aboutsummaryrefslogtreecommitdiff
path: root/sys/kern/kern_synch.c
blob: 930bd940d2ab8e4514f29ae096942123e0e43177 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 1982, 1986, 1990, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ktrace.h"
#include "opt_sched.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/blockcount.h>
#include <sys/condvar.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/sleepqueue.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/vmmeter.h>
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif
#ifdef EPOCH_TRACE
#include <sys/epoch.h>
#endif

#include <machine/cpu.h>

static void synch_setup(void *dummy);
SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
    NULL);

int	hogticks;
static const char pause_wchan[MAXCPU];

static struct callout loadav_callout;

struct loadavg averunnable =
	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
/*
 * Constants for averages over 1, 5, and 15 minutes
 * when sampling at 5 second intervals.
 */
static fixpt_t cexp[3] = {
	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
};

/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE,
    "Fixed-point scale factor used for calculating load average values");

static void	loadav(void *arg);

SDT_PROVIDER_DECLARE(sched);
SDT_PROBE_DEFINE(sched, , , preempt);

static void
sleepinit(void *unused)
{

	hogticks = (hz / 10) * 2;	/* Default only. */
	init_sleepqueues();
}

/*
 * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
 * it is available.
 */
SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, NULL);

/*
 * General sleep call.  Suspends the current thread until a wakeup is
 * performed on the specified identifier.  The thread will then be made
 * runnable with the specified priority.  Sleeps at most sbt units of time
 * (0 means no timeout).  If pri includes the PCATCH flag, let signals
 * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
 * signal becomes pending, ERESTART is returned if the current system
 * call should be restarted if possible, and EINTR is returned if the system
 * call should be interrupted by the signal (return EINTR).
 *
 * The lock argument is unlocked before the caller is suspended, and
 * re-locked before _sleep() returns.  If priority includes the PDROP
 * flag the lock is not re-locked before returning.
 */
int
_sleep(const void *ident, struct lock_object *lock, int priority,
    const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
{
	struct thread *td;
	struct lock_class *class;
	uintptr_t lock_state;
	int catch, pri, rval, sleepq_flags;
	WITNESS_SAVE_DECL(lock_witness);

	TSENTER();
	td = curthread;
#ifdef KTRACE
	if (KTRPOINT(td, KTR_CSW))
		ktrcsw(1, 0, wmesg);
#endif
	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
	    "Sleeping on \"%s\"", wmesg);
	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL ||
	    (priority & PNOLOCK) != 0,
	    ("sleeping without a lock"));
	KASSERT(ident != NULL, ("_sleep: NULL ident"));
	KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running"));
	if (priority & PDROP)
		KASSERT(lock != NULL && lock != &Giant.lock_object,
		    ("PDROP requires a non-Giant lock"));
	if (lock != NULL)
		class = LOCK_CLASS(lock);
	else
		class = NULL;

	if (SCHEDULER_STOPPED_TD(td)) {
		if (lock != NULL && priority & PDROP)
			class->lc_unlock(lock);
		return (0);
	}
	catch = priority & PCATCH;
	pri = priority & PRIMASK;

	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));

	if ((uintptr_t)ident >= (uintptr_t)&pause_wchan[0] &&
	    (uintptr_t)ident <= (uintptr_t)&pause_wchan[MAXCPU - 1])
		sleepq_flags = SLEEPQ_PAUSE;
	else
		sleepq_flags = SLEEPQ_SLEEP;
	if (catch)
		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;

	sleepq_lock(ident);
	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);

	if (lock == &Giant.lock_object)
		mtx_assert(&Giant, MA_OWNED);
	DROP_GIANT();
	if (lock != NULL && lock != &Giant.lock_object &&
	    !(class->lc_flags & LC_SLEEPABLE)) {
		KASSERT(!(class->lc_flags & LC_SPINLOCK),
		    ("spin locks can only use msleep_spin"));
		WITNESS_SAVE(lock, lock_witness);
		lock_state = class->lc_unlock(lock);
	} else
		/* GCC needs to follow the Yellow Brick Road */
		lock_state = -1;

	/*
	 * We put ourselves on the sleep queue and start our timeout
	 * before calling thread_suspend_check, as we could stop there,
	 * and a wakeup or a SIGCONT (or both) could occur while we were
	 * stopped without resuming us.  Thus, we must be ready for sleep
	 * when cursig() is called.  If the wakeup happens while we're
	 * stopped, then td will no longer be on a sleep queue upon
	 * return from cursig().
	 */
	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
	if (sbt != 0)
		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
		sleepq_release(ident);
		WITNESS_SAVE(lock, lock_witness);
		lock_state = class->lc_unlock(lock);
		sleepq_lock(ident);
	}
	if (sbt != 0 && catch)
		rval = sleepq_timedwait_sig(ident, pri);
	else if (sbt != 0)
		rval = sleepq_timedwait(ident, pri);
	else if (catch)
		rval = sleepq_wait_sig(ident, pri);
	else {
		sleepq_wait(ident, pri);
		rval = 0;
	}
#ifdef KTRACE
	if (KTRPOINT(td, KTR_CSW))
		ktrcsw(0, 0, wmesg);
#endif
	PICKUP_GIANT();
	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
		class->lc_lock(lock, lock_state);
		WITNESS_RESTORE(lock, lock_witness);
	}
	TSEXIT();
	return (rval);
}

int
msleep_spin_sbt(const void *ident, struct mtx *mtx, const char *wmesg,
    sbintime_t sbt, sbintime_t pr, int flags)
{
	struct thread *td;
	int rval;
	WITNESS_SAVE_DECL(mtx);

	td = curthread;
	KASSERT(mtx != NULL, ("sleeping without a mutex"));
	KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident"));
	KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running"));

	if (SCHEDULER_STOPPED_TD(td))
		return (0);

	sleepq_lock(ident);
	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);

	DROP_GIANT();
	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
	WITNESS_SAVE(&mtx->lock_object, mtx);
	mtx_unlock_spin(mtx);

	/*
	 * We put ourselves on the sleep queue and start our timeout.
	 */
	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
	if (sbt != 0)
		sleepq_set_timeout_sbt(ident, sbt, pr, flags);

	/*
	 * Can't call ktrace with any spin locks held so it can lock the
	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
	 * we handle those requests.  This is safe since we have placed our
	 * thread on the sleep queue already.
	 */
#ifdef KTRACE
	if (KTRPOINT(td, KTR_CSW)) {
		sleepq_release(ident);
		ktrcsw(1, 0, wmesg);
		sleepq_lock(ident);
	}
#endif
#ifdef WITNESS
	sleepq_release(ident);
	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
	    wmesg);
	sleepq_lock(ident);
#endif
	if (sbt != 0)
		rval = sleepq_timedwait(ident, 0);
	else {
		sleepq_wait(ident, 0);
		rval = 0;
	}
#ifdef KTRACE
	if (KTRPOINT(td, KTR_CSW))
		ktrcsw(0, 0, wmesg);
#endif
	PICKUP_GIANT();
	mtx_lock_spin(mtx);
	WITNESS_RESTORE(&mtx->lock_object, mtx);
	return (rval);
}

/*
 * pause_sbt() delays the calling thread by the given signed binary
 * time. During cold bootup, pause_sbt() uses the DELAY() function
 * instead of the _sleep() function to do the waiting. The "sbt"
 * argument must be greater than or equal to zero. A "sbt" value of
 * zero is equivalent to a "sbt" value of one tick.
 */
int
pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
{
	KASSERT(sbt >= 0, ("pause_sbt: timeout must be >= 0"));

	/* silently convert invalid timeouts */
	if (sbt == 0)
		sbt = tick_sbt;

	if ((cold && curthread == &thread0) || kdb_active ||
	    SCHEDULER_STOPPED()) {
		/*
		 * We delay one second at a time to avoid overflowing the
		 * system specific DELAY() function(s):
		 */
		while (sbt >= SBT_1S) {
			DELAY(1000000);
			sbt -= SBT_1S;
		}
		/* Do the delay remainder, if any */
		sbt = howmany(sbt, SBT_1US);
		if (sbt > 0)
			DELAY(sbt);
		return (EWOULDBLOCK);
	}
	return (_sleep(&pause_wchan[curcpu], NULL,
	    (flags & C_CATCH) ? PCATCH : 0, wmesg, sbt, pr, flags));
}

/*
 * Make all threads sleeping on the specified identifier runnable.
 */
void
wakeup(const void *ident)
{
	int wakeup_swapper;

	sleepq_lock(ident);
	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
	sleepq_release(ident);
	if (wakeup_swapper) {
		KASSERT(ident != &proc0,
		    ("wakeup and wakeup_swapper and proc0"));
		kick_proc0();
	}
}

/*
 * Make a thread sleeping on the specified identifier runnable.
 * May wake more than one thread if a target thread is currently
 * swapped out.
 */
void
wakeup_one(const void *ident)
{
	int wakeup_swapper;

	sleepq_lock(ident);
	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_DROP, 0, 0);
	if (wakeup_swapper)
		kick_proc0();
}

void
wakeup_any(const void *ident)
{
	int wakeup_swapper;

	sleepq_lock(ident);
	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_UNFAIR |
	    SLEEPQ_DROP, 0, 0);
	if (wakeup_swapper)
		kick_proc0();
}

/*
 * Signal sleeping waiters after the counter has reached zero.
 */
void
_blockcount_wakeup(blockcount_t *bc, u_int old)
{

	KASSERT(_BLOCKCOUNT_WAITERS(old),
	    ("%s: no waiters on %p", __func__, bc));

	if (atomic_cmpset_int(&bc->__count, _BLOCKCOUNT_WAITERS_FLAG, 0))
		wakeup(bc);
}

/*
 * Wait for a wakeup or a signal.  This does not guarantee that the count is
 * still zero on return.  Callers wanting a precise answer should use
 * blockcount_wait() with an interlock.
 *
 * If there is no work to wait for, return 0.  If the sleep was interrupted by a
 * signal, return EINTR or ERESTART, and return EAGAIN otherwise.
 */
int
_blockcount_sleep(blockcount_t *bc, struct lock_object *lock, const char *wmesg,
    int prio)
{
	void *wchan;
	uintptr_t lock_state;
	u_int old;
	int ret;
	bool catch, drop;

	KASSERT(lock != &Giant.lock_object,
	    ("%s: cannot use Giant as the interlock", __func__));

	catch = (prio & PCATCH) != 0;
	drop = (prio & PDROP) != 0;
	prio &= PRIMASK;

	/*
	 * Synchronize with the fence in blockcount_release().  If we end up
	 * waiting, the sleepqueue lock acquisition will provide the required
	 * side effects.
	 *
	 * If there is no work to wait for, but waiters are present, try to put
	 * ourselves to sleep to avoid jumping ahead.
	 */
	if (atomic_load_acq_int(&bc->__count) == 0) {
		if (lock != NULL && drop)
			LOCK_CLASS(lock)->lc_unlock(lock);
		return (0);
	}
	lock_state = 0;
	wchan = bc;
	sleepq_lock(wchan);
	DROP_GIANT();
	if (lock != NULL)
		lock_state = LOCK_CLASS(lock)->lc_unlock(lock);
	old = blockcount_read(bc);
	ret = 0;
	do {
		if (_BLOCKCOUNT_COUNT(old) == 0) {
			sleepq_release(wchan);
			goto out;
		}
		if (_BLOCKCOUNT_WAITERS(old))
			break;
	} while (!atomic_fcmpset_int(&bc->__count, &old,
	    old | _BLOCKCOUNT_WAITERS_FLAG));
	sleepq_add(wchan, NULL, wmesg, catch ? SLEEPQ_INTERRUPTIBLE : 0, 0);
	if (catch)
		ret = sleepq_wait_sig(wchan, prio);
	else
		sleepq_wait(wchan, prio);
	if (ret == 0)
		ret = EAGAIN;

out:
	PICKUP_GIANT();
	if (lock != NULL && !drop)
		LOCK_CLASS(lock)->lc_lock(lock, lock_state);

	return (ret);
}

static void
kdb_switch(void)
{
	thread_unlock(curthread);
	kdb_backtrace();
	kdb_reenter();
	panic("%s: did not reenter debugger", __func__);
}

/*
 * The machine independent parts of context switching.
 *
 * The thread lock is required on entry and is no longer held on return.
 */
void
mi_switch(int flags)
{
	uint64_t runtime, new_switchtime;
	struct thread *td;

	td = curthread;			/* XXX */
	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
#ifdef INVARIANTS
	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
		mtx_assert(&Giant, MA_NOTOWNED);
#endif
	KASSERT(td->td_critnest == 1 || KERNEL_PANICKED(),
		("mi_switch: switch in a critical section"));
	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
	    ("mi_switch: switch must be voluntary or involuntary"));

	/*
	 * Don't perform context switches from the debugger.
	 */
	if (kdb_active)
		kdb_switch();
	if (SCHEDULER_STOPPED_TD(td))
		return;
	if (flags & SW_VOL) {
		td->td_ru.ru_nvcsw++;
		td->td_swvoltick = ticks;
	} else {
		td->td_ru.ru_nivcsw++;
		td->td_swinvoltick = ticks;
	}
#ifdef SCHED_STATS
	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
#endif
	/*
	 * Compute the amount of time during which the current
	 * thread was running, and add that to its total so far.
	 */
	new_switchtime = cpu_ticks();
	runtime = new_switchtime - PCPU_GET(switchtime);
	td->td_runtime += runtime;
	td->td_incruntime += runtime;
	PCPU_SET(switchtime, new_switchtime);
	td->td_generation++;	/* bump preempt-detect counter */
	VM_CNT_INC(v_swtch);
	PCPU_SET(switchticks, ticks);
	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
#ifdef KDTRACE_HOOKS
	if (SDT_PROBES_ENABLED() &&
	    ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
	    (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED)))
		SDT_PROBE0(sched, , , preempt);
#endif
	sched_switch(td, flags);
	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);

	/* 
	 * If the last thread was exiting, finish cleaning it up.
	 */
	if ((td = PCPU_GET(deadthread))) {
		PCPU_SET(deadthread, NULL);
		thread_stash(td);
	}
	spinlock_exit();
}

/*
 * Change thread state to be runnable, placing it on the run queue if
 * it is in memory.  If it is swapped out, return true so our caller
 * will know to awaken the swapper.
 *
 * Requires the thread lock on entry, drops on exit.
 */
int
setrunnable(struct thread *td, int srqflags)
{
	int swapin;

	THREAD_LOCK_ASSERT(td, MA_OWNED);
	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));

	swapin = 0;
	switch (TD_GET_STATE(td)) {
	case TDS_RUNNING:
	case TDS_RUNQ:
		break;
	case TDS_CAN_RUN:
		KASSERT((td->td_flags & TDF_INMEM) != 0,
		    ("setrunnable: td %p not in mem, flags 0x%X inhibit 0x%X",
		    td, td->td_flags, td->td_inhibitors));
		/* unlocks thread lock according to flags */
		sched_wakeup(td, srqflags);
		return (0);
	case TDS_INHIBITED:
		/*
		 * If we are only inhibited because we are swapped out
		 * arrange to swap in this process.
		 */
		if (td->td_inhibitors == TDI_SWAPPED &&
		    (td->td_flags & TDF_SWAPINREQ) == 0) {
			td->td_flags |= TDF_SWAPINREQ;
			swapin = 1;
		}
		break;
	default:
		panic("setrunnable: state 0x%x", TD_GET_STATE(td));
	}
	if ((srqflags & (SRQ_HOLD | SRQ_HOLDTD)) == 0)
		thread_unlock(td);

	return (swapin);
}

/*
 * Compute a tenex style load average of a quantity on
 * 1, 5 and 15 minute intervals.
 */
static void
loadav(void *arg)
{
	int i, nrun;
	struct loadavg *avg;

	nrun = sched_load();
	avg = &averunnable;

	for (i = 0; i < 3; i++)
		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;

	/*
	 * Schedule the next update to occur after 5 seconds, but add a
	 * random variation to avoid synchronisation with processes that
	 * run at regular intervals.
	 */
	callout_reset_sbt(&loadav_callout,
	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
}

/* ARGSUSED */
static void
synch_setup(void *dummy)
{
	callout_init(&loadav_callout, 1);

	/* Kick off timeout driven events by calling first time. */
	loadav(NULL);
}

int
should_yield(void)
{

	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
}

void
maybe_yield(void)
{

	if (should_yield())
		kern_yield(PRI_USER);
}

void
kern_yield(int prio)
{
	struct thread *td;

	td = curthread;
	DROP_GIANT();
	thread_lock(td);
	if (prio == PRI_USER)
		prio = td->td_user_pri;
	if (prio >= 0)
		sched_prio(td, prio);
	mi_switch(SW_VOL | SWT_RELINQUISH);
	PICKUP_GIANT();
}

/*
 * General purpose yield system call.
 */
int
sys_yield(struct thread *td, struct yield_args *uap)
{

	thread_lock(td);
	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
		sched_prio(td, PRI_MAX_TIMESHARE);
	mi_switch(SW_VOL | SWT_RELINQUISH);
	td->td_retval[0] = 0;
	return (0);
}