aboutsummaryrefslogtreecommitdiff
path: root/sys/kern/subr_fattime.c
blob: c3669ada2b81906434dbaca2fd21c8fea47a444d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/*-
 * Copyright (c) 2006 Poul-Henning Kamp
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD$
 *
 * Convert MS-DOS FAT format timestamps to and from unix timespecs
 *
 * FAT filestamps originally consisted of two 16 bit integers, encoded like
 * this:
 *
 *	yyyyyyymmmmddddd (year - 1980, month, day)
 *
 *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
 *
 * Subsequently even Microsoft realized that files could be accessed in less
 * than two seconds and a byte was added containing:
 *
 *      sfffffff	 (second mod two, 100ths of second)
 *
 * FAT timestamps are in the local timezone, with no indication of which
 * timezone much less if daylight savings time applies.
 *
 * Later on again, in Windows NT, timestamps were defined relative to GMT.
 *
 * Purists will point out that UTC replaced GMT for such uses around
 * a century ago, already then.  Ironically "NT" was an abbreviation of 
 * "New Technology".  Anyway...
 *
 * The 'utc' argument determines if the resulting FATTIME timestamp
 * should b on the UTC or local timezone calendar.
 *
 * The conversion functions below cut time into four-year leap-second
 * cycles rather than single years and uses table lookups inside those
 * cycles to get the months and years sorted out.
 *
 * Obviously we cannot calculate the correct table index going from
 * a posix seconds count to Y/M/D, but we can get pretty close by
 * dividing the daycount by 32 (giving a too low index), and then
 * adjusting upwards a couple of steps if necessary.
 *
 * FAT timestamps have 7 bits for the year and starts at 1980, so
 * they can represent up to 2107 which means that the non-leap-year
 * 2100 must be handled.
 *
 * XXX: As long as time_t is 32 bits this is not relevant or easily
 * XXX: testable.  Revisit when time_t grows bigger.
 * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
 *
 */

#include <sys/param.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/clock.h>

#define DAY	(24 * 60 * 60)	/* Length of day in seconds */
#define YEAR	365		/* Length of normal year */
#define LYC	(4 * YEAR + 1)	/* Length of 4 year leap-year cycle */
#define T1980	(10 * 365 + 2)	/* Days from 1970 to 1980 */

/* End of month is N days from start of (normal) year */
#define JAN	31
#define FEB	(JAN + 28)
#define MAR	(FEB + 31)
#define APR	(MAR + 30)
#define MAY	(APR + 31)
#define JUN	(MAY + 30)
#define JUL	(JUN + 31)
#define AUG	(JUL + 31)
#define SEP	(AUG + 30)
#define OCT	(SEP + 31)
#define NOV	(OCT + 30)
#define DEC	(NOV + 31)

/* Table of months in a 4 year leap-year cycle */

#define ENC(y,m)	(((y) << 9) | ((m) << 5))

static const struct {
	uint16_t	days;	/* month start in days relative to cycle */
	uint16_t	coded;	/* encoded year + month information */
} mtab[48] = {
	{   0 + 0 * YEAR,     ENC(0, 1)  },

	{ JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
	{ MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
	{ MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
	{ JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
	{ SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
	{ NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },

	{ JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
	{ MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
	{ MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
	{ JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
	{ SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
	{ NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },

	{ JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
	{ MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
	{ MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
	{ JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
	{ SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
	{ NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },

	{ JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
	{ MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
	{ MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
	{ JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
	{ SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
	{ NOV + 3 * YEAR + 1, ENC(3, 12) }
};


void
timespec2fattime(struct timespec *tsp, int utc, u_int16_t *ddp, u_int16_t *dtp, u_int8_t *dhp)
{
	time_t t1;
	unsigned t2, l, m;

	t1 = tsp->tv_sec;
	if (!utc)
		t1 -= utc_offset();

	if (dhp != NULL)
		*dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
	if (dtp != NULL) {
		*dtp = (t1 / 2) % 30;
		*dtp |= ((t1 / 60) % 60) << 5;
		*dtp |= ((t1 / 3600) % 24) << 11;
	}
	if (ddp != NULL) {
		t2 = t1 / DAY;
		if (t2 < T1980) {
			/* Impossible date, truncate to 1980-01-01 */
			*ddp = 0x0021;
		} else {
			t2 -= T1980;

			/*
			 * 2100 is not a leap year.
			 * XXX: a 32 bit time_t can not get us here.
			 */
			if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
				t2++;

			/* Account for full leapyear cycles */
			l = t2 / LYC;
			*ddp = (l * 4) << 9;
			t2 -= l * LYC;

			/* Find approximate table entry */
			m = t2 / 32;

			/* Find correct table entry */
			while (m < 47 && mtab[m + 1].days <= t2)
				m++;

			/* Get year + month from the table */
			*ddp += mtab[m].coded;

			/* And apply the day in the month */
			t2 -= mtab[m].days - 1;
			*ddp |= t2;
		}
	}
}

/*
 * Table indexed by the bottom two bits of year + four bits of the month
 * from the FAT timestamp, returning number of days into 4 year long
 * leap-year cycle
 */

#define DCOD(m, y, l)	((m) + YEAR * (y) + (l))
static const uint16_t daytab[64] = {
	0, 		 DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
	DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
	DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
	DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
	0, 		 DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
	DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
	DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
	DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
	0,		 DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
	DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
	DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
	DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
	0,		 DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
	DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
	DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
	DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
};

void
fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc, struct timespec *tsp)
{
	unsigned day;

	/* Unpack time fields */
	tsp->tv_sec = (dt & 0x1f) << 1;
	tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
	tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
	tsp->tv_sec += dh / 100;
	tsp->tv_nsec = (dh % 100) * 10000000;

	/* Day of month */
	day = (dd & 0x1f) - 1;

	/* Full leap-year cycles */
	day += LYC * ((dd >> 11) & 0x1f);

	/* Month offset from leap-year cycle */
	day += daytab[(dd >> 5) & 0x3f];

	/*
	 * 2100 is not a leap year.
	 * XXX: a 32 bit time_t can not get us here.
	 */
	if (day >= ((2100 - 1980) / 4 * LYC + FEB))
		day--;

	/* Align with time_t epoch */
	day += T1980;

	tsp->tv_sec += DAY * day;
	if (!utc)
		tsp->tv_sec += utc_offset();
}

#ifdef TEST_DRIVER

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int
main(int argc __unused, char **argv __unused)
{
	int i;
	struct timespec ts;
	struct tm tm;
	double a;
	u_int16_t d, t;
	u_int8_t p;
	char buf[100];

	for (i = 0; i < 10000; i++) {
		do {
			ts.tv_sec = random();
		} while (ts.tv_sec < T1980 * 86400);
		ts.tv_nsec = random() % 1000000000;

		printf("%10d.%03ld -- ", ts.tv_sec, ts.tv_nsec / 1000000);

		gmtime_r(&ts.tv_sec, &tm);
		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
		printf("%s -- ", buf);

		a = ts.tv_sec + ts.tv_nsec * 1e-9;
		d = t = p = 0;
		timet2fattime(&ts, &d, &t, &p);
		printf("%04x %04x %02x -- ", d, t, p);
		printf("%3d %02d %02d %02d %02d %02d -- ",
		    ((d >> 9)  & 0x7f) + 1980,
		    (d >> 5)  & 0x0f,
		    (d >> 0)  & 0x1f,
		    (t >> 11) & 0x1f,
		    (t >> 5)  & 0x3f,
		    ((t >> 0)  & 0x1f) * 2);

		ts.tv_sec = ts.tv_nsec = 0;
		fattime2timet(d, t, p, &ts);
		printf("%10d.%03ld == ", ts.tv_sec, ts.tv_nsec / 1000000);
		gmtime_r(&ts.tv_sec, &tm);
		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
		printf("%s -- ", buf);
		a -= ts.tv_sec + ts.tv_nsec * 1e-9;
		printf("%.3f", a);
		printf("\n");
	}
	return (0);
}

#endif /* TEST_DRIVER */