aboutsummaryrefslogtreecommitdiff
path: root/sys/kern/subr_disk.c
blob: 375f75105ab16891572a51bf4cbdac339a8c7989 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
 * ----------------------------------------------------------------------------
 * "THE BEER-WARE LICENSE" (Revision 42):
 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
 * can do whatever you want with this stuff. If we meet some day, and you think
 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
 * ----------------------------------------------------------------------------
 *
 * $FreeBSD$
 *
 */

#include "opt_geom.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/disklabel.h>

/*-
 * Disk error is the preface to plaintive error messages
 * about failing disk transfers.  It prints messages of the form
 * 	"hp0g: BLABLABLA cmd=read fsbn 12345 of 12344-12347"
 * blkdone should be -1 if the position of the error is unknown.
 * The message is printed with printf.
 */
void
disk_err(struct bio *bp, const char *what, int blkdone, int nl)
{
	daddr_t sn;

	if (bp->bio_dev != NULL)
		printf("%s: %s ", devtoname(bp->bio_dev), what);
	else if (bp->bio_disk != NULL)
		printf("%s%d: %s ",
		    bp->bio_disk->d_name, bp->bio_disk->d_unit, what);
	else
		printf("disk??: %s ", what);
	switch(bp->bio_cmd) {
	case BIO_READ:		printf("cmd=read "); break;
	case BIO_WRITE:		printf("cmd=write "); break;
	case BIO_DELETE:	printf("cmd=delete "); break;
	case BIO_GETATTR:	printf("cmd=getattr "); break;
	case BIO_SETATTR:	printf("cmd=setattr "); break;
	default:		printf("cmd=%x ", bp->bio_cmd); break;
	}
	sn = bp->bio_blkno;
	if (bp->bio_bcount <= DEV_BSIZE) {
		printf("fsbn %jd%s", (intmax_t)sn, nl ? "\n" : "");
		return;
	}
	if (blkdone >= 0) {
		sn += blkdone;
		printf("fsbn %jd of ", (intmax_t)sn);
	}
	printf("%jd-%jd", (intmax_t)bp->bio_blkno,
	    (intmax_t)(bp->bio_blkno + (bp->bio_bcount - 1) / DEV_BSIZE));
	if (nl)
		printf("\n");
}

/*
 * Seek sort for disks.
 *
 * The buf_queue keep two queues, sorted in ascending block order.  The first
 * queue holds those requests which are positioned after the current block
 * (in the first request); the second, which starts at queue->switch_point,
 * holds requests which came in after their block number was passed.  Thus
 * we implement a one way scan, retracting after reaching the end of the drive
 * to the first request on the second queue, at which time it becomes the
 * first queue.
 *
 * A one-way scan is natural because of the way UNIX read-ahead blocks are
 * allocated.
 */

void
bioq_disksort(bioq, bp)
	struct bio_queue_head *bioq;
	struct bio *bp;
{
	struct bio *bq;
	struct bio *bn;
	struct bio *be;

	if (!atomic_cmpset_int(&bioq->busy, 0, 1))
		panic("Recursing in bioq_disksort()");
	be = TAILQ_LAST(&bioq->queue, bio_queue);
	/*
	 * If the queue is empty or we are an
	 * ordered transaction, then it's easy.
	 */
	if ((bq = bioq_first(bioq)) == NULL) {
		bioq_insert_tail(bioq, bp);
		bioq->busy = 0;
		return;
	} else if (bioq->insert_point != NULL) {

		/*
		 * A certain portion of the list is
		 * "locked" to preserve ordering, so
		 * we can only insert after the insert
		 * point.
		 */
		bq = bioq->insert_point;
	} else {

		/*
		 * If we lie before the last removed (currently active)
		 * request, and are not inserting ourselves into the
		 * "locked" portion of the list, then we must add ourselves
		 * to the second request list.
		 */
		if (bp->bio_pblkno < bioq->last_pblkno) {

			bq = bioq->switch_point;
			/*
			 * If we are starting a new secondary list,
			 * then it's easy.
			 */
			if (bq == NULL) {
				bioq->switch_point = bp;
				bioq_insert_tail(bioq, bp);
				bioq->busy = 0;
				return;
			}
			/*
			 * If we lie ahead of the current switch point,
			 * insert us before the switch point and move
			 * the switch point.
			 */
			if (bp->bio_pblkno < bq->bio_pblkno) {
				bioq->switch_point = bp;
				TAILQ_INSERT_BEFORE(bq, bp, bio_queue);
				bioq->busy = 0;
				return;
			}
		} else {
			if (bioq->switch_point != NULL)
				be = TAILQ_PREV(bioq->switch_point,
						bio_queue, bio_queue);
			/*
			 * If we lie between last_pblkno and bq,
			 * insert before bq.
			 */
			if (bp->bio_pblkno < bq->bio_pblkno) {
				TAILQ_INSERT_BEFORE(bq, bp, bio_queue);
				bioq->busy = 0;
				return;
			}
		}
	}

	/*
	 * Request is at/after our current position in the list.
	 * Optimize for sequential I/O by seeing if we go at the tail.
	 */
	if (bp->bio_pblkno > be->bio_pblkno) {
		TAILQ_INSERT_AFTER(&bioq->queue, be, bp, bio_queue);
		bioq->busy = 0;
		return;
	}

	/* Otherwise, insertion sort */
	while ((bn = TAILQ_NEXT(bq, bio_queue)) != NULL) {
		
		/*
		 * We want to go after the current request if it is the end
		 * of the first request list, or if the next request is a
		 * larger cylinder than our request.
		 */
		if (bn == bioq->switch_point
		 || bp->bio_pblkno < bn->bio_pblkno)
			break;
		bq = bn;
	}
	TAILQ_INSERT_AFTER(&bioq->queue, bq, bp, bio_queue);
	bioq->busy = 0;
}