 */
	{  74, 512, 0x9fa08548b1621a44, 0x0000054708019247 },	/* 1.526 */
	{  75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 },	/* 1.491 */
	{  76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 },	/* 1.470 */
	{  77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 },	/* 1.527 */
	{  78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 },	/* 1.509 */
	{  79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e },	/* 1.569 */
	{  80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c },	/* 1.555 */
	{  81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 },	/* 1.509 */
	{  82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 },	/* 1.596 */
	{  83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e },	/* 1.568 */
	{  84, 512, 0xba02545069ddc6dc, 0x000006d19861364f },	/* 1.541 */
	{  85, 512, 0x447c73192c35073e, 0x000006fce315ce35 },	/* 1.623 */
	{  86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b },	/* 1.620 */
	{  87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 },	/* 1.597 */
	{  88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b },	/* 1.575 */
	{  89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc },	/* 1.627 */
	{  90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb },	/* 1.596 */
	{  91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 },	/* 1.622 */
	{  92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e },	/* 1.695 */
	{  93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c },	/* 1.605 */
	{  94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc },	/* 1.625 */
	{  95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 },	/* 1.687 */
	{  96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a },	/* 1.621 */
	{  97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 },	/* 1.699 */
	{  98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b },	/* 1.688 */
	{  99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce },	/* 1.642 */
	{ 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc },	/* 1.683 */
	{ 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 },	/* 1.755 */
	{ 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 },	/* 1.692 */
	{ 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 },	/* 1.747 */
	{ 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 },	/* 1.751 */
	{ 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 },	/* 1.751 */
	{ 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f },	/* 1.726 */
	{ 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d },	/* 1.788 */
	{ 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 },	/* 1.740 */
	{ 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 },	/* 1.780 */
	{ 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 },	/* 1.836 */
	{ 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 },	/* 1.778 */
	{ 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 },	/* 1.831 */
	{ 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df },	/* 1.825 */
	{ 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 },	/* 1.826 */
	{ 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 },	/* 1.843 */
	{ 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d },	/* 1.826 */
	{ 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b },	/* 1.803 */
	{ 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 },	/* 1.857 */
	{ 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 },	/* 1.877 */
	{ 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 },	/* 1.849 */
	{ 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d },	/* 1.867 */
	{ 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 },	/* 1.978 */
	{ 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d },	/* 1.947 */
	{ 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea },	/* 1.865 */
	{ 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f },	/* 1.881 */
	{ 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b },	/* 1.882 */
	{ 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e },	/* 1.867 */
	{ 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e },	/* 1.972 */
	{ 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 },	/* 1.896 */
	{ 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d },	/* 1.965 */
	{ 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 },	/* 1.963 */
	{ 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 },	/* 1.925 */
	{ 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 },	/* 1.862 */
	{ 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 },	/* 2.042 */
	{ 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 },	/* 1.935 */
	{ 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 },	/* 2.005 */
	{ 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c },	/* 2.041 */
	{ 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 },	/* 1.997 */
	{ 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 },	/* 1.996 */
	{ 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d },	/* 2.053 */
	{ 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a },	/* 1.971 */
	{ 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 },	/* 2.018 */
	{ 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd },	/* 1.961 */
	{ 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 },	/* 2.046 */
	{ 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb },	/* 1.968 */
	{ 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 },	/* 2.143 */
	{ 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 },	/* 2.064 */
	{ 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 },	/* 2.023 */
	{ 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c },	/* 2.136 */
	{ 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 },	/* 2.063 */
	{ 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 },	/* 1.974 */
	{ 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 },	/* 2.210 */
	{ 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a },	/* 2.006 */
	{ 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 },	/* 2.193 */
	{ 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 },	/* 2.163 */
	{ 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc },	/* 2.046 */
	{ 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 },	/* 2.084 */
	{ 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 },	/* 2.264 */
	{ 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 },	/* 2.074 */
	{ 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 },	/* 2.282 */
	{ 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf },	/* 2.148 */
	{ 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 },	/* 2.355 */
	{ 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 },	/* 2.164 */
	{ 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a },	/* 2.393 */
	{ 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 },	/* 2.178 */
	{ 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc },	/* 2.334 */
	{ 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b },	/* 2.266 */
	{ 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 },	/* 2.304 */
	{ 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d },	/* 2.218 */
	{ 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff },	/* 2.377 */
	{ 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 },	/* 2.155 */
	{ 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 },	/* 2.404 */
	{ 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 },	/* 2.205 */
	{ 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d },	/* 2.359 */
	{ 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 },	/* 2.158 */
	{ 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b },	/* 2.614 */
	{ 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc },	/* 2.239 */
	{ 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc },	/* 2.493 */
	{ 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c },	/* 2.327 */
	{ 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 },	/* 2.231 */
	{ 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c },	/* 2.237 */
	{ 182, 512, 0xe6035defea48f933, 0x00002038e3346658 },	/* 2.691 */
	{ 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e },	/* 2.170 */
	{ 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 },	/* 2.600 */
	{ 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc },	/* 2.391 */
	{ 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 },	/* 2.677 */
	{ 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c },	/* 2.410 */
	{ 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 },	/* 2.776 */
	{ 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 },	/* 2.266 */
	{ 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 },	/* 2.717 */
	{ 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c },	/* 2.474 */
	{ 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 },	/* 2.673 */
	{ 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 },	/* 2.420 */
	{ 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 },	/* 2.898 */
	{ 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c },	/* 2.363 */
	{ 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e },	/* 2.747 */
	{ 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 },	/* 2.531 */
	{ 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 },	/* 2.707 */
	{ 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 },	/* 2.315 */
	{ 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf },	/* 3.012 */
	{ 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 },	/* 2.378 */
	{ 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 },	/* 2.969 */
	{ 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d },	/* 2.594 */
	{ 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd },	/* 2.763 */
	{ 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 },	/* 2.457 */
	{ 206, 512, 0xc02fc96684715a16, 0x0000297515608601 },	/* 3.057 */
	{ 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 },	/* 2.590 */
	{ 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b },	/* 3.047 */
	{ 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 },	/* 2.676 */
	{ 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 },	/* 2.993 */
	{ 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 },	/* 2.457 */
	{ 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 },	/* 3.182 */
	{ 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 },	/* 2.563 */
	{ 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 },	/* 3.025 */
	{ 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f },	/* 2.730 */
	{ 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 },	/* 3.036 */
	{ 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 },	/* 2.722 */
	{ 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 },	/* 3.356 */
	{ 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 },	/* 2.697 */
	{ 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 },	/* 2.979 */
	{ 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 },	/* 2.858 */
	{ 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e },	/* 3.258 */
	{ 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 },	/* 2.693 */
	{ 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 },	/* 3.259 */
	{ 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c },	/* 2.733 */
	{ 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 },	/* 3.235 */
	{ 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 },	/* 2.983 */
	{ 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e },	/* 3.308 */
	{ 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 },	/* 2.715 */
	{ 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f },	/* 3.540 */
	{ 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 },	/* 2.779 */
	{ 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c },	/* 3.084 */
	{ 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc },	/* 2.987 */
	{ 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae },	/* 3.341 */
	{ 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 },	/* 2.793 */
	{ 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 },	/* 3.518 */
	{ 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 },	/* 2.962 */
	{ 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 },	/* 3.196 */
	{ 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 },	/* 2.914 */
	{ 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 },	/* 3.408 */
	{ 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 },	/* 2.903 */
	{ 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 },	/* 3.778 */
	{ 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c },	/* 3.026 */
	{ 244, 512, 0xc740263f0301efa8, 0x00003a147146512d },	/* 3.347 */
	{ 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d },	/* 3.212 */
	{ 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 },	/* 3.482 */
	{ 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 },	/* 3.146 */
	{ 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f },	/* 3.626 */
	{ 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 },	/* 2.952 */
	{ 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e },	/* 3.463 */
	{ 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 },	/* 3.131 */
	{ 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c },	/* 3.538 */
	{ 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac },	/* 2.974 */
	{ 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 },	/* 3.843 */
	{ 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 },	/* 3.088 */
};

/*
 * Verify the map is valid. Each device index must appear exactly
 * once in every row, and the permutation array checksum must match.
 */
static int
verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
    uint64_t checksum)
{
	int countssz = sizeof (uint16_t) * children;
	uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);

	for (int i = 0; i < nperms; i++) {
		for (int j = 0; j < children; j++) {
			uint8_t val = perms[(i * children) + j];

			if (val >= children || counts[val] != i) {
				kmem_free(counts, countssz);
				return (EINVAL);
			}

			counts[val]++;
		}
	}

	if (checksum != 0) {
		int permssz = sizeof (uint8_t) * children * nperms;
		zio_cksum_t cksum;

		fletcher_4_native_varsize(perms, permssz, &cksum);

		if (checksum != cksum.zc_word[0]) {
			kmem_free(counts, countssz);
			return (ECKSUM);
		}
	}

	kmem_free(counts, countssz);

	return (0);
}

/*
 * Generate the permutation array for the draid_map_t.  These maps control
 * the placement of all data in a dRAID.  Therefore it's critical that the
 * seed always generates the same mapping.  We provide our own pseudo-random
 * number generator for this purpose.
 */
int
vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
{
	VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
	VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
	VERIFY3U(map->dm_seed, !=, 0);
	VERIFY3U(map->dm_nperms, !=, 0);
	VERIFY3P(map->dm_perms, ==, NULL);

#ifdef _KERNEL
	/*
	 * The kernel code always provides both a map_seed and checksum.
	 * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
	 * a zero checksum when generating new candidate maps.
	 */
	VERIFY3U(map->dm_checksum, !=, 0);
#endif
	uint64_t children = map->dm_children;
	uint64_t nperms = map->dm_nperms;
	int rowsz = sizeof (uint8_t) * children;
	int permssz = rowsz * nperms;
	uint8_t *perms;

	/* Allocate the permutation array */
	perms = vmem_alloc(permssz, KM_SLEEP);

	/* Setup an initial row with a known pattern */
	uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
	for (int i = 0; i < children; i++)
		initial_row[i] = i;

	uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
	uint8_t *current_row, *previous_row = initial_row;

	/*
	 * Perform a Fisher-Yates shuffle of each row using the previous
	 * row as the starting point.  An initial_row with known pattern
	 * is used as the input for the first row.
	 */
	for (int i = 0; i < nperms; i++) {
		current_row = &perms[i * children];
		memcpy(current_row, previous_row, rowsz);

		for (int j = children - 1; j > 0; j--) {
			uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
			uint8_t val = current_row[j];
			current_row[j] = current_row[k];
			current_row[k] = val;
		}

		previous_row = current_row;
	}

	kmem_free(initial_row, rowsz);

	int error = verify_perms(perms, children, nperms, map->dm_checksum);
	if (error) {
		vmem_free(perms, permssz);
		return (error);
	}

	*permsp = perms;

	return (0);
}

/*
 * Lookup the fixed draid_map_t for the requested number of children.
 */
int
vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
{
	for (int i = 0; i <= VDEV_DRAID_MAX_MAPS; i++) {
		if (draid_maps[i].dm_children == children) {
			*mapp = &draid_maps[i];
			return (0);
		}
	}

	return (ENOENT);
}

/*
 * Lookup the permutation array and iteration id for the provided offset.
 */
static void
vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
    uint8_t **base, uint64_t *iter)
{
	uint64_t ncols = vdc->vdc_children;
	uint64_t poff = pindex % (vdc->vdc_nperms * ncols);

	*base = vdc->vdc_perms + (poff / ncols) * ncols;
	*iter = poff % ncols;
}

static inline uint64_t
vdev_draid_permute_id(vdev_draid_config_t *vdc,
    uint8_t *base, uint64_t iter, uint64_t index)
{
	return ((base[index] + iter) % vdc->vdc_children);
}

/*
 * Return the asize which is the psize rounded up to a full group width.
 * i.e. vdev_draid_psize_to_asize().
 */
static uint64_t
vdev_draid_asize(vdev_t *vd, uint64_t psize)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;
	uint64_t ashift = vd->vdev_ashift;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);

	uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
	uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;

	ASSERT3U(asize, !=, 0);
	ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);

	return (asize);
}

/*
 * Deflate the asize to the psize, this includes stripping parity.
 */
uint64_t
vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT0(asize % vdc->vdc_groupwidth);

	return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
}

/*
 * Convert a logical offset to the corresponding group number.
 */
static uint64_t
vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);

	return (offset / vdc->vdc_groupsz);
}

/*
 * Convert a group number to the logical starting offset for that group.
 */
static uint64_t
vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);

	return (group * vdc->vdc_groupsz);
}


static void
vdev_draid_map_free_vsd(zio_t *zio)
{
	raidz_map_t *rm = zio->io_vsd;

	ASSERT0(rm->rm_freed);
	rm->rm_freed = B_TRUE;

	if (rm->rm_reports == 0) {
		vdev_raidz_map_free(rm);
	}
}

/*ARGSUSED*/
static void
vdev_draid_cksum_free(void *arg, size_t ignored)
{
	raidz_map_t *rm = arg;

	ASSERT3U(rm->rm_reports, >, 0);

	if (--rm->rm_reports == 0 && rm->rm_freed)
		vdev_raidz_map_free(rm);
}

static void
vdev_draid_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data)
{
	raidz_map_t *rm = zcr->zcr_cbdata;
	const size_t c = zcr->zcr_cbinfo;
	uint64_t skip_size = zcr->zcr_sector;
	uint64_t parity_size;
	size_t x, offset, size;

	if (good_data == NULL) {
		zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
		return;
	}

	/*
	 * Detailed cksum reporting is currently only supported for single
	 * row draid mappings, this covers the vast majority of zios. Only
	 * a dRAID zio which spans groups will have multiple rows.
	 */
	if (rm->rm_nrows != 1) {
		zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
		return;
	}

	raidz_row_t *rr = rm->rm_row[0];
	const abd_t *good = NULL;
	const abd_t *bad = rr->rr_col[c].rc_abd;

	if (c < rr->rr_firstdatacol) {
		/*
		 * The first time through, calculate the parity blocks for
		 * the good data (this relies on the fact that the good
		 * data never changes for a given logical zio)
		 */
		if (rr->rr_col[0].rc_gdata == NULL) {
			abd_t *bad_parity[VDEV_DRAID_MAXPARITY];

			/*
			 * Set up the rr_col[]s to generate the parity for
			 * good_data, first saving the parity bufs and
			 * replacing them with buffers to hold the result.
			 */
			for (x = 0; x < rr->rr_firstdatacol; x++) {
				bad_parity[x] = rr->rr_col[x].rc_abd;
				rr->rr_col[x].rc_abd = rr->rr_col[x].rc_gdata =
				    abd_alloc_sametype(rr->rr_col[x].rc_abd,
				    rr->rr_col[x].rc_size);
			}

			/*
			 * Fill in the data columns from good_data being
			 * careful to pad short columns and empty columns
			 * with a skip sector.
			 */
			uint64_t good_size = abd_get_size((abd_t *)good_data);

			offset = 0;
			for (; x < rr->rr_cols; x++) {
				abd_put(rr->rr_col[x].rc_abd);

				if (offset == good_size) {
					/* empty data column (small write) */
					rr->rr_col[x].rc_abd =
					    abd_get_zeros(skip_size);
				} else if (x < rr->rr_bigcols) {
					/* this is a "big column" */
					size = rr->rr_col[x].rc_size;
					rr->rr_col[x].rc_abd =
					    abd_get_offset_size(
					    (abd_t *)good_data, offset, size);
					offset += size;
				} else {
					/* short data column, add skip sector */
					size = rr->rr_col[x].rc_size -skip_size;
					rr->rr_col[x].rc_abd = abd_alloc(
					    rr->rr_col[x].rc_size, B_TRUE);
					abd_copy_off(rr->rr_col[x].rc_abd,
					    (abd_t *)good_data, 0, offset,
					    size);
					abd_zero_off(rr->rr_col[x].rc_abd,
					    size, skip_size);
					offset += size;
				}
			}

			/*
			 * Construct the parity from the good data.
			 */
			vdev_raidz_generate_parity_row(rm, rr);

			/* restore everything back to its original state */
			for (x = 0; x < rr->rr_firstdatacol; x++)
				rr->rr_col[x].rc_abd = bad_parity[x];

			offset = 0;
			for (x = rr->rr_firstdatacol; x < rr->rr_cols; x++) {
				if (offset == good_size || x < rr->rr_bigcols)
					abd_put(rr->rr_col[x].rc_abd);
				else
					abd_free(rr->rr_col[x].rc_abd);

				rr->rr_col[x].rc_abd = abd_get_offset_size(
				    rr->rr_abd_copy, offset,
				    rr->rr_col[x].rc_size);
				offset += rr->rr_col[x].rc_size;
			}
		}

		ASSERT3P(rr->rr_col[c].rc_gdata, !=, NULL);
		good = abd_get_offset_size(rr->rr_col[c].rc_gdata, 0,
		    rr->rr_col[c].rc_size);
	} else {
		/* adjust good_data to point at the start of our column */
		parity_size = size = rr->rr_col[0].rc_size;
		if (c >= rr->rr_bigcols) {
			size -= skip_size;
			zcr->zcr_length = size;
		}

		/* empty column */
		if (size == 0) {
			zfs_ereport_finish_checksum(zcr, NULL, NULL, B_TRUE);
			return;
		}

		offset = 0;
		for (x = rr->rr_firstdatacol; x < c; x++) {
			if (x < rr->rr_bigcols) {
				offset += parity_size;
			} else {
				offset += parity_size - skip_size;
			}
		}

		good = abd_get_offset_size((abd_t *)good_data, offset, size);
	}

	/* we drop the ereport if it ends up that the data was good */
	zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
	abd_put((abd_t *)good);
}

/*
 * Invoked indirectly by zfs_ereport_start_checksum(), called
 * below when our read operation fails completely.  The main point
 * is to keep a copy of everything we read from disk, so that at
 * vdev_draid_cksum_finish() time we can compare it with the good data.
 */
static void
vdev_draid_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
{
	size_t c = (size_t)(uintptr_t)arg;
	raidz_map_t *rm = zio->io_vsd;

	/* set up the report and bump the refcount  */
	zcr->zcr_cbdata = rm;
	zcr->zcr_cbinfo = c;
	zcr->zcr_finish = vdev_draid_cksum_finish;
	zcr->zcr_free = vdev_draid_cksum_free;

	rm->rm_reports++;
	ASSERT3U(rm->rm_reports, >, 0);

	if (rm->rm_row[0]->rr_abd_copy != NULL)
		return;

	/*
	 * It's the first time we're called for this raidz_map_t, so we need
	 * to copy the data aside; there's no guarantee that our zio's buffer
	 * won't be re-used for something else.
	 *
	 * Our parity data is already in separate buffers, so there's no need
	 * to copy them.  Furthermore, all columns should have been expanded
	 * by vdev_draid_map_alloc_empty() when attempting reconstruction.
	 */
	for (int i = 0; i < rm->rm_nrows; i++) {
		raidz_row_t *rr = rm->rm_row[i];
		size_t offset = 0;
		size_t size = 0;

		for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
			ASSERT3U(rr->rr_col[c].rc_size, ==,
			    rr->rr_col[0].rc_size);
			size += rr->rr_col[c].rc_size;
		}

		rr->rr_abd_copy = abd_alloc_for_io(size, B_FALSE);

		for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
			raidz_col_t *col = &rr->rr_col[c];
			abd_t *tmp = abd_get_offset_size(rr->rr_abd_copy,
			    offset, col->rc_size);

			abd_copy(tmp, col->rc_abd, col->rc_size);

			if (abd_is_gang(col->rc_abd))
				abd_free(col->rc_abd);
			else
				abd_put(col->rc_abd);

			col->rc_abd = tmp;
			offset += col->rc_size;
		}
		ASSERT3U(offset, ==, size);
	}
}

const zio_vsd_ops_t vdev_draid_vsd_ops = {
	.vsd_free = vdev_draid_map_free_vsd,
	.vsd_cksum_report = vdev_draid_cksum_report
};

/*
 * Full stripe writes.  When writing, all columns (D+P) are required.  Parity
 * is calculated over all the columns, including empty zero filled sectors,
 * and each is written to disk.  While only the data columns are needed for
 * a normal read, all of the columns are required for reconstruction when
 * performing a sequential resilver.
 *
 * For "big columns" it's sufficient to map the correct range of the zio ABD.
 * Partial columns require allocating a gang ABD in order to zero fill the
 * empty sectors.  When the column is empty a zero filled sector must be
 * mapped.  In all cases the data ABDs must be the same size as the parity
 * ABDs (e.g. rc->rc_size == parity_size).
 */
static void
vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
{
	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
	uint64_t parity_size = rr->rr_col[0].rc_size;
	uint64_t abd_off = abd_offset;

	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
	ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));

	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
		raidz_col_t *rc = &rr->rr_col[c];

		if (rc->rc_size == 0) {
			/* empty data column (small write), add a skip sector */
			ASSERT3U(skip_size, ==, parity_size);
			rc->rc_abd = abd_get_zeros(skip_size);
		} else if (rc->rc_size == parity_size) {
			/* this is a "big column" */
			rc->rc_abd = abd_get_offset_size(zio->io_abd,
			    abd_off, rc->rc_size);
		} else {
			/* short data column, add a skip sector */
			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
			rc->rc_abd = abd_alloc_gang_abd();
			abd_gang_add(rc->rc_abd, abd_get_offset_size(
			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
			abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
			    B_TRUE);
		}

		ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);

		abd_off += rc->rc_size;
		rc->rc_size = parity_size;
	}

	IMPLY(abd_offset != 0, abd_off == zio->io_size);
}

/*
 * Scrub/resilver reads.  In order to store the contents of the skip sectors
 * an additional ABD is allocated.  The columns are handled in the same way
 * as a full stripe write except instead of using the zero ABD the newly
 * allocated skip ABD is used to back the skip sectors.  In all cases the
 * data ABD must be the same size as the parity ABDs.
 */
static void
vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
{
	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
	uint64_t parity_size = rr->rr_col[0].rc_size;
	uint64_t abd_off = abd_offset;
	uint64_t skip_off = 0;

	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
	ASSERT3P(rr->rr_abd_empty, ==, NULL);

	if (rr->rr_nempty > 0) {
		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
		    B_FALSE);
	}

	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
		raidz_col_t *rc = &rr->rr_col[c];

		if (rc->rc_size == 0) {
			/* empty data column (small read), add a skip sector */
			ASSERT3U(skip_size, ==, parity_size);
			ASSERT3U(rr->rr_nempty, !=, 0);
			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
			    skip_off, skip_size);
			skip_off += skip_size;
		} else if (rc->rc_size == parity_size) {
			/* this is a "big column" */
			rc->rc_abd = abd_get_offset_size(zio->io_abd,
			    abd_off, rc->rc_size);
		} else {
			/* short data column, add a skip sector */
			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
			ASSERT3U(rr->rr_nempty, !=, 0);
			rc->rc_abd = abd_alloc_gang_abd();
			abd_gang_add(rc->rc_abd, abd_get_offset_size(
			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
			abd_gang_add(rc->rc_abd, abd_get_offset_size(
			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
			skip_off += skip_size;
		}

		uint64_t abd_size = abd_get_size(rc->rc_abd);
		ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));

		/*
		 * Increase rc_size so the skip ABD is included in subsequent
		 * parity calculations.
		 */
		abd_off += rc->rc_size;
		rc->rc_size = abd_size;
	}

	IMPLY(abd_offset != 0, abd_off == zio->io_size);
	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
}

/*
 * Normal reads.  In this common case only the columns containing data
 * are read in to the zio ABDs.  Neither the parity columns or empty skip
 * sectors are read unless the checksum fails verification.  In which case
 * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
 * the raid map in order to allow reconstruction using the parity data and
 * skip sectors.
 */
static void
vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
{
	uint64_t abd_off = abd_offset;

	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);

	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
		raidz_col_t *rc = &rr->rr_col[c];

		if (rc->rc_size > 0) {
			rc->rc_abd = abd_get_offset_size(zio->io_abd,
			    abd_off, rc->rc_size);
			abd_off += rc->rc_size;
		}
	}

	IMPLY(abd_offset != 0, abd_off == zio->io_size);
}

/*
 * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
 * difference is that an ABD is allocated to back skip sectors so they may
 * be read in to memory, verified, and repaired if needed.
 */
void
vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
{
	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
	uint64_t parity_size = rr->rr_col[0].rc_size;
	uint64_t skip_off = 0;

	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
	ASSERT3P(rr->rr_abd_empty, ==, NULL);

	if (rr->rr_nempty > 0) {
		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
		    B_FALSE);
	}

	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
		raidz_col_t *rc = &rr->rr_col[c];

		if (rc->rc_size == 0) {
			/* empty data column (small read), add a skip sector */
			ASSERT3U(skip_size, ==, parity_size);
			ASSERT3U(rr->rr_nempty, !=, 0);
			ASSERT3P(rc->rc_abd, ==, NULL);
			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
			    skip_off, skip_size);
			skip_off += skip_size;
		} else if (rc->rc_size == parity_size) {
			/* this is a "big column", nothing to add */
			ASSERT3P(rc->rc_abd, !=, NULL);
		} else {
			/* short data column, add a skip sector */
			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
			ASSERT3U(rr->rr_nempty, !=, 0);
			ASSERT3P(rc->rc_abd, !=, NULL);
			ASSERT(!abd_is_gang(rc->rc_abd));
			abd_t *read_abd = rc->rc_abd;
			rc->rc_abd = abd_alloc_gang_abd();
			abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
			abd_gang_add(rc->rc_abd, abd_get_offset_size(
			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
			skip_off += skip_size;
		}

		/*
		 * Increase rc_size so the empty ABD is included in subsequent
		 * parity calculations.
		 */
		rc->rc_size = parity_size;
	}

	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
}

/*
 * Given a logical address within a dRAID configuration, return the physical
 * address on the first drive in the group that this address maps to
 * (at position 'start' in permutation number 'perm').
 */
static uint64_t
vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
    uint64_t *perm, uint64_t *start)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	/* b is the dRAID (parent) sector offset. */
	uint64_t ashift = vd->vdev_top->vdev_ashift;
	uint64_t b_offset = logical_offset >> ashift;

	/*
	 * The height of a row in units of the vdev's minimum sector size.
	 * This is the amount of data written to each disk of each group
	 * in a given permutation.
	 */
	uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;

	/*
	 * We cycle through a disk permutation every groupsz * ngroups chunk
	 * of address space. Note that ngroups * groupsz must be a multiple
	 * of the number of data drives (ndisks) in order to guarantee
	 * alignment. So, for example, if our row height is 16MB, our group
	 * size is 10, and there are 13 data drives in the draid, then ngroups
	 * will be 13, we will change permutation every 2.08GB and each
	 * disk will have 160MB of data per chunk.
	 */
	uint64_t groupwidth = vdc->vdc_groupwidth;
	uint64_t ngroups = vdc->vdc_ngroups;
	uint64_t ndisks = vdc->vdc_ndisks;

	/*
	 * groupstart is where the group this IO will land in "starts" in
	 * the permutation array.
	 */
	uint64_t group = logical_offset / vdc->vdc_groupsz;
	uint64_t groupstart = (group * groupwidth) % ndisks;
	ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
	*start = groupstart;

	/* b_offset is the sector offset within a group chunk */
	b_offset = b_offset % (rowheight_sectors * groupwidth);
	ASSERT0(b_offset % groupwidth);

	/*
	 * Find the starting byte offset on each child vdev:
	 * - within a permutation there are ngroups groups spread over the
	 *   rows, where each row covers a slice portion of the disk
	 * - each permutation has (groupwidth * ngroups) / ndisks rows
	 * - so each permutation covers rows * slice portion of the disk
	 * - so we need to find the row where this IO group target begins
	 */
	*perm = group / ngroups;
	uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
	    (((group % ngroups) * groupwidth) / ndisks);

	return (((rowheight_sectors * row) +
	    (b_offset / groupwidth)) << ashift);
}

static uint64_t
vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
    uint64_t abd_offset, uint64_t abd_size)
{
	vdev_t *vd = zio->io_vd;
	vdev_draid_config_t *vdc = vd->vdev_tsd;
	uint64_t ashift = vd->vdev_top->vdev_ashift;
	uint64_t io_size = abd_size;
	uint64_t io_asize = vdev_draid_asize(vd, io_size);
	uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
	uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);

	/*
	 * Limit the io_size to the space remaining in the group.  A second
	 * row in the raidz_map_t is created for the remainder.
	 */
	if (io_offset + io_asize > start_offset) {
		io_size = vdev_draid_asize_to_psize(vd,
		    start_offset - io_offset);
	}

	/*
	 * At most a block may span the logical end of one group and the start
	 * of the next group. Therefore, at the end of a group the io_size must
	 * span the group width evenly and the remainder must be aligned to the
	 * start of the next group.
	 */
	IMPLY(abd_offset == 0 && io_size < zio->io_size,
	    (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
	IMPLY(abd_offset != 0,
	    vdev_draid_group_to_offset(vd, group) == io_offset);

	/* Lookup starting byte offset on each child vdev */
	uint64_t groupstart, perm;
	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
	    io_offset, &perm, &groupstart);

	/*
	 * If there is less than groupwidth drives available after the group
	 * start, the group is going to wrap onto the next row. 'wrap' is the
	 * group disk number that starts on the next row.
	 */
	uint64_t ndisks = vdc->vdc_ndisks;
	uint64_t groupwidth = vdc->vdc_groupwidth;
	uint64_t wrap = groupwidth;

	if (groupstart + groupwidth > ndisks)
		wrap = ndisks - groupstart;

	/* The io size in units of the vdev's minimum sector size. */
	const uint64_t psize = io_size >> ashift;

	/*
	 * "Quotient": The number of data sectors for this stripe on all but
	 * the "big column" child vdevs that also contain "remainder" data.
	 */
	uint64_t q = psize / vdc->vdc_ndata;

	/*
	 * "Remainder": The number of partial stripe data sectors in this I/O.
	 * This will add a sector to some, but not all, child vdevs.
	 */
	uint64_t r = psize - q * vdc->vdc_ndata;

	/* The number of "big columns" - those which contain remainder data. */
	uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
	ASSERT3U(bc, <, groupwidth);

	/* The total number of data and parity sectors for this I/O. */
	uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));

	raidz_row_t *rr;
	rr = kmem_alloc(offsetof(raidz_row_t, rr_col[groupwidth]), KM_SLEEP);
	rr->rr_cols = groupwidth;
	rr->rr_scols = groupwidth;
	rr->rr_bigcols = bc;
	rr->rr_missingdata = 0;
	rr->rr_missingparity = 0;
	rr->rr_firstdatacol = vdc->vdc_nparity;
	rr->rr_abd_copy = NULL;
	rr->rr_abd_empty = NULL;
#ifdef ZFS_DEBUG
	rr->rr_offset = io_offset;
	rr->rr_size = io_size;
#endif
	*rrp = rr;

	uint8_t *base;
	uint64_t iter, asize = 0;
	vdev_draid_get_perm(vdc, perm, &base, &iter);
	for (uint64_t i = 0; i < groupwidth; i++) {
		raidz_col_t *rc = &rr->rr_col[i];
		uint64_t c = (groupstart + i) % ndisks;

		/* increment the offset if we wrap to the next row */
		if (i == wrap)
			physical_offset += VDEV_DRAID_ROWHEIGHT;

		rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
		rc->rc_offset = physical_offset;
		rc->rc_abd = NULL;
		rc->rc_gdata = NULL;
		rc->rc_orig_data = NULL;
		rc->rc_error = 0;
		rc->rc_tried = 0;
		rc->rc_skipped = 0;
		rc->rc_repair = 0;
		rc->rc_need_orig_restore = B_FALSE;

		if (q == 0 && i >= bc)
			rc->rc_size = 0;
		else if (i < bc)
			rc->rc_size = (q + 1) << ashift;
		else
			rc->rc_size = q << ashift;

		asize += rc->rc_size;
	}

	ASSERT3U(asize, ==, tot << ashift);
	rr->rr_nempty = roundup(tot, groupwidth) - tot;
	IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);

	/* Allocate buffers for the parity columns */
	for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
		raidz_col_t *rc = &rr->rr_col[c];
		rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
	}

	/*
	 * Map buffers for data columns and allocate/map buffers for skip
	 * sectors.  There are three distinct cases for dRAID which are
	 * required to support sequential rebuild.
	 */
	if (zio->io_type == ZIO_TYPE_WRITE) {
		vdev_draid_map_alloc_write(zio, abd_offset, rr);
	} else if ((rr->rr_nempty > 0) &&
	    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
		vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
	} else {
		ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
		vdev_draid_map_alloc_read(zio, abd_offset, rr);
	}

	return (io_size);
}

/*
 * Allocate the raidz mapping to be applied to the dRAID I/O.  The parity
 * calculations for dRAID are identical to raidz however there are a few
 * differences in the layout.
 *
 * - dRAID always allocates a full stripe width. Any extra sectors due
 *   this padding are zero filled and written to disk. They will be read
 *   back during a scrub or repair operation since they are included in
 *   the parity calculation. This property enables sequential resilvering.
 *
 * - When the block at the logical offset spans redundancy groups then two
 *   rows are allocated in the raidz_map_t. One row resides at the end of
 *   the first group and the other at the start of the following group.
 */
static raidz_map_t *
vdev_draid_map_alloc(zio_t *zio)
{
	raidz_row_t *rr[2];
	uint64_t abd_offset = 0;
	uint64_t abd_size = zio->io_size;
	uint64_t io_offset = zio->io_offset;
	uint64_t size;
	int nrows = 1;

	size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
	    abd_offset, abd_size);
	if (size < abd_size) {
		vdev_t *vd = zio->io_vd;

		io_offset += vdev_draid_asize(vd, size);
		abd_offset += size;
		abd_size -= size;
		nrows++;

		ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
		    vd, vdev_draid_offset_to_group(vd, io_offset)));
		ASSERT3U(abd_offset, <, zio->io_size);
		ASSERT3U(abd_size, !=, 0);

		size = vdev_draid_map_alloc_row(zio, &rr[1],
		    io_offset, abd_offset, abd_size);
		VERIFY3U(size, ==, abd_size);
	}

	raidz_map_t *rm;
	rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
	rm->rm_ops = vdev_raidz_math_get_ops();
	rm->rm_nrows = nrows;
	rm->rm_row[0] = rr[0];
	if (nrows == 2)
		rm->rm_row[1] = rr[1];

	zio->io_vsd = rm;
	zio->io_vsd_ops = &vdev_draid_vsd_ops;

	return (rm);
}

/*
 * Given an offset into a dRAID return the next group width aligned offset
 * which can be used to start an allocation.
 */
static uint64_t
vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);

	return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
}

/*
 * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
 * rounded down to the last full slice.  So each child must provide at least
 * 1 / (children - nspares) of its asize.
 */
static uint64_t
vdev_draid_min_asize(vdev_t *vd)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);

	return ((vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
}

/*
 * When using dRAID the minimum allocation size is determined by the number
 * of data disks in the redundancy group.  Full stripes are always used.
 */
static uint64_t
vdev_draid_min_alloc(vdev_t *vd)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);

	return (vdc->vdc_ndata << vd->vdev_ashift);
}

/*
 * Returns true if the txg range does not exist on any leaf vdev.
 *
 * A dRAID spare does not fit into the DTL model. While it has child vdevs
 * there is no redundancy among them, and the effective child vdev is
 * determined by offset. Essentially we do a vdev_dtl_reassess() on the
 * fly by replacing a dRAID spare with the child vdev under the offset.
 * Note that it is a recursive process because the child vdev can be
 * another dRAID spare and so on.
 */
boolean_t
vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
    uint64_t size)
{
	if (vd->vdev_ops == &vdev_spare_ops ||
	    vd->vdev_ops == &vdev_replacing_ops) {
		/*
		 * Check all of the readable children, if any child
		 * contains the txg range the data it is not missing.
		 */
		for (int c = 0; c < vd->vdev_children; c++) {
			vdev_t *cvd = vd->vdev_child[c];

			if (!vdev_readable(cvd))
				continue;

			if (!vdev_draid_missing(cvd, physical_offset,
			    txg, size))
				return (B_FALSE);
		}

		return (B_TRUE);
	}

	if (vd->vdev_ops == &vdev_draid_spare_ops) {
		/*
		 * When sequentially resilvering we don't have a proper
		 * txg range so instead we must presume all txgs are
		 * missing on this vdev until the resilver completes.
		 */
		if (vd->vdev_rebuild_txg != 0)
			return (B_TRUE);

		/*
		 * DTL_MISSING is set for all prior txgs when a resilver
		 * is started in spa_vdev_attach().
		 */
		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
			return (B_TRUE);

		/*
		 * Consult the DTL on the relevant vdev. Either a vdev
		 * leaf or spare/replace mirror child may be returned so
		 * we must recursively call vdev_draid_missing_impl().
		 */
		vd = vdev_draid_spare_get_child(vd, physical_offset);
		if (vd == NULL)
			return (B_TRUE);

		return (vdev_draid_missing(vd, physical_offset,
		    txg, size));
	}

	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
}

/*
 * Returns true if the txg is only partially replicated on the leaf vdevs.
 */
static boolean_t
vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
    uint64_t size)
{
	if (vd->vdev_ops == &vdev_spare_ops ||
	    vd->vdev_ops == &vdev_replacing_ops) {
		/*
		 * Check all of the readable children, if any child is
		 * missing the txg range then it is partially replicated.
		 */
		for (int c = 0; c < vd->vdev_children; c++) {
			vdev_t *cvd = vd->vdev_child[c];

			if (!vdev_readable(cvd))
				continue;

			if (vdev_draid_partial(cvd, physical_offset, txg, size))
				return (B_TRUE);
		}

		return (B_FALSE);
	}

	if (vd->vdev_ops == &vdev_draid_spare_ops) {
		/*
		 * When sequentially resilvering we don't have a proper
		 * txg range so instead we must presume all txgs are
		 * missing on this vdev until the resilver completes.
		 */
		if (vd->vdev_rebuild_txg != 0)
			return (B_TRUE);

		/*
		 * DTL_MISSING is set for all prior txgs when a resilver
		 * is started in spa_vdev_attach().
		 */
		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
			return (B_TRUE);

		/*
		 * Consult the DTL on the relevant vdev. Either a vdev
		 * leaf or spare/replace mirror child may be returned so
		 * we must recursively call vdev_draid_missing_impl().
		 */
		vd = vdev_draid_spare_get_child(vd, physical_offset);
		if (vd == NULL)
			return (B_TRUE);

		return (vdev_draid_partial(vd, physical_offset, txg, size));
	}

	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
}

/*
 * Determine if the vdev is readable at the given offset.
 */
boolean_t
vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
{
	if (vd->vdev_ops == &vdev_draid_spare_ops) {
		vd = vdev_draid_spare_get_child(vd, physical_offset);
		if (vd == NULL)
			return (B_FALSE);
	}

	if (vd->vdev_ops == &vdev_spare_ops ||
	    vd->vdev_ops == &vdev_replacing_ops) {

		for (int c = 0; c < vd->vdev_children; c++) {
			vdev_t *cvd = vd->vdev_child[c];

			if (!vdev_readable(cvd))
				continue;

			if (vdev_draid_readable(cvd, physical_offset))
				return (B_TRUE);
		}

		return (B_FALSE);
	}

	return (vdev_readable(vd));
}

/*
 * Returns the first distributed spare found under the provided vdev tree.
 */
static vdev_t *
vdev_draid_find_spare(vdev_t *vd)
{
	if (vd->vdev_ops == &vdev_draid_spare_ops)
		return (vd);

	for (int c = 0; c < vd->vdev_children; c++) {
		vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
		if (svd != NULL)
			return (svd);
	}

	return (NULL);
}

/*
 * Returns B_TRUE if the passed in vdev is currently "faulted".
 * Faulted, in this context, means that the vdev represents a
 * replacing or sparing vdev tree.
 */
static boolean_t
vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
{
	if (vd->vdev_ops == &vdev_draid_spare_ops) {
		vd = vdev_draid_spare_get_child(vd, physical_offset);
		if (vd == NULL)
			return (B_FALSE);

		/*
		 * After resolving the distributed spare to a leaf vdev
		 * check the parent to determine if it's "faulted".
		 */
		vd = vd->vdev_parent;
	}

	return (vd->vdev_ops == &vdev_replacing_ops ||
	    vd->vdev_ops == &vdev_spare_ops);
}

/*
 * Determine if the dRAID block at the logical offset is degraded.
 * Used by sequential resilver.
 */
static boolean_t
vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);

	uint64_t groupstart, perm;
	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
	    offset, &perm, &groupstart);

	uint8_t *base;
	uint64_t iter;
	vdev_draid_get_perm(vdc, perm, &base, &iter);

	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
		vdev_t *cvd = vd->vdev_child[cid];

		/* Group contains a faulted vdev. */
		if (vdev_draid_faulted(cvd, physical_offset))
			return (B_TRUE);

		/*
		 * Always check groups with active distributed spares
		 * because any vdev failure in the pool will affect them.
		 */
		if (vdev_draid_find_spare(cvd) != NULL)
			return (B_TRUE);
	}

	return (B_FALSE);
}

/*
 * Determine if the txg is missing.  Used by healing resilver.
 */
static boolean_t
vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
    uint64_t size)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);

	uint64_t groupstart, perm;
	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
	    offset, &perm, &groupstart);

	uint8_t *base;
	uint64_t iter;
	vdev_draid_get_perm(vdc, perm, &base, &iter);

	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
		vdev_t *cvd = vd->vdev_child[cid];

		/* Transaction group is known to be partially replicated. */
		if (vdev_draid_partial(cvd, physical_offset, txg, size))
			return (B_TRUE);

		/*
		 * Always check groups with active distributed spares
		 * because any vdev failure in the pool will affect them.
		 */
		if (vdev_draid_find_spare(cvd) != NULL)
			return (B_TRUE);
	}

	return (B_FALSE);
}

/*
 * Find the smallest child asize and largest sector size to calculate the
 * available capacity.  Distributed spares are ignored since their capacity
 * is also based of the minimum child size in the top-level dRAID.
 */
static void
vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
    uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
{
	uint64_t logical_ashift = 0, physical_ashift = 0;
	uint64_t asize = 0, max_asize = 0;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);

	for (int c = 0; c < vd->vdev_children; c++) {
		vdev_t *cvd = vd->vdev_child[c];

		if (cvd->vdev_ops == &vdev_draid_spare_ops)
			continue;

		asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
		max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
		logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
		physical_ashift = MAX(physical_ashift,
		    cvd->vdev_physical_ashift);
	}

	*asizep = asize;
	*max_asizep = max_asize;
	*logical_ashiftp = logical_ashift;
	*physical_ashiftp = physical_ashift;
}

/*
 * Open spare vdevs.
 */
static boolean_t
vdev_draid_open_spares(vdev_t *vd)
{
	return (vd->vdev_ops == &vdev_draid_spare_ops ||
	    vd->vdev_ops == &vdev_replacing_ops ||
	    vd->vdev_ops == &vdev_spare_ops);
}

/*
 * Open all children, excluding spares.
 */
static boolean_t
vdev_draid_open_children(vdev_t *vd)
{
	return (!vdev_draid_open_spares(vd));
}

/*
 * Open a top-level dRAID vdev.
 */
static int
vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
    uint64_t *logical_ashift, uint64_t *physical_ashift)
{
	vdev_draid_config_t *vdc =  vd->vdev_tsd;
	uint64_t nparity = vdc->vdc_nparity;
	int open_errors = 0;

	if (nparity > VDEV_DRAID_MAXPARITY ||
	    vd->vdev_children < nparity + 1) {
		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
		return (SET_ERROR(EINVAL));
	}

	/*
	 * First open the normal children then the distributed spares.  This
	 * ordering is important to ensure the distributed spares calculate
	 * the correct psize in the event that the dRAID vdevs were expanded.
	 */
	vdev_open_children_subset(vd, vdev_draid_open_children);
	vdev_open_children_subset(vd, vdev_draid_open_spares);

	/* Verify enough of the children are available to continue. */
	for (int c = 0; c < vd->vdev_children; c++) {
		if (vd->vdev_child[c]->vdev_open_error != 0) {
			if ((++open_errors) > nparity) {
				vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
				return (SET_ERROR(ENXIO));
			}
		}
	}

	/*
	 * Allocatable capacity is the sum of the space on all children less
	 * the number of distributed spares rounded down to last full row
	 * and then to the last full group. An additional 32MB of scratch
	 * space is reserved at the end of each child for use by the dRAID
	 * expansion feature.
	 */
	uint64_t child_asize, child_max_asize;
	vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
	    logical_ashift, physical_ashift);

	/*
	 * Should be unreachable since the minimum child size is 64MB, but
	 * we want to make sure an underflow absolutely cannot occur here.
	 */
	if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
	    child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
		return (SET_ERROR(ENXIO));
	}

	child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
	child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;

	*asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
	    vdc->vdc_groupsz);
	*max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
	    vdc->vdc_groupsz);

	return (0);
}

/*
 * Close a top-level dRAID vdev.
 */
static void
vdev_draid_close(vdev_t *vd)
{
	for (int c = 0; c < vd->vdev_children; c++) {
		if (vd->vdev_child[c] != NULL)
			vdev_close(vd->vdev_child[c]);
	}
}

/*
 * Return the maximum asize for a rebuild zio in the provided range
 * given the following constraints.  A dRAID chunks may not:
 *
 * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
 * - Span dRAID redundancy groups.
 */
static uint64_t
vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
    uint64_t max_segment)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);

	uint64_t ashift = vd->vdev_ashift;
	uint64_t ndata = vdc->vdc_ndata;
	uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
	    SPA_MAXBLOCKSIZE);

	ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
	ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);

	/* Chunks must evenly span all data columns in the group. */
	psize = (((psize >> ashift) / ndata) * ndata) << ashift;
	uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));

	/* Reduce the chunk size to the group space remaining. */
	uint64_t group = vdev_draid_offset_to_group(vd, start);
	uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
	chunk_size = MIN(chunk_size, left);

	ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
	ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
	    vdev_draid_offset_to_group(vd, start + chunk_size - 1));

	return (chunk_size);
}

/*
 * Align the start of the metaslab to the group width and slightly reduce
 * its size to a multiple of the group width.  Since full stripe writes are
 * required by dRAID this space is unallocable.  Furthermore, aligning the
 * metaslab start is important for vdev initialize and TRIM which both operate
 * on metaslab boundaries which vdev_xlate() expects to be aligned.
 */
static void
vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);

	uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
	uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
	uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;

	*ms_start = astart;
	*ms_size = asize;

	ASSERT0(*ms_start % sz);
	ASSERT0(*ms_size % sz);
}

/*
 * Add virtual dRAID spares to the list of valid spares. In order to accomplish
 * this the existing array must be freed and reallocated with the additional
 * entries.
 */
int
vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
    uint64_t next_vdev_id)
{
	uint64_t draid_nspares = 0;
	uint64_t ndraid = 0;
	int error;

	for (uint64_t i = 0; i < vd->vdev_children; i++) {
		vdev_t *cvd = vd->vdev_child[i];

		if (cvd->vdev_ops == &vdev_draid_ops) {
			vdev_draid_config_t *vdc = cvd->vdev_tsd;
			draid_nspares += vdc->vdc_nspares;
			ndraid++;
		}
	}

	if (draid_nspares == 0) {
		*ndraidp = ndraid;
		return (0);
	}

	nvlist_t **old_spares, **new_spares;
	uint_t old_nspares;
	error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
	    &old_spares, &old_nspares);
	if (error)
		old_nspares = 0;

	/* Allocate memory and copy of the existing spares. */
	new_spares = kmem_alloc(sizeof (nvlist_t *) *
	    (draid_nspares + old_nspares), KM_SLEEP);
	for (uint_t i = 0; i < old_nspares; i++)
		new_spares[i] = fnvlist_dup(old_spares[i]);

	/* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
	uint64_t n = old_nspares;
	for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
		vdev_t *cvd = vd->vdev_child[vdev_id];
		char path[64];

		if (cvd->vdev_ops != &vdev_draid_ops)
			continue;

		vdev_draid_config_t *vdc = cvd->vdev_tsd;
		uint64_t nspares = vdc->vdc_nspares;
		uint64_t nparity = vdc->vdc_nparity;

		for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
			bzero(path, sizeof (path));
			(void) snprintf(path, sizeof (path) - 1,
			    "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
			    (u_longlong_t)nparity,
			    (u_longlong_t)next_vdev_id + vdev_id,
			    (u_longlong_t)spare_id);

			nvlist_t *spare = fnvlist_alloc();
			fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
			fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
			    VDEV_TYPE_DRAID_SPARE);
			fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
			    cvd->vdev_guid);
			fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
			    spare_id);
			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
			fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
			fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
			    cvd->vdev_ashift);

			new_spares[n] = spare;
			n++;
		}
	}

	if (n > 0) {
		(void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
		    new_spares, n);
	}

	for (int i = 0; i < n; i++)
		nvlist_free(new_spares[i]);

	kmem_free(new_spares, sizeof (*new_spares) * n);
	*ndraidp = ndraid;

	return (0);
}

/*
 * Determine if any portion of the provided block resides on a child vdev
 * with a dirty DTL and therefore needs to be resilvered.
 */
static boolean_t
vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
    uint64_t phys_birth)
{
	uint64_t offset = DVA_GET_OFFSET(dva);
	uint64_t asize = vdev_draid_asize(vd, psize);

	if (phys_birth == TXG_UNKNOWN) {
		/*
		 * Sequential resilver.  There is no meaningful phys_birth
		 * for this block, we can only determine if block resides
		 * in a degraded group in which case it must be resilvered.
		 */
		ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
		    vdev_draid_offset_to_group(vd, offset + asize - 1));

		return (vdev_draid_group_degraded(vd, offset));
	} else {
		/*
		 * Healing resilver.  TXGs not in DTL_PARTIAL are intact,
		 * as are blocks in non-degraded groups.
		 */
		if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
			return (B_FALSE);

		if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
			return (B_TRUE);

		/* The block may span groups in which case check both. */
		if (vdev_draid_offset_to_group(vd, offset) !=
		    vdev_draid_offset_to_group(vd, offset + asize - 1)) {
			if (vdev_draid_group_missing(vd,
			    offset + asize, phys_birth, 1))
				return (B_TRUE);
		}

		return (B_FALSE);
	}
}

static boolean_t
vdev_draid_rebuilding(vdev_t *vd)
{
	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
		return (B_TRUE);

	for (int i = 0; i < vd->vdev_children; i++) {
		if (vdev_draid_rebuilding(vd->vdev_child[i])) {
			return (B_TRUE);
		}
	}

	return (B_FALSE);
}

static void
vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
{
#ifdef ZFS_DEBUG
	range_seg64_t logical_rs, physical_rs, remain_rs;
	logical_rs.rs_start = rr->rr_offset;
	logical_rs.rs_end = logical_rs.rs_start +
	    vdev_draid_asize(vd, rr->rr_size);

	raidz_col_t *rc = &rr->rr_col[col];
	vdev_t *cvd = vd->vdev_child[rc->rc_devidx];

	vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
	ASSERT(vdev_xlate_is_empty(&remain_rs));
	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
	ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
#endif
}

/*
 * For write operations:
 * 1. Generate the parity data
 * 2. Create child zio write operations to each column's vdev, for both
 *    data and parity.  A gang ABD is allocated by vdev_draid_map_alloc()
 *    if a skip sector needs to be added to a column.
 */
static void
vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
{
	vdev_t *vd = zio->io_vd;
	raidz_map_t *rm = zio->io_vsd;

	vdev_raidz_generate_parity_row(rm, rr);

	for (int c = 0; c < rr->rr_cols; c++) {
		raidz_col_t *rc = &rr->rr_col[c];

		/*
		 * Empty columns are zero filled and included in the parity
		 * calculation and therefore must be written.
		 */
		ASSERT3U(rc->rc_size, !=, 0);

		/* Verify physical to logical translation */
		vdev_draid_io_verify(vd, rr, c);

		zio_nowait(zio_vdev_child_io(zio, NULL,
		    vd->vdev_child[rc->rc_devidx], rc->rc_offset,
		    rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
		    0, vdev_raidz_child_done, rc));
	}
}

/*
 * For read operations:
 * 1. The vdev_draid_map_alloc() function will create a minimal raidz
 *    mapping for the read based on the zio->io_flags.  There are two
 *    possible mappings either 1) a normal read, or 2) a scrub/resilver.
 * 2. Create the zio read operations.  This will include all parity
 *    columns and skip sectors for a scrub/resilver.
 */
static void
vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
{
	vdev_t *vd = zio->io_vd;

	/* Sequential rebuild must do IO at redundancy group boundary. */
	IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);

	/*
	 * Iterate over the columns in reverse order so that we hit the parity
	 * last.  Any errors along the way will force us to read the parity.
	 * For scrub/resilver IOs which verify skip sectors, a gang ABD will
	 * have been allocated to store them and rc->rc_size is increased.
	 */
	for (int c = rr->rr_cols - 1; c >= 0; c--) {
		raidz_col_t *rc = &rr->rr_col[c];
		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];

		if (!vdev_draid_readable(cvd, rc->rc_offset)) {
			if (c >= rr->rr_firstdatacol)
				rr->rr_missingdata++;
			else
				rr->rr_missingparity++;
			rc->rc_error = SET_ERROR(ENXIO);
			rc->rc_tried = 1;
			rc->rc_skipped = 1;
			continue;
		}

		if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
			if (c >= rr->rr_firstdatacol)
				rr->rr_missingdata++;
			else
				rr->rr_missingparity++;
			rc->rc_error = SET_ERROR(ESTALE);
			rc->rc_skipped = 1;
			continue;
		}

		/*
		 * Empty columns may be read during vdev_draid_io_done().
		 * Only skip them after the readable and missing checks
		 * verify they are available.
		 */
		if (rc->rc_size == 0) {
			rc->rc_skipped = 1;
			continue;
		}

		if (zio->io_flags & ZIO_FLAG_RESILVER) {
			vdev_t *svd;

			/*
			 * If this child is a distributed spare then the
			 * offset might reside on the vdev being replaced.
			 * In which case this data must be written to the
			 * new device.  Failure to do so would result in
			 * checksum errors when the old device is detached
			 * and the pool is scrubbed.
			 */
			if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
				svd = vdev_draid_spare_get_child(svd,
				    rc->rc_offset);
				if (svd && (svd->vdev_ops == &vdev_spare_ops ||
				    svd->vdev_ops == &vdev_replacing_ops)) {
					rc->rc_repair = 1;
				}
			}

			/*
			 * Always issue a repair IO to this child when its
			 * a spare or replacing vdev with an active rebuild.
			 */
			if ((cvd->vdev_ops == &vdev_spare_ops ||
			    cvd->vdev_ops == &vdev_replacing_ops) &&
			    vdev_draid_rebuilding(cvd)) {
				rc->rc_repair = 1;
			}
		}
	}

	/*
	 * Either a parity or data column is missing this means a repair
	 * may be attempted by vdev_draid_io_done().  Expand the raid map
	 * to read in empty columns which are needed along with the parity
	 * during reconstruction.
	 */
	if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
	    rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
		vdev_draid_map_alloc_empty(zio, rr);
	}

	for (int c = rr->rr_cols - 1; c >= 0; c--) {
		raidz_col_t *rc = &rr->rr_col[c];
		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];

		if (rc->rc_error || rc->rc_size == 0)
			continue;

		if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
			    rc->rc_offset, rc->rc_abd, rc->rc_size,
			    zio->io_type, zio->io_priority, 0,
			    vdev_raidz_child_done, rc));
		}
	}
}

/*
 * Start an IO operation to a dRAID vdev.
 */
static void
vdev_draid_io_start(zio_t *zio)
{
	vdev_t *vd __maybe_unused = zio->io_vd;
	raidz_map_t *rm;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
	ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));

	rm = vdev_draid_map_alloc(zio);

	if (zio->io_type == ZIO_TYPE_WRITE) {
		for (int i = 0; i < rm->rm_nrows; i++) {
			vdev_draid_io_start_write(zio, rm->rm_row[i]);
		}
	} else {
		ASSERT(zio->io_type == ZIO_TYPE_READ);

		for (int i = 0; i < rm->rm_nrows; i++) {
			vdev_draid_io_start_read(zio, rm->rm_row[i]);
		}
	}

	zio_execute(zio);
}

/*
 * Complete an IO operation on a dRAID vdev.  The raidz logic can be applied
 * to dRAID since the layout is fully described by the raidz_map_t.
 */
static void
vdev_draid_io_done(zio_t *zio)
{
	vdev_raidz_io_done(zio);
}

static void
vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;
	ASSERT(vd->vdev_ops == &vdev_draid_ops);

	if (faulted > vdc->vdc_nparity)
		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
		    VDEV_AUX_NO_REPLICAS);
	else if (degraded + faulted != 0)
		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
	else
		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
}

static void
vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
    range_seg64_t *physical_rs, range_seg64_t *remain_rs)
{
	vdev_t *raidvd = cvd->vdev_parent;
	ASSERT(raidvd->vdev_ops == &vdev_draid_ops);

	vdev_draid_config_t *vdc = raidvd->vdev_tsd;
	uint64_t ashift = raidvd->vdev_top->vdev_ashift;

	/* Make sure the offsets are block-aligned */
	ASSERT0(logical_rs->rs_start % (1 << ashift));
	ASSERT0(logical_rs->rs_end % (1 << ashift));

	uint64_t logical_start = logical_rs->rs_start;
	uint64_t logical_end = logical_rs->rs_end;

	/*
	 * Unaligned ranges must be skipped. All metaslabs are correctly
	 * aligned so this should not happen, but this case is handled in
	 * case it's needed by future callers.
	 */
	uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
	if (astart != logical_start) {
		physical_rs->rs_start = logical_start;
		physical_rs->rs_end = logical_start;
		remain_rs->rs_start = MIN(astart, logical_end);
		remain_rs->rs_end = logical_end;
		return;
	}

	/*
	 * Unlike with mirrors and raidz a dRAID logical range can map
	 * to multiple non-contiguous physical ranges. This is handled by
	 * limiting the size of the logical range to a single group and
	 * setting the remain argument such that it describes the remaining
	 * unmapped logical range. This is stricter than absolutely
	 * necessary but helps simplify the logic below.
	 */
	uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
	uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
	if (logical_end > nextstart)
		logical_end = nextstart;

	/* Find the starting offset for each vdev in the group */
	uint64_t perm, groupstart;
	uint64_t start = vdev_draid_logical_to_physical(raidvd,
	    logical_start, &perm, &groupstart);
	uint64_t end = start;

	uint8_t *base;
	uint64_t iter, id;
	vdev_draid_get_perm(vdc, perm, &base, &iter);

	/*
	 * Check if the passed child falls within the group.  If it does
	 * update the start and end to reflect the physical range.
	 * Otherwise, leave them unmodified which will result in an empty
	 * (zero-length) physical range being returned.
	 */
	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;

		if (c == 0 && i != 0) {
			/* the group wrapped, increment the start */
			start += VDEV_DRAID_ROWHEIGHT;
			end = start;
		}

		id = vdev_draid_permute_id(vdc, base, iter, c);
		if (id == cvd->vdev_id) {
			uint64_t b_size = (logical_end >> ashift) -
			    (logical_start >> ashift);
			ASSERT3U(b_size, >, 0);
			end = start + ((((b_size - 1) /
			    vdc->vdc_groupwidth) + 1) << ashift);
			break;
		}
	}
	physical_rs->rs_start = start;
	physical_rs->rs_end = end;

	/*
	 * Only top-level vdevs are allowed to set remain_rs because
	 * when .vdev_op_xlate() is called for their children the full
	 * logical range is not provided by vdev_xlate().
	 */
	remain_rs->rs_start = logical_end;
	remain_rs->rs_end = logical_rs->rs_end;

	ASSERT3U(physical_rs->rs_start, <=, logical_start);
	ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
	    logical_end - logical_start);
}

/*
 * Add dRAID specific fields to the config nvlist.
 */
static void
vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
{
	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
}

/*
 * Initialize private dRAID specific fields from the nvlist.
 */
static int
vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
{
	uint64_t ndata, nparity, nspares, ngroups;
	int error;

	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
		return (SET_ERROR(EINVAL));

	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
	    nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
		return (SET_ERROR(EINVAL));
	}

	uint_t children;
	nvlist_t **child;
	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
	    &child, &children) != 0 || children == 0 ||
	    children > VDEV_DRAID_MAX_CHILDREN) {
		return (SET_ERROR(EINVAL));
	}

	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
	    nspares > 100 || nspares > (children - (ndata + nparity))) {
		return (SET_ERROR(EINVAL));
	}

	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
	    ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
		return (SET_ERROR(EINVAL));
	}

	/*
	 * Validate the minimum number of children exist per group for the
	 * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
	 */
	if (children < (ndata + nparity + nspares))
		return (SET_ERROR(EINVAL));

	/*
	 * Create the dRAID configuration using the pool nvlist configuration
	 * and the fixed mapping for the correct number of children.
	 */
	vdev_draid_config_t *vdc;
	const draid_map_t *map;

	error = vdev_draid_lookup_map(children, &map);
	if (error)
		return (SET_ERROR(EINVAL));

	vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
	vdc->vdc_ndata = ndata;
	vdc->vdc_nparity = nparity;
	vdc->vdc_nspares = nspares;
	vdc->vdc_children = children;
	vdc->vdc_ngroups = ngroups;
	vdc->vdc_nperms = map->dm_nperms;

	error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
	if (error) {
		kmem_free(vdc, sizeof (*vdc));
		return (SET_ERROR(EINVAL));
	}

	/*
	 * Derived constants.
	 */
	vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
	vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
	vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
	vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
	    vdc->vdc_ndisks;

	ASSERT3U(vdc->vdc_groupwidth, >=, 2);
	ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
	ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
	ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
	ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
	ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
	    vdc->vdc_ndisks, ==, 0);

	*tsd = vdc;

	return (0);
}

static void
vdev_draid_fini(vdev_t *vd)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
	    vdc->vdc_children * vdc->vdc_nperms);
	kmem_free(vdc, sizeof (*vdc));
}

static uint64_t
vdev_draid_nparity(vdev_t *vd)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	return (vdc->vdc_nparity);
}

static uint64_t
vdev_draid_ndisks(vdev_t *vd)
{
	vdev_draid_config_t *vdc = vd->vdev_tsd;

	return (vdc->vdc_ndisks);
}

vdev_ops_t vdev_draid_ops = {
	.vdev_op_init = vdev_draid_init,
	.vdev_op_fini = vdev_draid_fini,
	.vdev_op_open = vdev_draid_open,
	.vdev_op_close = vdev_draid_close,
	.vdev_op_asize = vdev_draid_asize,
	.vdev_op_min_asize = vdev_draid_min_asize,
	.vdev_op_min_alloc = vdev_draid_min_alloc,
	.vdev_op_io_start = vdev_draid_io_start,
	.vdev_op_io_done = vdev_draid_io_done,
	.vdev_op_state_change = vdev_draid_state_change,
	.vdev_op_need_resilver = vdev_draid_need_resilver,
	.vdev_op_hold = NULL,
	.vdev_op_rele = NULL,
	.vdev_op_remap = NULL,
	.vdev_op_xlate = vdev_draid_xlate,
	.vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
	.vdev_op_metaslab_init = vdev_draid_metaslab_init,
	.vdev_op_config_generate = vdev_draid_config_generate,
	.vdev_op_nparity = vdev_draid_nparity,
	.vdev_op_ndisks = vdev_draid_ndisks,
	.vdev_op_type = VDEV_TYPE_DRAID,
	.vdev_op_leaf = B_FALSE,
};


/*
 * A dRAID distributed spare is a virtual leaf vdev which is included in the
 * parent dRAID configuration.  The last N columns of the dRAID permutation
 * table are used to determine on which dRAID children a specific offset
 * should be written.  These spare leaf vdevs can only be used to replace
 * faulted children in the same dRAID configuration.
 */

/*
 * Distributed spare state.  All fields are set when the distributed spare is
 * first opened and are immutable.
 */
typedef struct {
	vdev_t *vds_draid_vdev;		/* top-level parent dRAID vdev */
	uint64_t vds_top_guid;		/* top-level parent dRAID guid */
	uint64_t vds_spare_id;		/* spare id (0 - vdc->vdc_nspares-1) */
} vdev_draid_spare_t;

/*
 * Returns the parent dRAID vdev to which the distributed spare belongs.
 * This may be safely called even when the vdev is not open.
 */
vdev_t *
vdev_draid_spare_get_parent(vdev_t *vd)
{
	vdev_draid_spare_t *vds = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);

	if (vds->vds_draid_vdev != NULL)
		return (vds->vds_draid_vdev);

	return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
	    vds->vds_top_guid));
}

/*
 * A dRAID space is active when it's the child of a vdev using the
 * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
 */
static boolean_t
vdev_draid_spare_is_active(vdev_t *vd)
{
	vdev_t *pvd = vd->vdev_parent;

	if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
	    pvd->vdev_ops == &vdev_replacing_ops ||
	    pvd->vdev_ops == &vdev_draid_ops)) {
		return (B_TRUE);
	} else {
		return (B_FALSE);
	}
}

/*
 * Given a dRAID distribute spare vdev, returns the physical child vdev
 * on which the provided offset resides.  This may involve recursing through
 * multiple layers of distributed spares.  Note that offset is relative to
 * this vdev.
 */
vdev_t *
vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
{
	vdev_draid_spare_t *vds = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);

	/* The vdev is closed */
	if (vds->vds_draid_vdev == NULL)
		return (NULL);

	vdev_t *tvd = vds->vds_draid_vdev;
	vdev_draid_config_t *vdc = tvd->vdev_tsd;

	ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
	ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);

	uint8_t *base;
	uint64_t iter;
	uint64_t perm = physical_offset / vdc->vdc_devslicesz;

	vdev_draid_get_perm(vdc, perm, &base, &iter);

	uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
	    (tvd->vdev_children - 1) - vds->vds_spare_id);
	vdev_t *cvd = tvd->vdev_child[cid];

	if (cvd->vdev_ops == &vdev_draid_spare_ops)
		return (vdev_draid_spare_get_child(cvd, physical_offset));

	return (cvd);
}

/* ARGSUSED */
static void
vdev_draid_spare_close(vdev_t *vd)
{
	vdev_draid_spare_t *vds = vd->vdev_tsd;
	vds->vds_draid_vdev = NULL;
}

/*
 * Opening a dRAID spare device is done by looking up the associated dRAID
 * top-level vdev guid from the spare configuration.
 */
static int
vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
    uint64_t *logical_ashift, uint64_t *physical_ashift)
{
	vdev_draid_spare_t *vds = vd->vdev_tsd;
	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
	uint64_t asize, max_asize;

	vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
	if (tvd == NULL) {
		/*
		 * When spa_vdev_add() is labeling new spares the
		 * associated dRAID is not attached to the root vdev
		 * nor does this spare have a parent.  Simulate a valid
		 * device in order to allow the label to be initialized
		 * and the distributed spare added to the configuration.
		 */
		if (vd->vdev_parent == NULL) {
			*psize = *max_psize = SPA_MINDEVSIZE;
			*logical_ashift = *physical_ashift = ASHIFT_MIN;
			return (0);
		}

		return (SET_ERROR(EINVAL));
	}

	vdev_draid_config_t *vdc = tvd->vdev_tsd;
	if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
		return (SET_ERROR(EINVAL));

	if (vds->vds_spare_id >= vdc->vdc_nspares)
		return (SET_ERROR(EINVAL));

	/*
	 * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
	 * because the caller may be vdev_draid_open() in which case the
	 * values are stale as they haven't yet been updated by vdev_open().
	 * To avoid this always recalculate the dRAID asize and max_asize.
	 */
	vdev_draid_calculate_asize(tvd, &asize, &max_asize,
	    logical_ashift, physical_ashift);

	*psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
	*max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;

	vds->vds_draid_vdev = tvd;

	return (0);
}

/*
 * Completed distributed spare IO.  Store the result in the parent zio
 * as if it had performed the operation itself.  Only the first error is
 * preserved if there are multiple errors.
 */
static void
vdev_draid_spare_child_done(zio_t *zio)
{
	zio_t *pio = zio->io_private;

	/*
	 * IOs are issued to non-writable vdevs in order to keep their
	 * DTLs accurate.  However, we don't want to propagate the
	 * error in to the distributed spare's DTL.  When resilvering
	 * vdev_draid_need_resilver() will consult the relevant DTL
	 * to determine if the data is missing and must be repaired.
	 */
	if (!vdev_writeable(zio->io_vd))
		return;

	if (pio->io_error == 0)
		pio->io_error = zio->io_error;
}

/*
 * Returns a valid label nvlist for the distributed spare vdev.  This is
 * used to bypass the IO pipeline to avoid the complexity of constructing
 * a complete label with valid checksum to return when read.
 */
nvlist_t *
vdev_draid_read_config_spare(vdev_t *vd)
{
	spa_t *spa = vd->vdev_spa;
	spa_aux_vdev_t *sav = &spa->spa_spares;
	uint64_t guid = vd->vdev_guid;

	nvlist_t *nv = fnvlist_alloc();
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
	fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
	    vdev_draid_spare_is_active(vd) ?
	    POOL_STATE_ACTIVE : POOL_STATE_SPARE);

	/* Set the vdev guid based on the vdev list in sav_count. */
	for (int i = 0; i < sav->sav_count; i++) {
		if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
		    strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
			guid = sav->sav_vdevs[i]->vdev_guid;
			break;
		}
	}

	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);

	return (nv);
}

/*
 * Handle any ioctl requested of the distributed spare.  Only flushes
 * are supported in which case all children must be flushed.
 */
static int
vdev_draid_spare_ioctl(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	int error = 0;

	if (zio->io_cmd == DKIOCFLUSHWRITECACHE) {
		for (int c = 0; c < vd->vdev_children; c++) {
			zio_nowait(zio_vdev_child_io(zio, NULL,
			    vd->vdev_child[c], zio->io_offset, zio->io_abd,
			    zio->io_size, zio->io_type, zio->io_priority, 0,
			    vdev_draid_spare_child_done, zio));
		}
	} else {
		error = SET_ERROR(ENOTSUP);
	}

	return (error);
}

/*
 * Initiate an IO to the distributed spare.  For normal IOs this entails using
 * the zio->io_offset and permutation table to calculate which child dRAID vdev
 * is responsible for the data.  Then passing along the zio to that child to
 * perform the actual IO.  The label ranges are not stored on disk and require
 * some special handling which is described below.
 */
static void
vdev_draid_spare_io_start(zio_t *zio)
{
	vdev_t *cvd = NULL, *vd = zio->io_vd;
	vdev_draid_spare_t *vds = vd->vdev_tsd;
	uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;

	/*
	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
	 * Nothing to be done here but return failure.
	 */
	if (vds == NULL) {
		zio->io_error = ENXIO;
		zio_interrupt(zio);
		return;
	}

	switch (zio->io_type) {
	case ZIO_TYPE_IOCTL:
		zio->io_error = vdev_draid_spare_ioctl(zio);
		break;

	case ZIO_TYPE_WRITE:
		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
			/*
			 * Accept probe IOs and config writers to simulate the
			 * existence of an on disk label.  vdev_label_sync(),
			 * vdev_uberblock_sync() and vdev_copy_uberblocks()
			 * skip the distributed spares.  This only leaves
			 * vdev_label_init() which is allowed to succeed to
			 * avoid adding special cases the function.
			 */
			if (zio->io_flags & ZIO_FLAG_PROBE ||
			    zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
				zio->io_error = 0;
			} else {
				zio->io_error = SET_ERROR(EIO);
			}
		} else {
			cvd = vdev_draid_spare_get_child(vd, offset);

			if (cvd == NULL) {
				zio->io_error = SET_ERROR(ENXIO);
			} else {
				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
				    offset, zio->io_abd, zio->io_size,
				    zio->io_type, zio->io_priority, 0,
				    vdev_draid_spare_child_done, zio));
			}
		}
		break;

	case ZIO_TYPE_READ:
		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
			/*
			 * Accept probe IOs to simulate the existence of a
			 * label.  vdev_label_read_config() bypasses the
			 * pipeline to read the label configuration and
			 * vdev_uberblock_load() skips distributed spares
			 * when attempting to locate the best uberblock.
			 */
			if (zio->io_flags & ZIO_FLAG_PROBE) {
				zio->io_error = 0;
			} else {
				zio->io_error = SET_ERROR(EIO);
			}
		} else {
			cvd = vdev_draid_spare_get_child(vd, offset);

			if (cvd == NULL || !vdev_readable(cvd)) {
				zio->io_error = SET_ERROR(ENXIO);
			} else {
				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
				    offset, zio->io_abd, zio->io_size,
				    zio->io_type, zio->io_priority, 0,
				    vdev_draid_spare_child_done, zio));
			}
		}
		break;

	case ZIO_TYPE_TRIM:
		/* The vdev label ranges are never trimmed */
		ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));

		cvd = vdev_draid_spare_get_child(vd, offset);

		if (cvd == NULL || !cvd->vdev_has_trim) {
			zio->io_error = SET_ERROR(ENXIO);
		} else {
			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
			    offset, zio->io_abd, zio->io_size,
			    zio->io_type, zio->io_priority, 0,
			    vdev_draid_spare_child_done, zio));
		}
		break;

	default:
		zio->io_error = SET_ERROR(ENOTSUP);
		break;
	}

	zio_execute(zio);
}

/* ARGSUSED */
static void
vdev_draid_spare_io_done(zio_t *zio)
{
}

/*
 * Lookup the full spare config in spa->spa_spares.sav_config and
 * return the top_guid and spare_id for the named spare.
 */
static int
vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
    uint64_t *spare_idp)
{
	nvlist_t **spares;
	uint_t nspares;
	int error;

	if ((spa->spa_spares.sav_config == NULL) ||
	    (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
	    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
		return (SET_ERROR(ENOENT));
	}

	char *spare_name;
	error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
	if (error != 0)
		return (SET_ERROR(EINVAL));

	for (int i = 0; i < nspares; i++) {
		nvlist_t *spare = spares[i];
		uint64_t top_guid, spare_id;
		char *type, *path;

		/* Skip non-distributed spares */
		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
		if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
			continue;

		/* Skip spares with the wrong name */
		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
		if (error != 0 || strcmp(path, spare_name) != 0)
			continue;

		/* Found the matching spare */
		error = nvlist_lookup_uint64(spare,
		    ZPOOL_CONFIG_TOP_GUID, &top_guid);
		if (error == 0) {
			error = nvlist_lookup_uint64(spare,
			    ZPOOL_CONFIG_SPARE_ID, &spare_id);
		}

		if (error != 0) {
			return (SET_ERROR(EINVAL));
		} else {
			*top_guidp = top_guid;
			*spare_idp = spare_id;
			return (0);
		}
	}

	return (SET_ERROR(ENOENT));
}

/*
 * Initialize private dRAID spare specific fields from the nvlist.
 */
static int
vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
{
	vdev_draid_spare_t *vds;
	uint64_t top_guid = 0;
	uint64_t spare_id;

	/*
	 * In the normal case check the list of spares stored in the spa
	 * to lookup the top_guid and spare_id for provided spare config.
	 * When creating a new pool or adding vdevs the spare list is not
	 * yet populated and the values are provided in the passed config.
	 */
	if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
		    &top_guid) != 0)
			return (SET_ERROR(EINVAL));

		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
		    &spare_id) != 0)
			return (SET_ERROR(EINVAL));
	}

	vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
	vds->vds_draid_vdev = NULL;
	vds->vds_top_guid = top_guid;
	vds->vds_spare_id = spare_id;

	*tsd = vds;

	return (0);
}

static void
vdev_draid_spare_fini(vdev_t *vd)
{
	kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
}

static void
vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
{
	vdev_draid_spare_t *vds = vd->vdev_tsd;

	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);

	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
	fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
}

vdev_ops_t vdev_draid_spare_ops = {
	.vdev_op_init = vdev_draid_spare_init,
	.vdev_op_fini = vdev_draid_spare_fini,
	.vdev_op_open = vdev_draid_spare_open,
	.vdev_op_close = vdev_draid_spare_close,
	.vdev_op_asize = vdev_default_asize,
	.vdev_op_min_asize = vdev_default_min_asize,
	.vdev_op_min_alloc = NULL,
	.vdev_op_io_start = vdev_draid_spare_io_start,
	.vdev_op_io_done = vdev_draid_spare_io_done,
	.vdev_op_state_change = NULL,
	.vdev_op_need_resilver = NULL,
	.vdev_op_hold = NULL,
	.vdev_op_rele = NULL,
	.vdev_op_remap = NULL,
	.vdev_op_xlate = vdev_default_xlate,
	.vdev_op_rebuild_asize = NULL,
	.vdev_op_metaslab_init = NULL,
	.vdev_op_config_generate = vdev_draid_spare_config_generate,
	.vdev_op_nparity = NULL,
	.vdev_op_ndisks = NULL,
	.vdev_op_type = VDEV_TYPE_DRAID_SPARE,
	.vdev_op_leaf = B_TRUE,
};