aboutsummaryrefslogtreecommitdiff
path: root/sys/dev/nvme/nvme_qpair.c
blob: e0b3517529d513e4debde8b40bcbf718548a7089 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (C) 2012-2014 Intel Corporation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/domainset.h>
#include <sys/proc.h>

#include <dev/pci/pcivar.h>

#include "nvme_private.h"

typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
#define DO_NOT_RETRY	1

static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
					   struct nvme_request *req);
static void	nvme_qpair_destroy(struct nvme_qpair *qpair);

struct nvme_opcode_string {
	uint16_t	opc;
	const char *	str;
};

static struct nvme_opcode_string admin_opcode[] = {
	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
	{ NVME_OPC_ABORT, "ABORT" },
	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
	{ NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
	{ NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
	{ NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
	{ NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
	{ NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
	{ NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
	{ NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
	{ NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
	{ NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
	{ NVME_OPC_SANITIZE, "SANITIZE" },
	{ NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
	{ 0xFFFF, "ADMIN COMMAND" }
};

static struct nvme_opcode_string io_opcode[] = {
	{ NVME_OPC_FLUSH, "FLUSH" },
	{ NVME_OPC_WRITE, "WRITE" },
	{ NVME_OPC_READ, "READ" },
	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
	{ NVME_OPC_COMPARE, "COMPARE" },
	{ NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
	{ NVME_OPC_VERIFY, "VERIFY" },
	{ NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
	{ NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
	{ NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
	{ NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
	{ 0xFFFF, "IO COMMAND" }
};

static const char *
get_admin_opcode_string(uint16_t opc)
{
	struct nvme_opcode_string *entry;

	entry = admin_opcode;

	while (entry->opc != 0xFFFF) {
		if (entry->opc == opc)
			return (entry->str);
		entry++;
	}
	return (entry->str);
}

static const char *
get_io_opcode_string(uint16_t opc)
{
	struct nvme_opcode_string *entry;

	entry = io_opcode;

	while (entry->opc != 0xFFFF) {
		if (entry->opc == opc)
			return (entry->str);
		entry++;
	}
	return (entry->str);
}

static void
nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
    struct nvme_command *cmd)
{

	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
	    "cdw10:%08x cdw11:%08x\n",
	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
	    le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
}

static void
nvme_io_qpair_print_command(struct nvme_qpair *qpair,
    struct nvme_command *cmd)
{

	switch (cmd->opc) {
	case NVME_OPC_WRITE:
	case NVME_OPC_READ:
	case NVME_OPC_WRITE_UNCORRECTABLE:
	case NVME_OPC_COMPARE:
	case NVME_OPC_WRITE_ZEROES:
	case NVME_OPC_VERIFY:
		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
		    "lba:%llu len:%d\n",
		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
		    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
		    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
		break;
	case NVME_OPC_FLUSH:
	case NVME_OPC_DATASET_MANAGEMENT:
	case NVME_OPC_RESERVATION_REGISTER:
	case NVME_OPC_RESERVATION_REPORT:
	case NVME_OPC_RESERVATION_ACQUIRE:
	case NVME_OPC_RESERVATION_RELEASE:
		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
		break;
	default:
		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
		    cmd->cid, le32toh(cmd->nsid));
		break;
	}
}

static void
nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
{
	if (qpair->id == 0)
		nvme_admin_qpair_print_command(qpair, cmd);
	else
		nvme_io_qpair_print_command(qpair, cmd);
	if (nvme_verbose_cmd_dump) {
		nvme_printf(qpair->ctrlr,
		    "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
		    cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
		    (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
		nvme_printf(qpair->ctrlr,
		    "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
		    cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
		    cmd->cdw15);
	}
}

struct nvme_status_string {
	uint16_t	sc;
	const char *	str;
};

static struct nvme_status_string generic_status[] = {
	{ NVME_SC_SUCCESS, "SUCCESS" },
	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
	{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
	{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
	{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
	{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
	{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
	{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
	{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
	{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
	{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
	{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
	{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
	{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
	{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
	{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
	{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
	{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
	{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
	{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
	{ NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
	{ NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
	{ NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },

	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
	{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
	{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
	{ 0xFFFF, "GENERIC" }
};

static struct nvme_status_string command_specific_status[] = {
	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
	{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
	{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
	{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
	{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
	{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
	{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
	{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
	{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
	{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
	{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
	{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
	{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
	{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
	{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
	{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
	{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
	{ NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
	{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
	{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
	{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
	{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
	{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
	{ NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
	{ NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
	{ NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },

	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
	{ 0xFFFF, "COMMAND SPECIFIC" }
};

static struct nvme_status_string media_error_status[] = {
	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
	{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
	{ 0xFFFF, "MEDIA ERROR" }
};

static struct nvme_status_string path_related_status[] = {
	{ NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
	{ NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
	{ NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
	{ NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
	{ NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
	{ NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
	{ NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
	{ 0xFFFF, "PATH RELATED" },
};

static const char *
get_status_string(uint16_t sct, uint16_t sc)
{
	struct nvme_status_string *entry;

	switch (sct) {
	case NVME_SCT_GENERIC:
		entry = generic_status;
		break;
	case NVME_SCT_COMMAND_SPECIFIC:
		entry = command_specific_status;
		break;
	case NVME_SCT_MEDIA_ERROR:
		entry = media_error_status;
		break;
	case NVME_SCT_PATH_RELATED:
		entry = path_related_status;
		break;
	case NVME_SCT_VENDOR_SPECIFIC:
		return ("VENDOR SPECIFIC");
	default:
		return ("RESERVED");
	}

	while (entry->sc != 0xFFFF) {
		if (entry->sc == sc)
			return (entry->str);
		entry++;
	}
	return (entry->str);
}

static void
nvme_qpair_print_completion(struct nvme_qpair *qpair,
    struct nvme_completion *cpl)
{
	uint8_t sct, sc, crd, m, dnr;

	sct = NVME_STATUS_GET_SCT(cpl->status);
	sc = NVME_STATUS_GET_SC(cpl->status);
	crd = NVME_STATUS_GET_CRD(cpl->status);
	m = NVME_STATUS_GET_M(cpl->status);
	dnr = NVME_STATUS_GET_DNR(cpl->status);

	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) crd:%x m:%x dnr:%x "
	    "sqid:%d cid:%d cdw0:%x\n",
	    get_status_string(sct, sc), sct, sc, crd, m, dnr,
	    cpl->sqid, cpl->cid, cpl->cdw0);
}

static bool
nvme_completion_is_retry(const struct nvme_completion *cpl)
{
	uint8_t sct, sc, dnr;

	sct = NVME_STATUS_GET_SCT(cpl->status);
	sc = NVME_STATUS_GET_SC(cpl->status);
	dnr = NVME_STATUS_GET_DNR(cpl->status);	/* Do Not Retry Bit */

	/*
	 * TODO: spec is not clear how commands that are aborted due
	 *  to TLER will be marked.  So for now, it seems
	 *  NAMESPACE_NOT_READY is the only case where we should
	 *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
	 *  set the DNR bit correctly since the driver controls that.
	 */
	switch (sct) {
	case NVME_SCT_GENERIC:
		switch (sc) {
		case NVME_SC_ABORTED_BY_REQUEST:
		case NVME_SC_NAMESPACE_NOT_READY:
			if (dnr)
				return (0);
			else
				return (1);
		case NVME_SC_INVALID_OPCODE:
		case NVME_SC_INVALID_FIELD:
		case NVME_SC_COMMAND_ID_CONFLICT:
		case NVME_SC_DATA_TRANSFER_ERROR:
		case NVME_SC_ABORTED_POWER_LOSS:
		case NVME_SC_INTERNAL_DEVICE_ERROR:
		case NVME_SC_ABORTED_SQ_DELETION:
		case NVME_SC_ABORTED_FAILED_FUSED:
		case NVME_SC_ABORTED_MISSING_FUSED:
		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
		case NVME_SC_COMMAND_SEQUENCE_ERROR:
		case NVME_SC_LBA_OUT_OF_RANGE:
		case NVME_SC_CAPACITY_EXCEEDED:
		default:
			return (0);
		}
	case NVME_SCT_COMMAND_SPECIFIC:
	case NVME_SCT_MEDIA_ERROR:
		return (0);
	case NVME_SCT_PATH_RELATED:
		switch (sc) {
		case NVME_SC_INTERNAL_PATH_ERROR:
			if (dnr)
				return (0);
			else
				return (1);
		default:
			return (0);
		}
	case NVME_SCT_VENDOR_SPECIFIC:
	default:
		return (0);
	}
}

static void
nvme_qpair_complete_tracker(struct nvme_tracker *tr,
    struct nvme_completion *cpl, error_print_t print_on_error)
{
	struct nvme_qpair * qpair = tr->qpair;
	struct nvme_request	*req;
	bool			retry, error, retriable;

	req = tr->req;
	error = nvme_completion_is_error(cpl);
	retriable = nvme_completion_is_retry(cpl);
	retry = error && retriable && req->retries < nvme_retry_count;
	if (retry)
		qpair->num_retries++;
	if (error && req->retries >= nvme_retry_count && retriable)
		qpair->num_failures++;

	if (error && (print_on_error == ERROR_PRINT_ALL ||
		(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
		nvme_qpair_print_command(qpair, &req->cmd);
		nvme_qpair_print_completion(qpair, cpl);
	}

	qpair->act_tr[cpl->cid] = NULL;

	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));

	if (!retry) {
		if (req->type != NVME_REQUEST_NULL) {
			bus_dmamap_sync(qpair->dma_tag_payload,
			    tr->payload_dma_map,
			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
		}
		if (req->cb_fn)
			req->cb_fn(req->cb_arg, cpl);
	}

	mtx_lock(&qpair->lock);

	if (retry) {
		req->retries++;
		nvme_qpair_submit_tracker(qpair, tr);
	} else {
		if (req->type != NVME_REQUEST_NULL) {
			bus_dmamap_unload(qpair->dma_tag_payload,
			    tr->payload_dma_map);
		}

		nvme_free_request(req);
		tr->req = NULL;

		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);

		/*
		 * If the controller is in the middle of resetting, don't
		 *  try to submit queued requests here - let the reset logic
		 *  handle that instead.
		 */
		if (!STAILQ_EMPTY(&qpair->queued_req) &&
		    !qpair->ctrlr->is_resetting) {
			req = STAILQ_FIRST(&qpair->queued_req);
			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
			_nvme_qpair_submit_request(qpair, req);
		}
	}

	mtx_unlock(&qpair->lock);
}

static void
nvme_qpair_manual_complete_tracker(
    struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
    error_print_t print_on_error)
{
	struct nvme_completion	cpl;

	memset(&cpl, 0, sizeof(cpl));

	struct nvme_qpair * qpair = tr->qpair;

	cpl.sqid = qpair->id;
	cpl.cid = tr->cid;
	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
	cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
	nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
}

void
nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
    struct nvme_request *req, uint32_t sct, uint32_t sc)
{
	struct nvme_completion	cpl;
	bool			error;

	memset(&cpl, 0, sizeof(cpl));
	cpl.sqid = qpair->id;
	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;

	error = nvme_completion_is_error(&cpl);

	if (error) {
		nvme_qpair_print_command(qpair, &req->cmd);
		nvme_qpair_print_completion(qpair, &cpl);
	}

	if (req->cb_fn)
		req->cb_fn(req->cb_arg, &cpl);

	nvme_free_request(req);
}

bool
nvme_qpair_process_completions(struct nvme_qpair *qpair)
{
	struct nvme_tracker	*tr;
	struct nvme_completion	cpl;
	int done = 0;
	bool in_panic = dumping || SCHEDULER_STOPPED();

	/*
	 * qpair is not enabled, likely because a controller reset is in
	 * progress.  Ignore the interrupt - any I/O that was associated with
	 * this interrupt will get retried when the reset is complete. Any
	 * pending completions for when we're in startup will be completed
	 * as soon as initialization is complete and we start sending commands
	 * to the device.
	 */
	if (qpair->recovery_state != RECOVERY_NONE) {
		qpair->num_ignored++;
		return (false);
	}

	/*
	 * Sanity check initialization. After we reset the hardware, the phase
	 * is defined to be 1. So if we get here with zero prior calls and the
	 * phase is 0, it means that we've lost a race between the
	 * initialization and the ISR running. With the phase wrong, we'll
	 * process a bunch of completions that aren't really completions leading
	 * to a KASSERT below.
	 */
	KASSERT(!(qpair->num_intr_handler_calls == 0 && qpair->phase == 0),
	    ("%s: Phase wrong for first interrupt call.",
		device_get_nameunit(qpair->ctrlr->dev)));

	qpair->num_intr_handler_calls++;

	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
	/*
	 * A panic can stop the CPU this routine is running on at any point.  If
	 * we're called during a panic, complete the sq_head wrap protocol for
	 * the case where we are interrupted just after the increment at 1
	 * below, but before we can reset cq_head to zero at 2. Also cope with
	 * the case where we do the zero at 2, but may or may not have done the
	 * phase adjustment at step 3. The panic machinery flushes all pending
	 * memory writes, so we can make these strong ordering assumptions
	 * that would otherwise be unwise if we were racing in real time.
	 */
	if (__predict_false(in_panic)) {
		if (qpair->cq_head == qpair->num_entries) {
			/*
			 * Here we know that we need to zero cq_head and then negate
			 * the phase, which hasn't been assigned if cq_head isn't
			 * zero due to the atomic_store_rel.
			 */
			qpair->cq_head = 0;
			qpair->phase = !qpair->phase;
		} else if (qpair->cq_head == 0) {
			/*
			 * In this case, we know that the assignment at 2
			 * happened below, but we don't know if it 3 happened or
			 * not. To do this, we look at the last completion
			 * entry and set the phase to the opposite phase
			 * that it has. This gets us back in sync
			 */
			cpl = qpair->cpl[qpair->num_entries - 1];
			nvme_completion_swapbytes(&cpl);
			qpair->phase = !NVME_STATUS_GET_P(cpl.status);
		}
	}

	while (1) {
		uint16_t status;

		/*
		 * We need to do this dance to avoid a race between the host and
		 * the device where the device overtakes the host while the host
		 * is reading this record, leaving the status field 'new' and
		 * the sqhd and cid fields potentially stale. If the phase
		 * doesn't match, that means status hasn't yet been updated and
		 * we'll get any pending changes next time. It also means that
		 * the phase must be the same the second time. We have to sync
		 * before reading to ensure any bouncing completes.
		 */
		status = le16toh(qpair->cpl[qpair->cq_head].status);
		if (NVME_STATUS_GET_P(status) != qpair->phase)
			break;

		bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
		cpl = qpair->cpl[qpair->cq_head];
		nvme_completion_swapbytes(&cpl);

		KASSERT(
		    NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status),
		    ("Phase unexpectedly inconsistent"));

		if (cpl.cid < qpair->num_trackers)
			tr = qpair->act_tr[cpl.cid];
		else
			tr = NULL;

		done++;
		if (tr != NULL) {
			nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
			qpair->sq_head = cpl.sqhd;
		} else if (!in_panic) {
			/*
			 * A missing tracker is normally an error.  However, a
			 * panic can stop the CPU this routine is running on
			 * after completing an I/O but before updating
			 * qpair->cq_head at 1 below.  Later, we re-enter this
			 * routine to poll I/O associated with the kernel
			 * dump. We find that the tr has been set to null before
			 * calling the completion routine.  If it hasn't
			 * completed (or it triggers a panic), then '1' below
			 * won't have updated cq_head. Rather than panic again,
			 * ignore this condition because it's not unexpected.
			 */
			nvme_printf(qpair->ctrlr,
			    "cpl (cid = %u) does not map to outstanding cmd\n",
				cpl.cid);
			/* nvme_dump_completion expects device endianess */
			nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
			KASSERT(0, ("received completion for unknown cmd"));
		}

		/*
		 * There's a number of races with the following (see above) when
		 * the system panics. We compensate for each one of them by
		 * using the atomic store to force strong ordering (at least when
		 * viewed in the aftermath of a panic).
		 */
		if (++qpair->cq_head == qpair->num_entries) {		/* 1 */
			atomic_store_rel_int(&qpair->cq_head, 0);	/* 2 */
			qpair->phase = !qpair->phase;			/* 3 */
		}
	}

	if (done != 0) {
		bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
		    qpair->cq_hdbl_off, qpair->cq_head);
	}

	return (done != 0);
}

static void
nvme_qpair_msi_handler(void *arg)
{
	struct nvme_qpair *qpair = arg;

	nvme_qpair_process_completions(qpair);
}

int
nvme_qpair_construct(struct nvme_qpair *qpair,
    uint32_t num_entries, uint32_t num_trackers,
    struct nvme_controller *ctrlr)
{
	struct nvme_tracker	*tr;
	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
	uint64_t		queuemem_phys, prpmem_phys, list_phys;
	uint8_t			*queuemem, *prpmem, *prp_list;
	int			i, err;

	qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0;
	qpair->num_entries = num_entries;
	qpair->num_trackers = num_trackers;
	qpair->ctrlr = ctrlr;

	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);

	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
	    4, ctrlr->page_size, BUS_SPACE_MAXADDR,
	    BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size,
	    howmany(ctrlr->max_xfer_size, ctrlr->page_size) + 1,
	    ctrlr->page_size, 0,
	    NULL, NULL, &qpair->dma_tag_payload);
	if (err != 0) {
		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
		goto out;
	}

	/*
	 * Each component must be page aligned, and individual PRP lists
	 * cannot cross a page boundary.
	 */
	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
	cmdsz = roundup2(cmdsz, ctrlr->page_size);
	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
	cplsz = roundup2(cplsz, ctrlr->page_size);
	/*
	 * For commands requiring more than 2 PRP entries, one PRP will be
	 * embedded in the command (prp1), and the rest of the PRP entries
	 * will be in a list pointed to by the command (prp2).
	 */
	prpsz = sizeof(uint64_t) *
	    howmany(ctrlr->max_xfer_size, ctrlr->page_size);
	prpmemsz = qpair->num_trackers * prpsz;
	allocsz = cmdsz + cplsz + prpmemsz;

	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
	if (err != 0) {
		nvme_printf(ctrlr, "tag create failed %d\n", err);
		goto out;
	}
	bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);

	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
	     BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
		goto out;
	}

	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
		nvme_printf(ctrlr, "failed to load qpair memory\n");
		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
		    qpair->queuemem_map);
		goto out;
	}

	qpair->num_cmds = 0;
	qpair->num_intr_handler_calls = 0;
	qpair->num_retries = 0;
	qpair->num_failures = 0;
	qpair->num_ignored = 0;
	qpair->cmd = (struct nvme_command *)queuemem;
	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
	qpair->cmd_bus_addr = queuemem_phys;
	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
	prpmem_phys = queuemem_phys + cmdsz + cplsz;

	callout_init(&qpair->timer, 1);
	qpair->timer_armed = false;
	qpair->recovery_state = RECOVERY_WAITING;

	/*
	 * Calcuate the stride of the doorbell register. Many emulators set this
	 * value to correspond to a cache line. However, some hardware has set
	 * it to various small values.
	 */
	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
	    (qpair->id << (ctrlr->dstrd + 1));
	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
	    (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);

	TAILQ_INIT(&qpair->free_tr);
	TAILQ_INIT(&qpair->outstanding_tr);
	STAILQ_INIT(&qpair->queued_req);

	list_phys = prpmem_phys;
	prp_list = prpmem;
	for (i = 0; i < qpair->num_trackers; i++) {
		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
			qpair->num_trackers = i;
			break;
		}

		/*
		 * Make sure that the PRP list for this tracker doesn't
		 * overflow to another nvme page.
		 */
		if (trunc_page(list_phys) !=
		    trunc_page(list_phys + prpsz - 1)) {
			list_phys = roundup2(list_phys, ctrlr->page_size);
			prp_list =
			    (uint8_t *)roundup2((uintptr_t)prp_list, ctrlr->page_size);
		}

		tr = malloc_domainset(sizeof(*tr), M_NVME,
		    DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
		bus_dmamap_create(qpair->dma_tag_payload, 0,
		    &tr->payload_dma_map);
		tr->cid = i;
		tr->qpair = qpair;
		tr->prp = (uint64_t *)prp_list;
		tr->prp_bus_addr = list_phys;
		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
		list_phys += prpsz;
		prp_list += prpsz;
	}

	if (qpair->num_trackers == 0) {
		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
		goto out;
	}

	qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
	    qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
	    M_ZERO | M_WAITOK);

	if (ctrlr->msi_count > 1) {
		/*
		 * MSI-X vector resource IDs start at 1, so we add one to
		 *  the queue's vector to get the corresponding rid to use.
		 */
		qpair->rid = qpair->vector + 1;

		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
		    &qpair->rid, RF_ACTIVE);
		if (qpair->res == NULL) {
			nvme_printf(ctrlr, "unable to allocate MSI\n");
			goto out;
		}
		if (bus_setup_intr(ctrlr->dev, qpair->res,
		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
		    nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) {
			nvme_printf(ctrlr, "unable to setup MSI\n");
			goto out;
		}
		if (qpair->id == 0) {
			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
			    "admin");
		} else {
			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
			    "io%d", qpair->id - 1);
		}
	}

	return (0);

out:
	nvme_qpair_destroy(qpair);
	return (ENOMEM);
}

static void
nvme_qpair_destroy(struct nvme_qpair *qpair)
{
	struct nvme_tracker	*tr;

	callout_drain(&qpair->timer);

	if (qpair->tag) {
		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
		qpair->tag = NULL;
	}

	if (qpair->act_tr) {
		free(qpair->act_tr, M_NVME);
		qpair->act_tr = NULL;
	}

	while (!TAILQ_EMPTY(&qpair->free_tr)) {
		tr = TAILQ_FIRST(&qpair->free_tr);
		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
		bus_dmamap_destroy(qpair->dma_tag_payload,
		    tr->payload_dma_map);
		free(tr, M_NVME);
	}

	if (qpair->cmd != NULL) {
		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
		    qpair->queuemem_map);
		qpair->cmd = NULL;
	}

	if (qpair->dma_tag) {
		bus_dma_tag_destroy(qpair->dma_tag);
		qpair->dma_tag = NULL;
	}

	if (qpair->dma_tag_payload) {
		bus_dma_tag_destroy(qpair->dma_tag_payload);
		qpair->dma_tag_payload = NULL;
	}

	if (mtx_initialized(&qpair->lock))
		mtx_destroy(&qpair->lock);

	if (qpair->res) {
		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
		    rman_get_rid(qpair->res), qpair->res);
		qpair->res = NULL;
	}
}

static void
nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
{
	struct nvme_tracker	*tr;

	tr = TAILQ_FIRST(&qpair->outstanding_tr);
	while (tr != NULL) {
		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
			nvme_qpair_manual_complete_tracker(tr,
			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
			    ERROR_PRINT_NONE);
			tr = TAILQ_FIRST(&qpair->outstanding_tr);
		} else {
			tr = TAILQ_NEXT(tr, tailq);
		}
	}
}

void
nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
{

	nvme_admin_qpair_abort_aers(qpair);
	nvme_qpair_destroy(qpair);
}

void
nvme_io_qpair_destroy(struct nvme_qpair *qpair)
{

	nvme_qpair_destroy(qpair);
}

static void
nvme_qpair_timeout(void *arg)
{
	struct nvme_qpair	*qpair = arg;
	struct nvme_controller	*ctrlr = qpair->ctrlr;
	struct nvme_tracker	*tr;
	sbintime_t		now;
	bool			idle;
	uint32_t		csts;
	uint8_t			cfs;

	mtx_lock(&qpair->lock);
	idle = TAILQ_EMPTY(&qpair->outstanding_tr);
again:
	switch (qpair->recovery_state) {
	case RECOVERY_NONE:
		if (idle)
			break;
		now = getsbinuptime();
		idle = true;
		TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) {
			if (tr->deadline == SBT_MAX)
				continue;
			idle = false;
			if (now > tr->deadline) {
				/*
				 * We're now passed our earliest deadline. We
				 * need to do expensive things to cope, but next
				 * time. Flag that and close the door to any
				 * further processing.
				 */
				qpair->recovery_state = RECOVERY_START;
				nvme_printf(ctrlr, "RECOVERY_START %jd vs %jd\n",
				    (uintmax_t)now, (uintmax_t)tr->deadline);
				break;
			}
		}
		break;
	case RECOVERY_START:
		/*
		 * Read csts to get value of cfs - controller fatal status.
		 * If no fatal status, try to call the completion routine, and
		 * if completes transactions, report a missed interrupt and
		 * return (this may need to be rate limited). Otherwise, if
		 * aborts are enabled and the controller is not reporting
		 * fatal status, abort the command. Otherwise, just reset the
		 * controller and hope for the best.
		 */
		csts = nvme_mmio_read_4(ctrlr, csts);
		cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
		if (cfs) {
			nvme_printf(ctrlr, "Controller in fatal status, resetting\n");
			qpair->recovery_state = RECOVERY_RESET;
			goto again;
		}
		mtx_unlock(&qpair->lock);
		if (nvme_qpair_process_completions(qpair)) {
			nvme_printf(ctrlr, "Completions present in output without an interrupt\n");
			qpair->recovery_state = RECOVERY_NONE;
		} else {
			nvme_printf(ctrlr, "timeout with nothing complete, resetting\n");
			qpair->recovery_state = RECOVERY_RESET;
			mtx_lock(&qpair->lock);
			goto again;
		}
		mtx_lock(&qpair->lock);
		break;
	case RECOVERY_RESET:
		/*
		 * If we get here due to a possible surprise hot-unplug event,
		 * then we let nvme_ctrlr_reset confirm and fail the
		 * controller.
		 */
		nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
		    (csts == 0xffffffff) ? " and possible hot unplug" :
		    (cfs ? " and fatal error status" : ""));
		nvme_printf(ctrlr, "RECOVERY_WAITING\n");
		qpair->recovery_state = RECOVERY_WAITING;
		nvme_ctrlr_reset(ctrlr);
		break;
	case RECOVERY_WAITING:
		nvme_printf(ctrlr, "waiting\n");
		break;
	}

	/*
	 * Rearm the timeout.
	 */
	if (!idle) {
		callout_schedule_sbt(&qpair->timer, SBT_1S / 2, SBT_1S / 2, 0);
	} else {
		qpair->timer_armed = false;
	}
	mtx_unlock(&qpair->lock);
}

/*
 * Submit the tracker to the hardware. Must already be in the
 * outstanding queue when called.
 */
void
nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
{
	struct nvme_request	*req;
	struct nvme_controller	*ctrlr;
	int timeout;

	mtx_assert(&qpair->lock, MA_OWNED);

	req = tr->req;
	req->cmd.cid = tr->cid;
	qpair->act_tr[tr->cid] = tr;
	ctrlr = qpair->ctrlr;

	if (req->timeout) {
		if (req->cb_fn == nvme_completion_poll_cb)
			timeout = 1;
		else
			timeout = ctrlr->timeout_period;
		tr->deadline = getsbinuptime() + timeout * SBT_1S;
		if (!qpair->timer_armed) {
			qpair->timer_armed = true;
			callout_reset_sbt_on(&qpair->timer, SBT_1S / 2, SBT_1S / 2,
			    nvme_qpair_timeout, qpair, qpair->cpu, 0);
		}
	} else
		tr->deadline = SBT_MAX;

	/* Copy the command from the tracker to the submission queue. */
	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));

	if (++qpair->sq_tail == qpair->num_entries)
		qpair->sq_tail = 0;

	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
	bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
	    qpair->sq_tdbl_off, qpair->sq_tail);
	qpair->num_cmds++;
}

static void
nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
	struct nvme_tracker 	*tr = arg;
	uint32_t		cur_nseg;

	/*
	 * If the mapping operation failed, return immediately.  The caller
	 *  is responsible for detecting the error status and failing the
	 *  tracker manually.
	 */
	if (error != 0) {
		nvme_printf(tr->qpair->ctrlr,
		    "nvme_payload_map err %d\n", error);
		return;
	}

	/*
	 * Note that we specified ctrlr->page_size for alignment and max
	 * segment size when creating the bus dma tags.  So here we can safely
	 * just transfer each segment to its associated PRP entry.
	 */
	tr->req->cmd.prp1 = htole64(seg[0].ds_addr);

	if (nseg == 2) {
		tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
	} else if (nseg > 2) {
		cur_nseg = 1;
		tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
		while (cur_nseg < nseg) {
			tr->prp[cur_nseg-1] =
			    htole64((uint64_t)seg[cur_nseg].ds_addr);
			cur_nseg++;
		}
	} else {
		/*
		 * prp2 should not be used by the controller
		 *  since there is only one segment, but set
		 *  to 0 just to be safe.
		 */
		tr->req->cmd.prp2 = 0;
	}

	bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
	nvme_qpair_submit_tracker(tr->qpair, tr);
}

static void
_nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
{
	struct nvme_tracker	*tr;
	int			err = 0;

	mtx_assert(&qpair->lock, MA_OWNED);

	tr = TAILQ_FIRST(&qpair->free_tr);
	req->qpair = qpair;

	if (tr == NULL || qpair->recovery_state != RECOVERY_NONE) {
		/*
		 * No tracker is available, or the qpair is disabled due to
		 *  an in-progress controller-level reset or controller
		 *  failure.
		 */

		if (qpair->ctrlr->is_failed) {
			/*
			 * The controller has failed, so fail the request.
			 */
			nvme_qpair_manual_complete_request(qpair, req,
			    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
		} else {
			/*
			 * Put the request on the qpair's request queue to be
			 *  processed when a tracker frees up via a command
			 *  completion or when the controller reset is
			 *  completed.
			 */
			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
		}
		return;
	}

	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
	if (!qpair->timer_armed)
		tr->deadline = SBT_MAX;
	tr->req = req;

	switch (req->type) {
	case NVME_REQUEST_VADDR:
		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
		    req->payload_size, qpair->ctrlr->max_xfer_size));
		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
		    tr->payload_dma_map, req->u.payload, req->payload_size,
		    nvme_payload_map, tr, 0);
		if (err != 0)
			nvme_printf(qpair->ctrlr,
			    "bus_dmamap_load returned 0x%x!\n", err);
		break;
	case NVME_REQUEST_NULL:
		nvme_qpair_submit_tracker(tr->qpair, tr);
		break;
	case NVME_REQUEST_BIO:
		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
		    (intmax_t)req->u.bio->bio_bcount,
		    qpair->ctrlr->max_xfer_size));
		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
		if (err != 0)
			nvme_printf(qpair->ctrlr,
			    "bus_dmamap_load_bio returned 0x%x!\n", err);
		break;
	case NVME_REQUEST_CCB:
		err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
		    tr->payload_dma_map, req->u.payload,
		    nvme_payload_map, tr, 0);
		if (err != 0)
			nvme_printf(qpair->ctrlr,
			    "bus_dmamap_load_ccb returned 0x%x!\n", err);
		break;
	default:
		panic("unknown nvme request type 0x%x\n", req->type);
		break;
	}

	if (err != 0) {
		/*
		 * The dmamap operation failed, so we manually fail the
		 *  tracker here with DATA_TRANSFER_ERROR status.
		 *
		 * nvme_qpair_manual_complete_tracker must not be called
		 *  with the qpair lock held.
		 */
		mtx_unlock(&qpair->lock);
		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
		    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
		mtx_lock(&qpair->lock);
	}
}

void
nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
{

	mtx_lock(&qpair->lock);
	_nvme_qpair_submit_request(qpair, req);
	mtx_unlock(&qpair->lock);
}

static void
nvme_qpair_enable(struct nvme_qpair *qpair)
{
	mtx_assert(&qpair->lock, MA_OWNED);

	qpair->recovery_state = RECOVERY_NONE;
}

void
nvme_qpair_reset(struct nvme_qpair *qpair)
{

	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;

	/*
	 * First time through the completion queue, HW will set phase
	 *  bit on completions to 1.  So set this to 1 here, indicating
	 *  we're looking for a 1 to know which entries have completed.
	 *  we'll toggle the bit each time when the completion queue
	 *  rolls over.
	 */
	qpair->phase = 1;

	memset(qpair->cmd, 0,
	    qpair->num_entries * sizeof(struct nvme_command));
	memset(qpair->cpl, 0,
	    qpair->num_entries * sizeof(struct nvme_completion));
}

void
nvme_admin_qpair_enable(struct nvme_qpair *qpair)
{
	struct nvme_tracker		*tr;
	struct nvme_tracker		*tr_temp;

	/*
	 * Manually abort each outstanding admin command.  Do not retry
	 *  admin commands found here, since they will be left over from
	 *  a controller reset and its likely the context in which the
	 *  command was issued no longer applies.
	 */
	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
		nvme_printf(qpair->ctrlr,
		    "aborting outstanding admin command\n");
		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
	}

	mtx_lock(&qpair->lock);
	nvme_qpair_enable(qpair);
	mtx_unlock(&qpair->lock);
}

void
nvme_io_qpair_enable(struct nvme_qpair *qpair)
{
	STAILQ_HEAD(, nvme_request)	temp;
	struct nvme_tracker		*tr;
	struct nvme_tracker		*tr_temp;
	struct nvme_request		*req;

	/*
	 * Manually abort each outstanding I/O.  This normally results in a
	 *  retry, unless the retry count on the associated request has
	 *  reached its limit.
	 */
	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
		    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
	}

	mtx_lock(&qpair->lock);

	nvme_qpair_enable(qpair);

	STAILQ_INIT(&temp);
	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);

	while (!STAILQ_EMPTY(&temp)) {
		req = STAILQ_FIRST(&temp);
		STAILQ_REMOVE_HEAD(&temp, stailq);
		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
		nvme_qpair_print_command(qpair, &req->cmd);
		_nvme_qpair_submit_request(qpair, req);
	}

	mtx_unlock(&qpair->lock);
}

static void
nvme_qpair_disable(struct nvme_qpair *qpair)
{
	struct nvme_tracker	*tr, *tr_temp;

	mtx_lock(&qpair->lock);
	qpair->recovery_state = RECOVERY_WAITING;
	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
		tr->deadline = SBT_MAX;
	}
	mtx_unlock(&qpair->lock);
}

void
nvme_admin_qpair_disable(struct nvme_qpair *qpair)
{

	nvme_qpair_disable(qpair);
	nvme_admin_qpair_abort_aers(qpair);
}

void
nvme_io_qpair_disable(struct nvme_qpair *qpair)
{

	nvme_qpair_disable(qpair);
}

void
nvme_qpair_fail(struct nvme_qpair *qpair)
{
	struct nvme_tracker		*tr;
	struct nvme_request		*req;

	if (!mtx_initialized(&qpair->lock))
		return;

	mtx_lock(&qpair->lock);

	while (!STAILQ_EMPTY(&qpair->queued_req)) {
		req = STAILQ_FIRST(&qpair->queued_req);
		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
		mtx_unlock(&qpair->lock);
		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
		    NVME_SC_ABORTED_BY_REQUEST);
		mtx_lock(&qpair->lock);
	}

	/* Manually abort each outstanding I/O. */
	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
		tr = TAILQ_FIRST(&qpair->outstanding_tr);
		/*
		 * Do not remove the tracker.  The abort_tracker path will
		 *  do that for us.
		 */
		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
		mtx_unlock(&qpair->lock);
		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
		mtx_lock(&qpair->lock);
	}

	mtx_unlock(&qpair->lock);
}