aboutsummaryrefslogtreecommitdiff
path: root/sys/i386/i386/vm_machdep.c
blob: d0bdc9393b55ea0419dd8e41b7fc614ad97bc8dc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/*-
 * Copyright (c) 1982, 1986 The Regents of the University of California.
 * Copyright (c) 1989, 1990 William Jolitz
 * Copyright (c) 1994 John Dyson
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * the Systems Programming Group of the University of Utah Computer
 * Science Department, and William Jolitz.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
 *	$Id: vm_machdep.c,v 1.114 1998/12/16 15:21:51 bde Exp $
 */

#include "npx.h"
#include "opt_user_ldt.h"
#include "opt_vm86.h"
#ifdef PC98
#include "opt_pc98.h"
#endif

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>

#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#ifdef VM86
#include <machine/pcb_ext.h>
#include <machine/vm86.h>
#endif

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>

#include <sys/user.h>

#ifdef PC98
#include <pc98/pc98/pc98.h>
#else
#include <i386/isa/isa.h>
#endif

static void	cpu_reset_real __P((void));
#ifdef SMP
static void	cpu_reset_proxy __P((void));
static u_int	cpu_reset_proxyid;
static volatile u_int	cpu_reset_proxy_active;
#endif

/*
 * quick version of vm_fault
 */
void
vm_fault_quick(v, prot)
	caddr_t v;
	int prot;
{
	if (prot & VM_PROT_WRITE)
		subyte(v, fubyte(v));
	else
		fubyte(v);
}

/*
 * Finish a fork operation, with process p2 nearly set up.
 * Copy and update the pcb, set up the stack so that the child
 * ready to run and return to user mode.
 */
void
cpu_fork(p1, p2)
	register struct proc *p1, *p2;
{
	struct pcb *pcb2 = &p2->p_addr->u_pcb;

#if NNPX > 0
	/* Ensure that p1's pcb is up to date. */
	if (npxproc == p1)
		npxsave(&p1->p_addr->u_pcb.pcb_savefpu);
#endif

	/* Copy p1's pcb. */
	p2->p_addr->u_pcb = p1->p_addr->u_pcb;

	/*
	 * Create a new fresh stack for the new process.
	 * Copy the trap frame for the return to user mode as if from a
	 * syscall.  This copies the user mode register values.
	 */
	p2->p_md.md_regs = (struct trapframe *)
#ifdef VM86
			   ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1;
#else
			   ((int)p2->p_addr + UPAGES * PAGE_SIZE) - 1;
#endif /* VM86 */
	*p2->p_md.md_regs = *p1->p_md.md_regs;

	/*
	 * Set registers for trampoline to user mode.  Leave space for the
	 * return address on stack.  These are the kernel mode register values.
	 */
	pcb2->pcb_cr3 = vtophys(p2->p_vmspace->vm_pmap.pm_pdir);
	pcb2->pcb_edi = p2->p_md.md_regs->tf_edi;
	pcb2->pcb_esi = (int)fork_return;
	pcb2->pcb_ebp = p2->p_md.md_regs->tf_ebp;
	pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *);
	pcb2->pcb_ebx = (int)p2;
	pcb2->pcb_eip = (int)fork_trampoline;
	/*
	 * pcb2->pcb_ldt:	duplicated below, if necessary.
	 * pcb2->pcb_ldt_len:	cloned above.
	 * pcb2->pcb_savefpu:	cloned above.
	 * pcb2->pcb_flags:	cloned above (always 0 here?).
	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
	 */

#ifdef SMP
	pcb2->pcb_mpnest = 1;
#endif
#ifdef VM86
	/*
	 * XXX don't copy the i/o pages.  this should probably be fixed.
	 */
	pcb2->pcb_ext = 0;
#endif

#ifdef USER_LDT
        /* Copy the LDT, if necessary. */
        if (pcb2->pcb_ldt != 0) {
                union descriptor *new_ldt;
                size_t len = pcb2->pcb_ldt_len * sizeof(union descriptor);

                new_ldt = (union descriptor *)kmem_alloc(kernel_map, len);
                bcopy(pcb2->pcb_ldt, new_ldt, len);
                pcb2->pcb_ldt = (caddr_t)new_ldt;
        }
#endif

	/*
	 * Now, cpu_switch() can schedule the new process.
	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
	 * containing the return address when exiting cpu_switch.
	 * This will normally be to proc_trampoline(), which will have
	 * %ebx loaded with the new proc's pointer.  proc_trampoline()
	 * will set up a stack to call fork_return(p, frame); to complete
	 * the return to user-mode.
	 */
}

/*
 * Intercept the return address from a freshly forked process that has NOT
 * been scheduled yet.
 *
 * This is needed to make kernel threads stay in kernel mode.
 */
void
cpu_set_fork_handler(p, func, arg)
	struct proc *p;
	void (*func) __P((void *));
	void *arg;
{
	/*
	 * Note that the trap frame follows the args, so the function
	 * is really called like this:  func(arg, frame);
	 */
	p->p_addr->u_pcb.pcb_esi = (int) func;	/* function */
	p->p_addr->u_pcb.pcb_ebx = (int) arg;	/* first arg */
}

void
cpu_exit(p)
	register struct proc *p;
{
#if defined(USER_LDT) || defined(VM86)
	struct pcb *pcb = &p->p_addr->u_pcb; 
#endif

#if NNPX > 0
	npxexit(p);
#endif	/* NNPX */
#ifdef VM86
	if (pcb->pcb_ext != 0) {
	        /* 
		 * XXX do we need to move the TSS off the allocated pages 
		 * before freeing them?  (not done here)
		 */
		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
		    ctob(IOPAGES + 1));
		pcb->pcb_ext = 0;
	}
#endif
#ifdef USER_LDT
	if (pcb->pcb_ldt != 0) {
		if (pcb == curpcb) {
			lldt(_default_ldt);
			currentldt = _default_ldt;
		}
		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
			pcb->pcb_ldt_len * sizeof(union descriptor));
		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
	}
#endif
	cnt.v_swtch++;
	cpu_switch(p);
	panic("cpu_exit");
}

void
cpu_wait(p)
	struct proc *p;
{
	/* drop per-process resources */
	pmap_dispose_proc(p);

	/* and clean-out the vmspace */
	vmspace_free(p->p_vmspace);
}

/*
 * Dump the machine specific header information at the start of a core dump.
 */
int
cpu_coredump(p, vp, cred)
	struct proc *p;
	struct vnode *vp;
	struct ucred *cred;
{
	int error;
	caddr_t tempuser;

	tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK);
	if (!tempuser)
		return EINVAL;
	
	bzero(tempuser, ctob(UPAGES));
	bcopy(p->p_addr, tempuser, sizeof(struct user));
	bcopy(p->p_md.md_regs,
	      tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr),
	      sizeof(struct trapframe));

	error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser, 
			ctob(UPAGES),
			(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, 
			cred, (int *)NULL, p);

	free(tempuser, M_TEMP);
	
	return error;
}

#ifdef notyet
static void
setredzone(pte, vaddr)
	u_short *pte;
	caddr_t vaddr;
{
/* eventually do this by setting up an expand-down stack segment
   for ss0: selector, allowing stack access down to top of u.
   this means though that protection violations need to be handled
   thru a double fault exception that must do an integral task
   switch to a known good context, within which a dump can be
   taken. a sensible scheme might be to save the initial context
   used by sched (that has physical memory mapped 1:1 at bottom)
   and take the dump while still in mapped mode */
}
#endif

/*
 * Convert kernel VA to physical address
 */
u_long
kvtop(void *addr)
{
	vm_offset_t va;

	va = pmap_kextract((vm_offset_t)addr);
	if (va == 0)
		panic("kvtop: zero page frame");
	return((int)va);
}

/*
 * Map an IO request into kernel virtual address space.
 *
 * All requests are (re)mapped into kernel VA space.
 * Notice that we use b_bufsize for the size of the buffer
 * to be mapped.  b_bcount might be modified by the driver.
 */
void
vmapbuf(bp)
	register struct buf *bp;
{
	register caddr_t addr, v, kva;
	vm_offset_t pa;

	if ((bp->b_flags & B_PHYS) == 0)
		panic("vmapbuf");

	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
	    addr < bp->b_data + bp->b_bufsize;
	    addr += PAGE_SIZE, v += PAGE_SIZE) {
		/*
		 * Do the vm_fault if needed; do the copy-on-write thing
		 * when reading stuff off device into memory.
		 */
		vm_fault_quick(addr,
			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
		if (pa == 0)
			panic("vmapbuf: page not present");
		vm_page_hold(PHYS_TO_VM_PAGE(pa));
		pmap_kenter((vm_offset_t) v, pa);
	}

	kva = bp->b_saveaddr;
	bp->b_saveaddr = bp->b_data;
	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
}

/*
 * Free the io map PTEs associated with this IO operation.
 * We also invalidate the TLB entries and restore the original b_addr.
 */
void
vunmapbuf(bp)
	register struct buf *bp;
{
	register caddr_t addr;
	vm_offset_t pa;

	if ((bp->b_flags & B_PHYS) == 0)
		panic("vunmapbuf");

	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
	    addr < bp->b_data + bp->b_bufsize;
	    addr += PAGE_SIZE) {
		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
		pmap_kremove((vm_offset_t) addr);
		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
	}

	bp->b_data = bp->b_saveaddr;
}

/*
 * Force reset the processor by invalidating the entire address space!
 */

#ifdef SMP
static void
cpu_reset_proxy()
{
	u_int saved_mp_lock;

	cpu_reset_proxy_active = 1;
	while (cpu_reset_proxy_active == 1)
		;	 /* Wait for other cpu to disable interupts */
	saved_mp_lock = mp_lock;
	mp_lock = 1;
	printf("cpu_reset_proxy: Grabbed mp lock for BSP\n");
	cpu_reset_proxy_active = 3;
	while (cpu_reset_proxy_active == 3)
		;	/* Wait for other cpu to enable interrupts */
	stop_cpus((1<<cpu_reset_proxyid));
	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
	DELAY(1000000);
	cpu_reset_real();
}
#endif

void
cpu_reset()
{
#ifdef SMP
	if (smp_active == 0) {
		cpu_reset_real();
		/* NOTREACHED */
	} else {

		u_int map;
		int cnt;
		printf("cpu_reset called on cpu#%d\n",cpuid);

		map = other_cpus & ~ stopped_cpus;

		if (map != 0) {
			printf("cpu_reset: Stopping other CPUs\n");
			stop_cpus(map);		/* Stop all other CPUs */
		}

		if (cpuid == 0) {
			DELAY(1000000);
			cpu_reset_real();
			/* NOTREACHED */
		} else {
			/* We are not BSP (CPU #0) */

			cpu_reset_proxyid = cpuid;
			cpustop_restartfunc = cpu_reset_proxy;
			printf("cpu_reset: Restarting BSP\n");
			started_cpus = (1<<0);		/* Restart CPU #0 */

			cnt = 0;
			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
				cnt++;	/* Wait for BSP to announce restart */
			if (cpu_reset_proxy_active == 0)
				printf("cpu_reset: Failed to restart BSP\n");
			__asm __volatile("cli" : : : "memory");
			cpu_reset_proxy_active = 2;
			cnt = 0;
			while (cpu_reset_proxy_active == 2 && cnt < 10000000)
				cnt++;	/* Do nothing */
			if (cpu_reset_proxy_active == 2) {
				printf("cpu_reset: BSP did not grab mp lock\n");
				cpu_reset_real();	/* XXX: Bogus ? */
			}
			cpu_reset_proxy_active = 4;
			__asm __volatile("sti" : : : "memory");
			while (1);
			/* NOTREACHED */
		}
	}
#else
	cpu_reset_real();
#endif
}

static void
cpu_reset_real()
{

#ifdef PC98
	/*
	 * Attempt to do a CPU reset via CPU reset port.
	 */
	disable_intr();
	if ((inb(0x35) & 0xa0) != 0xa0) {
		outb(0x37, 0x0f);		/* SHUT0 = 0. */
		outb(0x37, 0x0b);		/* SHUT1 = 0. */
	}
	outb(0xf0, 0x00);		/* Reset. */
#else
	/*
	 * Attempt to do a CPU reset via the keyboard controller,
	 * do not turn of the GateA20, as any machine that fails
	 * to do the reset here would then end up in no man's land.
	 */

#if !defined(BROKEN_KEYBOARD_RESET)
	outb(IO_KBD + 4, 0xFE);
	DELAY(500000);	/* wait 0.5 sec to see if that did it */
	printf("Keyboard reset did not work, attempting CPU shutdown\n");
	DELAY(1000000);	/* wait 1 sec for printf to complete */
#endif
#endif /* PC98 */
	/* force a shutdown by unmapping entire address space ! */
	bzero((caddr_t) PTD, PAGE_SIZE);

	/* "good night, sweet prince .... <THUNK!>" */
	invltlb();
	/* NOTREACHED */
	while(1);
}

#ifndef VM_STACK
/*
 * Grow the user stack to allow for 'sp'. This version grows the stack in
 *	chunks of SGROWSIZ.
 */
int
grow(p, sp)
	struct proc *p;
	u_int sp;
{
	unsigned int nss;
	caddr_t v;
	struct vmspace *vm = p->p_vmspace;

	if ((caddr_t)sp <= vm->vm_maxsaddr || sp >= USRSTACK)
		return (1);

	nss = roundup(USRSTACK - sp, PAGE_SIZE);

	if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur)
		return (0);

	if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT,
	    SGROWSIZ) < nss) {
		int grow_amount;
		/*
		 * If necessary, grow the VM that the stack occupies
		 * to allow for the rlimit. This allows us to not have
		 * to allocate all of the VM up-front in execve (which
		 * is expensive).
		 * Grow the VM by the amount requested rounded up to
		 * the nearest SGROWSIZ to provide for some hysteresis.
		 */
		grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ);
		v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT,
		    SGROWSIZ) - grow_amount;
		/*
		 * If there isn't enough room to extend by SGROWSIZ, then
		 * just extend to the maximum size
		 */
		if (v < vm->vm_maxsaddr) {
			v = vm->vm_maxsaddr;
			grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT);
		}
		if ((grow_amount == 0) || (vm_map_find(&vm->vm_map, NULL, 0, (vm_offset_t *)&v,
		    grow_amount, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0) != KERN_SUCCESS)) {
			return (0);
		}
		vm->vm_ssize += grow_amount >> PAGE_SHIFT;
	}

	return (1);
}
#else
int
grow_stack(p, sp)
	struct proc *p;
	u_int sp;
{
	int rv;

	rv = vm_map_growstack (p, sp);
	if (rv != KERN_SUCCESS)
		return (0);

	return (1);
}
#endif


static int cnt_prezero;

SYSCTL_INT(_vm_stats_misc, OID_AUTO,
	cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");

/*
 * Implement the pre-zeroed page mechanism.
 * This routine is called from the idle loop.
 */
int
vm_page_zero_idle()
{
	static int free_rover;
	vm_page_t m;
	int s;

	/*
	 * XXX
	 * We stop zeroing pages when there are sufficent prezeroed pages.
	 * This threshold isn't really needed, except we want to
	 * bypass unneeded calls to vm_page_list_find, and the
	 * associated cache flush and latency.  The pre-zero will
	 * still be called when there are significantly more
	 * non-prezeroed pages than zeroed pages.  The threshold
	 * of half the number of reserved pages is arbitrary, but
	 * approximately the right amount.  Eventually, we should
	 * perhaps interrupt the zero operation when a process
	 * is found to be ready to run.
	 */
	if (cnt.v_free_count - vm_page_zero_count <= cnt.v_free_reserved / 2)
		return (0);
#ifdef SMP
	if (try_mplock()) {
#endif
		s = splvm();
		__asm __volatile("sti" : : : "memory");
		m = vm_page_list_find(PQ_FREE, free_rover);
		if (m != NULL) {
			--(*vm_page_queues[m->queue].lcnt);
			TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
			m->queue = PQ_NONE;
			splx(s);
#if 0
			rel_mplock();
#endif
			pmap_zero_page(VM_PAGE_TO_PHYS(m));
#if 0
			get_mplock();
#endif
			(void)splvm();
			m->queue = PQ_ZERO + m->pc;
			++(*vm_page_queues[m->queue].lcnt);
			TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m,
			    pageq);
			free_rover = (free_rover + PQ_PRIME3) & PQ_L2_MASK;
			++vm_page_zero_count;
			++cnt_prezero;
		}
		splx(s);
		__asm __volatile("cli" : : : "memory");
#ifdef SMP
		rel_mplock();
#endif
		return (1);
#ifdef SMP
	}
#endif
	return (0);
}

/*
 * Software interrupt handler for queued VM system processing.
 */   
void  
swi_vm() 
{     
	if (busdma_swi_pending != 0)
		busdma_swi();
}

/*
 * Tell whether this address is in some physical memory region.
 * Currently used by the kernel coredump code in order to avoid
 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
 * or other unpredictable behaviour.
 */

#include "isa.h"

int
is_physical_memory(addr)
	vm_offset_t addr;
{

#if NISA > 0
	/* The ISA ``memory hole''. */
	if (addr >= 0xa0000 && addr < 0x100000)
		return 0;
#endif

	/*
	 * stuff other tests for known memory-mapped devices (PCI?)
	 * here
	 */

	return 1;
}