aboutsummaryrefslogtreecommitdiff
path: root/sys/kern/uipc_ktls.c
blob: 72c228e801999686b804dc5797127b63fe8f88d6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
/*-
 * SPDX-License-Identifier: BSD-2-Clause
 *
 * Copyright (c) 2014-2019 Netflix Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_rss.h"

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/domainset.h>
#include <sys/ktls.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/rmlock.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/refcount.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/kthread.h>
#include <sys/uio.h>
#include <sys/vmmeter.h>
#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
#include <machine/pcb.h>
#endif
#include <machine/vmparam.h>
#include <net/if.h>
#include <net/if_var.h>
#ifdef RSS
#include <net/netisr.h>
#include <net/rss_config.h>
#endif
#include <net/route.h>
#include <net/route/nhop.h>
#if defined(INET) || defined(INET6)
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#endif
#include <netinet/tcp_var.h>
#ifdef TCP_OFFLOAD
#include <netinet/tcp_offload.h>
#endif
#include <opencrypto/xform.h>
#include <vm/uma_dbg.h>
#include <vm/vm.h>
#include <vm/vm_pageout.h>
#include <vm/vm_page.h>

struct ktls_wq {
	struct mtx	mtx;
	STAILQ_HEAD(, mbuf) m_head;
	STAILQ_HEAD(, socket) so_head;
	bool		running;
} __aligned(CACHE_LINE_SIZE);

struct ktls_domain_info {
	int count;
	int cpu[MAXCPU];
};

struct ktls_domain_info ktls_domains[MAXMEMDOM];
static struct ktls_wq *ktls_wq;
static struct proc *ktls_proc;
LIST_HEAD(, ktls_crypto_backend) ktls_backends;
static struct rmlock ktls_backends_lock;
static uma_zone_t ktls_session_zone;
static uint16_t ktls_cpuid_lookup[MAXCPU];

SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
    "Kernel TLS offload");
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
    "Kernel TLS offload stats");

static int ktls_allow_unload;
SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN,
    &ktls_allow_unload, 0, "Allow software crypto modules to unload");

#ifdef RSS
static int ktls_bind_threads = 1;
#else
static int ktls_bind_threads;
#endif
SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
    &ktls_bind_threads, 0,
    "Bind crypto threads to cores (1) or cores and domains (2) at boot");

static u_int ktls_maxlen = 16384;
SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN,
    &ktls_maxlen, 0, "Maximum TLS record size");

static int ktls_number_threads;
SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
    &ktls_number_threads, 0,
    "Number of TLS threads in thread-pool");

static bool ktls_offload_enable;
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW,
    &ktls_offload_enable, 0,
    "Enable support for kernel TLS offload");

static bool ktls_cbc_enable = true;
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW,
    &ktls_cbc_enable, 1,
    "Enable Support of AES-CBC crypto for kernel TLS");

static counter_u64_t ktls_tasks_active;
SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
    &ktls_tasks_active, "Number of active tasks");

static counter_u64_t ktls_cnt_tx_queued;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
    &ktls_cnt_tx_queued,
    "Number of TLS records in queue to tasks for SW encryption");

static counter_u64_t ktls_cnt_rx_queued;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
    &ktls_cnt_rx_queued,
    "Number of TLS sockets in queue to tasks for SW decryption");

static counter_u64_t ktls_offload_total;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
    CTLFLAG_RD, &ktls_offload_total,
    "Total successful TLS setups (parameters set)");

static counter_u64_t ktls_offload_enable_calls;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
    CTLFLAG_RD, &ktls_offload_enable_calls,
    "Total number of TLS enable calls made");

static counter_u64_t ktls_offload_active;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
    &ktls_offload_active, "Total Active TLS sessions");

static counter_u64_t ktls_offload_corrupted_records;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
    &ktls_offload_corrupted_records, "Total corrupted TLS records received");

static counter_u64_t ktls_offload_failed_crypto;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
    &ktls_offload_failed_crypto, "Total TLS crypto failures");

static counter_u64_t ktls_switch_to_ifnet;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
    &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");

static counter_u64_t ktls_switch_to_sw;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
    &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");

static counter_u64_t ktls_switch_failed;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
    &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");

SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
    "Software TLS session stats");
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
    "Hardware (ifnet) TLS session stats");
#ifdef TCP_OFFLOAD
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
    "TOE TLS session stats");
#endif

static counter_u64_t ktls_sw_cbc;
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
    "Active number of software TLS sessions using AES-CBC");

static counter_u64_t ktls_sw_gcm;
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
    "Active number of software TLS sessions using AES-GCM");

static counter_u64_t ktls_ifnet_cbc;
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
    &ktls_ifnet_cbc,
    "Active number of ifnet TLS sessions using AES-CBC");

static counter_u64_t ktls_ifnet_gcm;
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
    &ktls_ifnet_gcm,
    "Active number of ifnet TLS sessions using AES-GCM");

static counter_u64_t ktls_ifnet_reset;
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
    &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");

static counter_u64_t ktls_ifnet_reset_dropped;
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
    &ktls_ifnet_reset_dropped,
    "TLS sessions dropped after failing to update ifnet send tag");

static counter_u64_t ktls_ifnet_reset_failed;
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
    &ktls_ifnet_reset_failed,
    "TLS sessions that failed to allocate a new ifnet send tag");

static int ktls_ifnet_permitted;
SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
    &ktls_ifnet_permitted, 1,
    "Whether to permit hardware (ifnet) TLS sessions");

#ifdef TCP_OFFLOAD
static counter_u64_t ktls_toe_cbc;
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
    &ktls_toe_cbc,
    "Active number of TOE TLS sessions using AES-CBC");

static counter_u64_t ktls_toe_gcm;
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
    &ktls_toe_gcm,
    "Active number of TOE TLS sessions using AES-GCM");
#endif

static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");

static void ktls_cleanup(struct ktls_session *tls);
#if defined(INET) || defined(INET6)
static void ktls_reset_send_tag(void *context, int pending);
#endif
static void ktls_work_thread(void *ctx);

int
ktls_crypto_backend_register(struct ktls_crypto_backend *be)
{
	struct ktls_crypto_backend *curr_be, *tmp;

	if (be->api_version != KTLS_API_VERSION) {
		printf("KTLS: API version mismatch (%d vs %d) for %s\n",
		    be->api_version, KTLS_API_VERSION,
		    be->name);
		return (EINVAL);
	}

	rm_wlock(&ktls_backends_lock);
	printf("KTLS: Registering crypto method %s with prio %d\n",
	       be->name, be->prio);
	if (LIST_EMPTY(&ktls_backends)) {
		LIST_INSERT_HEAD(&ktls_backends, be, next);
	} else {
		LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) {
			if (curr_be->prio < be->prio) {
				LIST_INSERT_BEFORE(curr_be, be, next);
				break;
			}
			if (LIST_NEXT(curr_be, next) == NULL) {
				LIST_INSERT_AFTER(curr_be, be, next);
				break;
			}
		}
	}
	rm_wunlock(&ktls_backends_lock);
	return (0);
}

int
ktls_crypto_backend_deregister(struct ktls_crypto_backend *be)
{
	struct ktls_crypto_backend *tmp;

	/*
	 * Don't error if the backend isn't registered.  This permits
	 * MOD_UNLOAD handlers to use this function unconditionally.
	 */
	rm_wlock(&ktls_backends_lock);
	LIST_FOREACH(tmp, &ktls_backends, next) {
		if (tmp == be)
			break;
	}
	if (tmp == NULL) {
		rm_wunlock(&ktls_backends_lock);
		return (0);
	}

	if (!ktls_allow_unload) {
		rm_wunlock(&ktls_backends_lock);
		printf(
		    "KTLS: Deregistering crypto method %s is not supported\n",
		    be->name);
		return (EBUSY);
	}

	if (be->use_count) {
		rm_wunlock(&ktls_backends_lock);
		return (EBUSY);
	}

	LIST_REMOVE(be, next);
	rm_wunlock(&ktls_backends_lock);
	return (0);
}

#if defined(INET) || defined(INET6)
static u_int
ktls_get_cpu(struct socket *so)
{
	struct inpcb *inp;
#ifdef NUMA
	struct ktls_domain_info *di;
#endif
	u_int cpuid;

	inp = sotoinpcb(so);
#ifdef RSS
	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
	if (cpuid != NETISR_CPUID_NONE)
		return (cpuid);
#endif
	/*
	 * Just use the flowid to shard connections in a repeatable
	 * fashion.  Note that some crypto backends rely on the
	 * serialization provided by having the same connection use
	 * the same queue.
	 */
#ifdef NUMA
	if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
		di = &ktls_domains[inp->inp_numa_domain];
		cpuid = di->cpu[inp->inp_flowid % di->count];
	} else
#endif
		cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
	return (cpuid);
}
#endif

static void
ktls_init(void *dummy __unused)
{
	struct thread *td;
	struct pcpu *pc;
	cpuset_t mask;
	int count, domain, error, i;

	ktls_tasks_active = counter_u64_alloc(M_WAITOK);
	ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK);
	ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK);
	ktls_offload_total = counter_u64_alloc(M_WAITOK);
	ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK);
	ktls_offload_active = counter_u64_alloc(M_WAITOK);
	ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK);
	ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK);
	ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK);
	ktls_switch_to_sw = counter_u64_alloc(M_WAITOK);
	ktls_switch_failed = counter_u64_alloc(M_WAITOK);
	ktls_sw_cbc = counter_u64_alloc(M_WAITOK);
	ktls_sw_gcm = counter_u64_alloc(M_WAITOK);
	ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK);
	ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK);
	ktls_ifnet_reset = counter_u64_alloc(M_WAITOK);
	ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK);
	ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK);
#ifdef TCP_OFFLOAD
	ktls_toe_cbc = counter_u64_alloc(M_WAITOK);
	ktls_toe_gcm = counter_u64_alloc(M_WAITOK);
#endif

	rm_init(&ktls_backends_lock, "ktls backends");
	LIST_INIT(&ktls_backends);

	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
	    M_WAITOK | M_ZERO);

	ktls_session_zone = uma_zcreate("ktls_session",
	    sizeof(struct ktls_session),
	    NULL, NULL, NULL, NULL,
	    UMA_ALIGN_CACHE, 0);

	/*
	 * Initialize the workqueues to run the TLS work.  We create a
	 * work queue for each CPU.
	 */
	CPU_FOREACH(i) {
		STAILQ_INIT(&ktls_wq[i].m_head);
		STAILQ_INIT(&ktls_wq[i].so_head);
		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
		if (error)
			panic("Can't add KTLS thread %d error %d", i, error);

		/*
		 * Bind threads to cores.  If ktls_bind_threads is >
		 * 1, then we bind to the NUMA domain.
		 */
		if (ktls_bind_threads) {
			if (ktls_bind_threads > 1) {
				pc = pcpu_find(i);
				domain = pc->pc_domain;
				CPU_COPY(&cpuset_domain[domain], &mask);
				count = ktls_domains[domain].count;
				ktls_domains[domain].cpu[count] = i;
				ktls_domains[domain].count++;
			} else {
				CPU_SETOF(i, &mask);
			}
			error = cpuset_setthread(td->td_tid, &mask);
			if (error)
				panic(
			    "Unable to bind KTLS thread for CPU %d error %d",
				     i, error);
		}
		ktls_cpuid_lookup[ktls_number_threads] = i;
		ktls_number_threads++;
	}

	/*
	 * If we somehow have an empty domain, fall back to choosing
	 * among all KTLS threads.
	 */
	if (ktls_bind_threads > 1) {
		for (i = 0; i < vm_ndomains; i++) {
			if (ktls_domains[i].count == 0) {
				ktls_bind_threads = 1;
				break;
			}
		}
	}

	printf("KTLS: Initialized %d threads\n", ktls_number_threads);
}
SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL);

#if defined(INET) || defined(INET6)
static int
ktls_create_session(struct socket *so, struct tls_enable *en,
    struct ktls_session **tlsp)
{
	struct ktls_session *tls;
	int error;

	/* Only TLS 1.0 - 1.3 are supported. */
	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
		return (EINVAL);
	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
	    en->tls_vminor > TLS_MINOR_VER_THREE)
		return (EINVAL);

	if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
		return (EINVAL);
	if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
		return (EINVAL);
	if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
		return (EINVAL);

	/* All supported algorithms require a cipher key. */
	if (en->cipher_key_len == 0)
		return (EINVAL);

	/* No flags are currently supported. */
	if (en->flags != 0)
		return (EINVAL);

	/* Common checks for supported algorithms. */
	switch (en->cipher_algorithm) {
	case CRYPTO_AES_NIST_GCM_16:
		/*
		 * auth_algorithm isn't used, but permit GMAC values
		 * for compatibility.
		 */
		switch (en->auth_algorithm) {
		case 0:
#ifdef COMPAT_FREEBSD12
		/* XXX: Really 13.0-current COMPAT. */
		case CRYPTO_AES_128_NIST_GMAC:
		case CRYPTO_AES_192_NIST_GMAC:
		case CRYPTO_AES_256_NIST_GMAC:
#endif
			break;
		default:
			return (EINVAL);
		}
		if (en->auth_key_len != 0)
			return (EINVAL);
		if ((en->tls_vminor == TLS_MINOR_VER_TWO &&
			en->iv_len != TLS_AEAD_GCM_LEN) ||
		    (en->tls_vminor == TLS_MINOR_VER_THREE &&
			en->iv_len != TLS_1_3_GCM_IV_LEN))
			return (EINVAL);
		break;
	case CRYPTO_AES_CBC:
		switch (en->auth_algorithm) {
		case CRYPTO_SHA1_HMAC:
			/*
			 * TLS 1.0 requires an implicit IV.  TLS 1.1+
			 * all use explicit IVs.
			 */
			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
				if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
					return (EINVAL);
				break;
			}

			/* FALLTHROUGH */
		case CRYPTO_SHA2_256_HMAC:
		case CRYPTO_SHA2_384_HMAC:
			/* Ignore any supplied IV. */
			en->iv_len = 0;
			break;
		default:
			return (EINVAL);
		}
		if (en->auth_key_len == 0)
			return (EINVAL);
		break;
	default:
		return (EINVAL);
	}

	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);

	counter_u64_add(ktls_offload_active, 1);

	refcount_init(&tls->refcount, 1);
	TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);

	tls->wq_index = ktls_get_cpu(so);

	tls->params.cipher_algorithm = en->cipher_algorithm;
	tls->params.auth_algorithm = en->auth_algorithm;
	tls->params.tls_vmajor = en->tls_vmajor;
	tls->params.tls_vminor = en->tls_vminor;
	tls->params.flags = en->flags;
	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);

	/* Set the header and trailer lengths. */
	tls->params.tls_hlen = sizeof(struct tls_record_layer);
	switch (en->cipher_algorithm) {
	case CRYPTO_AES_NIST_GCM_16:
		/*
		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
		 */
		if (en->tls_vminor < TLS_MINOR_VER_THREE)
			tls->params.tls_hlen += sizeof(uint64_t);
		tls->params.tls_tlen = AES_GMAC_HASH_LEN;

		/*
		 * TLS 1.3 includes optional padding which we
		 * do not support, and also puts the "real" record
		 * type at the end of the encrypted data.
		 */
		if (en->tls_vminor == TLS_MINOR_VER_THREE)
			tls->params.tls_tlen += sizeof(uint8_t);

		tls->params.tls_bs = 1;
		break;
	case CRYPTO_AES_CBC:
		switch (en->auth_algorithm) {
		case CRYPTO_SHA1_HMAC:
			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
				/* Implicit IV, no nonce. */
			} else {
				tls->params.tls_hlen += AES_BLOCK_LEN;
			}
			tls->params.tls_tlen = AES_BLOCK_LEN +
			    SHA1_HASH_LEN;
			break;
		case CRYPTO_SHA2_256_HMAC:
			tls->params.tls_hlen += AES_BLOCK_LEN;
			tls->params.tls_tlen = AES_BLOCK_LEN +
			    SHA2_256_HASH_LEN;
			break;
		case CRYPTO_SHA2_384_HMAC:
			tls->params.tls_hlen += AES_BLOCK_LEN;
			tls->params.tls_tlen = AES_BLOCK_LEN +
			    SHA2_384_HASH_LEN;
			break;
		default:
			panic("invalid hmac");
		}
		tls->params.tls_bs = AES_BLOCK_LEN;
		break;
	default:
		panic("invalid cipher");
	}

	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
	    ("TLS header length too long: %d", tls->params.tls_hlen));
	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
	    ("TLS trailer length too long: %d", tls->params.tls_tlen));

	if (en->auth_key_len != 0) {
		tls->params.auth_key_len = en->auth_key_len;
		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
		    M_WAITOK);
		error = copyin(en->auth_key, tls->params.auth_key,
		    en->auth_key_len);
		if (error)
			goto out;
	}

	tls->params.cipher_key_len = en->cipher_key_len;
	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
	error = copyin(en->cipher_key, tls->params.cipher_key,
	    en->cipher_key_len);
	if (error)
		goto out;

	/*
	 * This holds the implicit portion of the nonce for GCM and
	 * the initial implicit IV for TLS 1.0.  The explicit portions
	 * of the IV are generated in ktls_frame().
	 */
	if (en->iv_len != 0) {
		tls->params.iv_len = en->iv_len;
		error = copyin(en->iv, tls->params.iv, en->iv_len);
		if (error)
			goto out;

		/*
		 * For TLS 1.2, generate an 8-byte nonce as a counter
		 * to generate unique explicit IVs.
		 *
		 * Store this counter in the last 8 bytes of the IV
		 * array so that it is 8-byte aligned.
		 */
		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
		    en->tls_vminor == TLS_MINOR_VER_TWO)
			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
	}

	*tlsp = tls;
	return (0);

out:
	ktls_cleanup(tls);
	return (error);
}

static struct ktls_session *
ktls_clone_session(struct ktls_session *tls)
{
	struct ktls_session *tls_new;

	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);

	counter_u64_add(ktls_offload_active, 1);

	refcount_init(&tls_new->refcount, 1);

	/* Copy fields from existing session. */
	tls_new->params = tls->params;
	tls_new->wq_index = tls->wq_index;

	/* Deep copy keys. */
	if (tls_new->params.auth_key != NULL) {
		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
		    M_KTLS, M_WAITOK);
		memcpy(tls_new->params.auth_key, tls->params.auth_key,
		    tls->params.auth_key_len);
	}

	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
	    M_WAITOK);
	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
	    tls->params.cipher_key_len);

	return (tls_new);
}
#endif

static void
ktls_cleanup(struct ktls_session *tls)
{

	counter_u64_add(ktls_offload_active, -1);
	switch (tls->mode) {
	case TCP_TLS_MODE_SW:
		MPASS(tls->be != NULL);
		switch (tls->params.cipher_algorithm) {
		case CRYPTO_AES_CBC:
			counter_u64_add(ktls_sw_cbc, -1);
			break;
		case CRYPTO_AES_NIST_GCM_16:
			counter_u64_add(ktls_sw_gcm, -1);
			break;
		}
		tls->free(tls);
		break;
	case TCP_TLS_MODE_IFNET:
		switch (tls->params.cipher_algorithm) {
		case CRYPTO_AES_CBC:
			counter_u64_add(ktls_ifnet_cbc, -1);
			break;
		case CRYPTO_AES_NIST_GCM_16:
			counter_u64_add(ktls_ifnet_gcm, -1);
			break;
		}
		if (tls->snd_tag != NULL)
			m_snd_tag_rele(tls->snd_tag);
		break;
#ifdef TCP_OFFLOAD
	case TCP_TLS_MODE_TOE:
		switch (tls->params.cipher_algorithm) {
		case CRYPTO_AES_CBC:
			counter_u64_add(ktls_toe_cbc, -1);
			break;
		case CRYPTO_AES_NIST_GCM_16:
			counter_u64_add(ktls_toe_gcm, -1);
			break;
		}
		break;
#endif
	}
	if (tls->params.auth_key != NULL) {
		zfree(tls->params.auth_key, M_KTLS);
		tls->params.auth_key = NULL;
		tls->params.auth_key_len = 0;
	}
	if (tls->params.cipher_key != NULL) {
		zfree(tls->params.cipher_key, M_KTLS);
		tls->params.cipher_key = NULL;
		tls->params.cipher_key_len = 0;
	}
	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
}

#if defined(INET) || defined(INET6)

#ifdef TCP_OFFLOAD
static int
ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
{
	struct inpcb *inp;
	struct tcpcb *tp;
	int error;

	inp = so->so_pcb;
	INP_WLOCK(inp);
	if (inp->inp_flags2 & INP_FREED) {
		INP_WUNLOCK(inp);
		return (ECONNRESET);
	}
	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
		INP_WUNLOCK(inp);
		return (ECONNRESET);
	}
	if (inp->inp_socket == NULL) {
		INP_WUNLOCK(inp);
		return (ECONNRESET);
	}
	tp = intotcpcb(inp);
	if (!(tp->t_flags & TF_TOE)) {
		INP_WUNLOCK(inp);
		return (EOPNOTSUPP);
	}

	error = tcp_offload_alloc_tls_session(tp, tls, direction);
	INP_WUNLOCK(inp);
	if (error == 0) {
		tls->mode = TCP_TLS_MODE_TOE;
		switch (tls->params.cipher_algorithm) {
		case CRYPTO_AES_CBC:
			counter_u64_add(ktls_toe_cbc, 1);
			break;
		case CRYPTO_AES_NIST_GCM_16:
			counter_u64_add(ktls_toe_gcm, 1);
			break;
		}
	}
	return (error);
}
#endif

/*
 * Common code used when first enabling ifnet TLS on a connection or
 * when allocating a new ifnet TLS session due to a routing change.
 * This function allocates a new TLS send tag on whatever interface
 * the connection is currently routed over.
 */
static int
ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
    struct m_snd_tag **mstp)
{
	union if_snd_tag_alloc_params params;
	struct ifnet *ifp;
	struct nhop_object *nh;
	struct tcpcb *tp;
	int error;

	INP_RLOCK(inp);
	if (inp->inp_flags2 & INP_FREED) {
		INP_RUNLOCK(inp);
		return (ECONNRESET);
	}
	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
		INP_RUNLOCK(inp);
		return (ECONNRESET);
	}
	if (inp->inp_socket == NULL) {
		INP_RUNLOCK(inp);
		return (ECONNRESET);
	}
	tp = intotcpcb(inp);

	/*
	 * Check administrative controls on ifnet TLS to determine if
	 * ifnet TLS should be denied.
	 *
	 * - Always permit 'force' requests.
	 * - ktls_ifnet_permitted == 0: always deny.
	 */
	if (!force && ktls_ifnet_permitted == 0) {
		INP_RUNLOCK(inp);
		return (ENXIO);
	}

	/*
	 * XXX: Use the cached route in the inpcb to find the
	 * interface.  This should perhaps instead use
	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
	 * enabled after a connection has completed key negotiation in
	 * userland, the cached route will be present in practice.
	 */
	nh = inp->inp_route.ro_nh;
	if (nh == NULL) {
		INP_RUNLOCK(inp);
		return (ENXIO);
	}
	ifp = nh->nh_ifp;
	if_ref(ifp);

	/*
	 * Allocate a TLS + ratelimit tag if the connection has an
	 * existing pacing rate.
	 */
	if (tp->t_pacing_rate != -1 &&
	    (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) {
		params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
		params.tls_rate_limit.inp = inp;
		params.tls_rate_limit.tls = tls;
		params.tls_rate_limit.max_rate = tp->t_pacing_rate;
	} else {
		params.hdr.type = IF_SND_TAG_TYPE_TLS;
		params.tls.inp = inp;
		params.tls.tls = tls;
	}
	params.hdr.flowid = inp->inp_flowid;
	params.hdr.flowtype = inp->inp_flowtype;
	params.hdr.numa_domain = inp->inp_numa_domain;
	INP_RUNLOCK(inp);

	if ((ifp->if_capenable & IFCAP_NOMAP) == 0) {	
		error = EOPNOTSUPP;
		goto out;
	}
	if (inp->inp_vflag & INP_IPV6) {
		if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
			error = EOPNOTSUPP;
			goto out;
		}
	} else {
		if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
			error = EOPNOTSUPP;
			goto out;
		}
	}
	error = m_snd_tag_alloc(ifp, &params, mstp);
out:
	if_rele(ifp);
	return (error);
}

static int
ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force)
{
	struct m_snd_tag *mst;
	int error;

	error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
	if (error == 0) {
		tls->mode = TCP_TLS_MODE_IFNET;
		tls->snd_tag = mst;
		switch (tls->params.cipher_algorithm) {
		case CRYPTO_AES_CBC:
			counter_u64_add(ktls_ifnet_cbc, 1);
			break;
		case CRYPTO_AES_NIST_GCM_16:
			counter_u64_add(ktls_ifnet_gcm, 1);
			break;
		}
	}
	return (error);
}

static int
ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
{
	struct rm_priotracker prio;
	struct ktls_crypto_backend *be;

	/*
	 * Choose the best software crypto backend.  Backends are
	 * stored in sorted priority order (larget value == most
	 * important at the head of the list), so this just stops on
	 * the first backend that claims the session by returning
	 * success.
	 */
	if (ktls_allow_unload)
		rm_rlock(&ktls_backends_lock, &prio);
	LIST_FOREACH(be, &ktls_backends, next) {
		if (be->try(so, tls, direction) == 0)
			break;
		KASSERT(tls->cipher == NULL,
		    ("ktls backend leaked a cipher pointer"));
	}
	if (be != NULL) {
		if (ktls_allow_unload)
			be->use_count++;
		tls->be = be;
	}
	if (ktls_allow_unload)
		rm_runlock(&ktls_backends_lock, &prio);
	if (be == NULL)
		return (EOPNOTSUPP);
	tls->mode = TCP_TLS_MODE_SW;
	switch (tls->params.cipher_algorithm) {
	case CRYPTO_AES_CBC:
		counter_u64_add(ktls_sw_cbc, 1);
		break;
	case CRYPTO_AES_NIST_GCM_16:
		counter_u64_add(ktls_sw_gcm, 1);
		break;
	}
	return (0);
}

/*
 * KTLS RX stores data in the socket buffer as a list of TLS records,
 * where each record is stored as a control message containg the TLS
 * header followed by data mbufs containing the decrypted data.  This
 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
 * both encrypted and decrypted data.  TLS records decrypted by a NIC
 * should be queued to the socket buffer as records, but encrypted
 * data which needs to be decrypted by software arrives as a stream of
 * regular mbufs which need to be converted.  In addition, there may
 * already be pending encrypted data in the socket buffer when KTLS RX
 * is enabled.
 *
 * To manage not-yet-decrypted data for KTLS RX, the following scheme
 * is used:
 *
 * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
 *
 * - ktls_check_rx checks this chain of mbufs reading the TLS header
 *   from the first mbuf.  Once all of the data for that TLS record is
 *   queued, the socket is queued to a worker thread.
 *
 * - The worker thread calls ktls_decrypt to decrypt TLS records in
 *   the TLS chain.  Each TLS record is detached from the TLS chain,
 *   decrypted, and inserted into the regular socket buffer chain as
 *   record starting with a control message holding the TLS header and
 *   a chain of mbufs holding the encrypted data.
 */

static void
sb_mark_notready(struct sockbuf *sb)
{
	struct mbuf *m;

	m = sb->sb_mb;
	sb->sb_mtls = m;
	sb->sb_mb = NULL;
	sb->sb_mbtail = NULL;
	sb->sb_lastrecord = NULL;
	for (; m != NULL; m = m->m_next) {
		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
		    __func__));
		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
		    __func__));
		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
		    __func__));
		m->m_flags |= M_NOTREADY;
		sb->sb_acc -= m->m_len;
		sb->sb_tlscc += m->m_len;
		sb->sb_mtlstail = m;
	}
	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
	    sb->sb_ccc));
}

int
ktls_enable_rx(struct socket *so, struct tls_enable *en)
{
	struct ktls_session *tls;
	int error;

	if (!ktls_offload_enable)
		return (ENOTSUP);
	if (SOLISTENING(so))
		return (EINVAL);

	counter_u64_add(ktls_offload_enable_calls, 1);

	/*
	 * This should always be true since only the TCP socket option
	 * invokes this function.
	 */
	if (so->so_proto->pr_protocol != IPPROTO_TCP)
		return (EINVAL);

	/*
	 * XXX: Don't overwrite existing sessions.  We should permit
	 * this to support rekeying in the future.
	 */
	if (so->so_rcv.sb_tls_info != NULL)
		return (EALREADY);

	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
		return (ENOTSUP);

	/* TLS 1.3 is not yet supported. */
	if (en->tls_vmajor == TLS_MAJOR_VER_ONE &&
	    en->tls_vminor == TLS_MINOR_VER_THREE)
		return (ENOTSUP);

	error = ktls_create_session(so, en, &tls);
	if (error)
		return (error);

#ifdef TCP_OFFLOAD
	error = ktls_try_toe(so, tls, KTLS_RX);
	if (error)
#endif
		error = ktls_try_sw(so, tls, KTLS_RX);

	if (error) {
		ktls_cleanup(tls);
		return (error);
	}

	/* Mark the socket as using TLS offload. */
	SOCKBUF_LOCK(&so->so_rcv);
	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
	so->so_rcv.sb_tls_info = tls;
	so->so_rcv.sb_flags |= SB_TLS_RX;

	/* Mark existing data as not ready until it can be decrypted. */
	sb_mark_notready(&so->so_rcv);
	ktls_check_rx(&so->so_rcv);
	SOCKBUF_UNLOCK(&so->so_rcv);

	counter_u64_add(ktls_offload_total, 1);

	return (0);
}

int
ktls_enable_tx(struct socket *so, struct tls_enable *en)
{
	struct ktls_session *tls;
	struct inpcb *inp;
	int error;

	if (!ktls_offload_enable)
		return (ENOTSUP);
	if (SOLISTENING(so))
		return (EINVAL);

	counter_u64_add(ktls_offload_enable_calls, 1);

	/*
	 * This should always be true since only the TCP socket option
	 * invokes this function.
	 */
	if (so->so_proto->pr_protocol != IPPROTO_TCP)
		return (EINVAL);

	/*
	 * XXX: Don't overwrite existing sessions.  We should permit
	 * this to support rekeying in the future.
	 */
	if (so->so_snd.sb_tls_info != NULL)
		return (EALREADY);

	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
		return (ENOTSUP);

	/* TLS requires ext pgs */
	if (mb_use_ext_pgs == 0)
		return (ENXIO);

	error = ktls_create_session(so, en, &tls);
	if (error)
		return (error);

	/* Prefer TOE -> ifnet TLS -> software TLS. */
#ifdef TCP_OFFLOAD
	error = ktls_try_toe(so, tls, KTLS_TX);
	if (error)
#endif
		error = ktls_try_ifnet(so, tls, false);
	if (error)
		error = ktls_try_sw(so, tls, KTLS_TX);

	if (error) {
		ktls_cleanup(tls);
		return (error);
	}

	error = sblock(&so->so_snd, SBL_WAIT);
	if (error) {
		ktls_cleanup(tls);
		return (error);
	}

	/*
	 * Write lock the INP when setting sb_tls_info so that
	 * routines in tcp_ratelimit.c can read sb_tls_info while
	 * holding the INP lock.
	 */
	inp = so->so_pcb;
	INP_WLOCK(inp);
	SOCKBUF_LOCK(&so->so_snd);
	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
	so->so_snd.sb_tls_info = tls;
	if (tls->mode != TCP_TLS_MODE_SW)
		so->so_snd.sb_flags |= SB_TLS_IFNET;
	SOCKBUF_UNLOCK(&so->so_snd);
	INP_WUNLOCK(inp);
	sbunlock(&so->so_snd);

	counter_u64_add(ktls_offload_total, 1);

	return (0);
}

int
ktls_get_rx_mode(struct socket *so)
{
	struct ktls_session *tls;
	struct inpcb *inp;
	int mode;

	if (SOLISTENING(so))
		return (EINVAL);
	inp = so->so_pcb;
	INP_WLOCK_ASSERT(inp);
	SOCKBUF_LOCK(&so->so_rcv);
	tls = so->so_rcv.sb_tls_info;
	if (tls == NULL)
		mode = TCP_TLS_MODE_NONE;
	else
		mode = tls->mode;
	SOCKBUF_UNLOCK(&so->so_rcv);
	return (mode);
}

int
ktls_get_tx_mode(struct socket *so)
{
	struct ktls_session *tls;
	struct inpcb *inp;
	int mode;

	if (SOLISTENING(so))
		return (EINVAL);
	inp = so->so_pcb;
	INP_WLOCK_ASSERT(inp);
	SOCKBUF_LOCK(&so->so_snd);
	tls = so->so_snd.sb_tls_info;
	if (tls == NULL)
		mode = TCP_TLS_MODE_NONE;
	else
		mode = tls->mode;
	SOCKBUF_UNLOCK(&so->so_snd);
	return (mode);
}

/*
 * Switch between SW and ifnet TLS sessions as requested.
 */
int
ktls_set_tx_mode(struct socket *so, int mode)
{
	struct ktls_session *tls, *tls_new;
	struct inpcb *inp;
	int error;

	if (SOLISTENING(so))
		return (EINVAL);
	switch (mode) {
	case TCP_TLS_MODE_SW:
	case TCP_TLS_MODE_IFNET:
		break;
	default:
		return (EINVAL);
	}

	inp = so->so_pcb;
	INP_WLOCK_ASSERT(inp);
	SOCKBUF_LOCK(&so->so_snd);
	tls = so->so_snd.sb_tls_info;
	if (tls == NULL) {
		SOCKBUF_UNLOCK(&so->so_snd);
		return (0);
	}

	if (tls->mode == mode) {
		SOCKBUF_UNLOCK(&so->so_snd);
		return (0);
	}

	tls = ktls_hold(tls);
	SOCKBUF_UNLOCK(&so->so_snd);
	INP_WUNLOCK(inp);

	tls_new = ktls_clone_session(tls);

	if (mode == TCP_TLS_MODE_IFNET)
		error = ktls_try_ifnet(so, tls_new, true);
	else
		error = ktls_try_sw(so, tls_new, KTLS_TX);
	if (error) {
		counter_u64_add(ktls_switch_failed, 1);
		ktls_free(tls_new);
		ktls_free(tls);
		INP_WLOCK(inp);
		return (error);
	}

	error = sblock(&so->so_snd, SBL_WAIT);
	if (error) {
		counter_u64_add(ktls_switch_failed, 1);
		ktls_free(tls_new);
		ktls_free(tls);
		INP_WLOCK(inp);
		return (error);
	}

	/*
	 * If we raced with another session change, keep the existing
	 * session.
	 */
	if (tls != so->so_snd.sb_tls_info) {
		counter_u64_add(ktls_switch_failed, 1);
		sbunlock(&so->so_snd);
		ktls_free(tls_new);
		ktls_free(tls);
		INP_WLOCK(inp);
		return (EBUSY);
	}

	SOCKBUF_LOCK(&so->so_snd);
	so->so_snd.sb_tls_info = tls_new;
	if (tls_new->mode != TCP_TLS_MODE_SW)
		so->so_snd.sb_flags |= SB_TLS_IFNET;
	SOCKBUF_UNLOCK(&so->so_snd);
	sbunlock(&so->so_snd);

	/*
	 * Drop two references on 'tls'.  The first is for the
	 * ktls_hold() above.  The second drops the reference from the
	 * socket buffer.
	 */
	KASSERT(tls->refcount >= 2, ("too few references on old session"));
	ktls_free(tls);
	ktls_free(tls);

	if (mode == TCP_TLS_MODE_IFNET)
		counter_u64_add(ktls_switch_to_ifnet, 1);
	else
		counter_u64_add(ktls_switch_to_sw, 1);

	INP_WLOCK(inp);
	return (0);
}

/*
 * Try to allocate a new TLS send tag.  This task is scheduled when
 * ip_output detects a route change while trying to transmit a packet
 * holding a TLS record.  If a new tag is allocated, replace the tag
 * in the TLS session.  Subsequent packets on the connection will use
 * the new tag.  If a new tag cannot be allocated, drop the
 * connection.
 */
static void
ktls_reset_send_tag(void *context, int pending)
{
	struct epoch_tracker et;
	struct ktls_session *tls;
	struct m_snd_tag *old, *new;
	struct inpcb *inp;
	struct tcpcb *tp;
	int error;

	MPASS(pending == 1);

	tls = context;
	inp = tls->inp;

	/*
	 * Free the old tag first before allocating a new one.
	 * ip[6]_output_send() will treat a NULL send tag the same as
	 * an ifp mismatch and drop packets until a new tag is
	 * allocated.
	 *
	 * Write-lock the INP when changing tls->snd_tag since
	 * ip[6]_output_send() holds a read-lock when reading the
	 * pointer.
	 */
	INP_WLOCK(inp);
	old = tls->snd_tag;
	tls->snd_tag = NULL;
	INP_WUNLOCK(inp);
	if (old != NULL)
		m_snd_tag_rele(old);

	error = ktls_alloc_snd_tag(inp, tls, true, &new);

	if (error == 0) {
		INP_WLOCK(inp);
		tls->snd_tag = new;
		mtx_pool_lock(mtxpool_sleep, tls);
		tls->reset_pending = false;
		mtx_pool_unlock(mtxpool_sleep, tls);
		if (!in_pcbrele_wlocked(inp))
			INP_WUNLOCK(inp);

		counter_u64_add(ktls_ifnet_reset, 1);

		/*
		 * XXX: Should we kick tcp_output explicitly now that
		 * the send tag is fixed or just rely on timers?
		 */
	} else {
		NET_EPOCH_ENTER(et);
		INP_WLOCK(inp);
		if (!in_pcbrele_wlocked(inp)) {
			if (!(inp->inp_flags & INP_TIMEWAIT) &&
			    !(inp->inp_flags & INP_DROPPED)) {
				tp = intotcpcb(inp);
				CURVNET_SET(tp->t_vnet);
				tp = tcp_drop(tp, ECONNABORTED);
				CURVNET_RESTORE();
				if (tp != NULL)
					INP_WUNLOCK(inp);
				counter_u64_add(ktls_ifnet_reset_dropped, 1);
			} else
				INP_WUNLOCK(inp);
		}
		NET_EPOCH_EXIT(et);

		counter_u64_add(ktls_ifnet_reset_failed, 1);

		/*
		 * Leave reset_pending true to avoid future tasks while
		 * the socket goes away.
		 */
	}

	ktls_free(tls);
}

int
ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
{

	if (inp == NULL)
		return (ENOBUFS);

	INP_LOCK_ASSERT(inp);

	/*
	 * See if we should schedule a task to update the send tag for
	 * this session.
	 */
	mtx_pool_lock(mtxpool_sleep, tls);
	if (!tls->reset_pending) {
		(void) ktls_hold(tls);
		in_pcbref(inp);
		tls->inp = inp;
		tls->reset_pending = true;
		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
	}
	mtx_pool_unlock(mtxpool_sleep, tls);
	return (ENOBUFS);
}

#ifdef RATELIMIT
int
ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
{
	union if_snd_tag_modify_params params = {
		.rate_limit.max_rate = max_pacing_rate,
		.rate_limit.flags = M_NOWAIT,
	};
	struct m_snd_tag *mst;
	struct ifnet *ifp;
	int error;

	/* Can't get to the inp, but it should be locked. */
	/* INP_LOCK_ASSERT(inp); */

	MPASS(tls->mode == TCP_TLS_MODE_IFNET);

	if (tls->snd_tag == NULL) {
		/*
		 * Resetting send tag, ignore this change.  The
		 * pending reset may or may not see this updated rate
		 * in the tcpcb.  If it doesn't, we will just lose
		 * this rate change.
		 */
		return (0);
	}

	MPASS(tls->snd_tag != NULL);
	MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);

	mst = tls->snd_tag;
	ifp = mst->ifp;
	return (ifp->if_snd_tag_modify(mst, &params));
}
#endif
#endif

void
ktls_destroy(struct ktls_session *tls)
{
	struct rm_priotracker prio;

	ktls_cleanup(tls);
	if (tls->be != NULL && ktls_allow_unload) {
		rm_rlock(&ktls_backends_lock, &prio);
		tls->be->use_count--;
		rm_runlock(&ktls_backends_lock, &prio);
	}
	uma_zfree(ktls_session_zone, tls);
}

void
ktls_seq(struct sockbuf *sb, struct mbuf *m)
{

	for (; m != NULL; m = m->m_next) {
		KASSERT((m->m_flags & M_EXTPG) != 0,
		    ("ktls_seq: mapped mbuf %p", m));

		m->m_epg_seqno = sb->sb_tls_seqno;
		sb->sb_tls_seqno++;
	}
}

/*
 * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
 * mbuf in the chain must be an unmapped mbuf.  The payload of the
 * mbuf must be populated with the payload of each TLS record.
 *
 * The record_type argument specifies the TLS record type used when
 * populating the TLS header.
 *
 * The enq_count argument on return is set to the number of pages of
 * payload data for this entire chain that need to be encrypted via SW
 * encryption.  The returned value should be passed to ktls_enqueue
 * when scheduling encryption of this chain of mbufs.  To handle the
 * special case of empty fragments for TLS 1.0 sessions, an empty
 * fragment counts as one page.
 */
void
ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
    uint8_t record_type)
{
	struct tls_record_layer *tlshdr;
	struct mbuf *m;
	uint64_t *noncep;
	uint16_t tls_len;
	int maxlen;

	maxlen = tls->params.max_frame_len;
	*enq_cnt = 0;
	for (m = top; m != NULL; m = m->m_next) {
		/*
		 * All mbufs in the chain should be TLS records whose
		 * payload does not exceed the maximum frame length.
		 *
		 * Empty TLS records are permitted when using CBC.
		 */
		KASSERT(m->m_len <= maxlen &&
		    (tls->params.cipher_algorithm == CRYPTO_AES_CBC ?
		    m->m_len >= 0 : m->m_len > 0),
		    ("ktls_frame: m %p len %d\n", m, m->m_len));

		/*
		 * TLS frames require unmapped mbufs to store session
		 * info.
		 */
		KASSERT((m->m_flags & M_EXTPG) != 0,
		    ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top));

		tls_len = m->m_len;

		/* Save a reference to the session. */
		m->m_epg_tls = ktls_hold(tls);

		m->m_epg_hdrlen = tls->params.tls_hlen;
		m->m_epg_trllen = tls->params.tls_tlen;
		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
			int bs, delta;

			/*
			 * AES-CBC pads messages to a multiple of the
			 * block size.  Note that the padding is
			 * applied after the digest and the encryption
			 * is done on the "plaintext || mac || padding".
			 * At least one byte of padding is always
			 * present.
			 *
			 * Compute the final trailer length assuming
			 * at most one block of padding.
			 * tls->params.sb_tls_tlen is the maximum
			 * possible trailer length (padding + digest).
			 * delta holds the number of excess padding
			 * bytes if the maximum were used.  Those
			 * extra bytes are removed.
			 */
			bs = tls->params.tls_bs;
			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
			m->m_epg_trllen -= delta;
		}
		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;

		/* Populate the TLS header. */
		tlshdr = (void *)m->m_epg_hdr;
		tlshdr->tls_vmajor = tls->params.tls_vmajor;

		/*
		 * TLS 1.3 masquarades as TLS 1.2 with a record type
		 * of TLS_RLTYPE_APP.
		 */
		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
			tlshdr->tls_type = TLS_RLTYPE_APP;
			/* save the real record type for later */
			m->m_epg_record_type = record_type;
			m->m_epg_trail[0] = record_type;
		} else {
			tlshdr->tls_vminor = tls->params.tls_vminor;
			tlshdr->tls_type = record_type;
		}
		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));

		/*
		 * Store nonces / explicit IVs after the end of the
		 * TLS header.
		 *
		 * For GCM with TLS 1.2, an 8 byte nonce is copied
		 * from the end of the IV.  The nonce is then
		 * incremented for use by the next record.
		 *
		 * For CBC, a random nonce is inserted for TLS 1.1+.
		 */
		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
			noncep = (uint64_t *)(tls->params.iv + 8);
			be64enc(tlshdr + 1, *noncep);
			(*noncep)++;
		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);

		/*
		 * When using SW encryption, mark the mbuf not ready.
		 * It will be marked ready via sbready() after the
		 * record has been encrypted.
		 *
		 * When using ifnet TLS, unencrypted TLS records are
		 * sent down the stack to the NIC.
		 */
		if (tls->mode == TCP_TLS_MODE_SW) {
			m->m_flags |= M_NOTREADY;
			m->m_epg_nrdy = m->m_epg_npgs;
			if (__predict_false(tls_len == 0)) {
				/* TLS 1.0 empty fragment. */
				*enq_cnt += 1;
			} else
				*enq_cnt += m->m_epg_npgs;
		}
	}
}

void
ktls_check_rx(struct sockbuf *sb)
{
	struct tls_record_layer hdr;
	struct ktls_wq *wq;
	struct socket *so;
	bool running;

	SOCKBUF_LOCK_ASSERT(sb);
	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
	    __func__, sb));
	so = __containerof(sb, struct socket, so_rcv);

	if (sb->sb_flags & SB_TLS_RX_RUNNING)
		return;

	/* Is there enough queued for a TLS header? */
	if (sb->sb_tlscc < sizeof(hdr)) {
		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
			so->so_error = EMSGSIZE;
		return;
	}

	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);

	/* Is the entire record queued? */
	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
			so->so_error = EMSGSIZE;
		return;
	}

	sb->sb_flags |= SB_TLS_RX_RUNNING;

	soref(so);
	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
	mtx_lock(&wq->mtx);
	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
	running = wq->running;
	mtx_unlock(&wq->mtx);
	if (!running)
		wakeup(wq);
	counter_u64_add(ktls_cnt_rx_queued, 1);
}

static struct mbuf *
ktls_detach_record(struct sockbuf *sb, int len)
{
	struct mbuf *m, *n, *top;
	int remain;

	SOCKBUF_LOCK_ASSERT(sb);
	MPASS(len <= sb->sb_tlscc);

	/*
	 * If TLS chain is the exact size of the record,
	 * just grab the whole record.
	 */
	top = sb->sb_mtls;
	if (sb->sb_tlscc == len) {
		sb->sb_mtls = NULL;
		sb->sb_mtlstail = NULL;
		goto out;
	}

	/*
	 * While it would be nice to use m_split() here, we need
	 * to know exactly what m_split() allocates to update the
	 * accounting, so do it inline instead.
	 */
	remain = len;
	for (m = top; remain > m->m_len; m = m->m_next)
		remain -= m->m_len;

	/* Easy case: don't have to split 'm'. */
	if (remain == m->m_len) {
		sb->sb_mtls = m->m_next;
		if (sb->sb_mtls == NULL)
			sb->sb_mtlstail = NULL;
		m->m_next = NULL;
		goto out;
	}

	/*
	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
	 * with M_NOWAIT first.
	 */
	n = m_get(M_NOWAIT, MT_DATA);
	if (n == NULL) {
		/*
		 * Use M_WAITOK with socket buffer unlocked.  If
		 * 'sb_mtls' changes while the lock is dropped, return
		 * NULL to force the caller to retry.
		 */
		SOCKBUF_UNLOCK(sb);

		n = m_get(M_WAITOK, MT_DATA);

		SOCKBUF_LOCK(sb);
		if (sb->sb_mtls != top) {
			m_free(n);
			return (NULL);
		}
	}
	n->m_flags |= M_NOTREADY;

	/* Store remainder in 'n'. */
	n->m_len = m->m_len - remain;
	if (m->m_flags & M_EXT) {
		n->m_data = m->m_data + remain;
		mb_dupcl(n, m);
	} else {
		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
	}

	/* Trim 'm' and update accounting. */
	m->m_len -= n->m_len;
	sb->sb_tlscc -= n->m_len;
	sb->sb_ccc -= n->m_len;

	/* Account for 'n'. */
	sballoc_ktls_rx(sb, n);

	/* Insert 'n' into the TLS chain. */
	sb->sb_mtls = n;
	n->m_next = m->m_next;
	if (sb->sb_mtlstail == m)
		sb->sb_mtlstail = n;

	/* Detach the record from the TLS chain. */
	m->m_next = NULL;

out:
	MPASS(m_length(top, NULL) == len);
	for (m = top; m != NULL; m = m->m_next)
		sbfree_ktls_rx(sb, m);
	sb->sb_tlsdcc = len;
	sb->sb_ccc += len;
	SBCHECK(sb);
	return (top);
}

static void
ktls_decrypt(struct socket *so)
{
	char tls_header[MBUF_PEXT_HDR_LEN];
	struct ktls_session *tls;
	struct sockbuf *sb;
	struct tls_record_layer *hdr;
	struct tls_get_record tgr;
	struct mbuf *control, *data, *m;
	uint64_t seqno;
	int error, remain, tls_len, trail_len;

	hdr = (struct tls_record_layer *)tls_header;
	sb = &so->so_rcv;
	SOCKBUF_LOCK(sb);
	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
	    ("%s: socket %p not running", __func__, so));

	tls = sb->sb_tls_info;
	MPASS(tls != NULL);

	for (;;) {
		/* Is there enough queued for a TLS header? */
		if (sb->sb_tlscc < tls->params.tls_hlen)
			break;

		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);

		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
		    hdr->tls_vminor != tls->params.tls_vminor)
			error = EINVAL;
		else if (tls_len < tls->params.tls_hlen || tls_len >
		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
		    tls->params.tls_tlen)
			error = EMSGSIZE;
		else
			error = 0;
		if (__predict_false(error != 0)) {
			/*
			 * We have a corrupted record and are likely
			 * out of sync.  The connection isn't
			 * recoverable at this point, so abort it.
			 */
			SOCKBUF_UNLOCK(sb);
			counter_u64_add(ktls_offload_corrupted_records, 1);

			CURVNET_SET(so->so_vnet);
			so->so_proto->pr_usrreqs->pru_abort(so);
			so->so_error = error;
			CURVNET_RESTORE();
			goto deref;
		}

		/* Is the entire record queued? */
		if (sb->sb_tlscc < tls_len)
			break;

		/*
		 * Split out the portion of the mbuf chain containing
		 * this TLS record.
		 */
		data = ktls_detach_record(sb, tls_len);
		if (data == NULL)
			continue;
		MPASS(sb->sb_tlsdcc == tls_len);

		seqno = sb->sb_tls_seqno;
		sb->sb_tls_seqno++;
		SBCHECK(sb);
		SOCKBUF_UNLOCK(sb);

		error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len);
		if (error) {
			counter_u64_add(ktls_offload_failed_crypto, 1);

			SOCKBUF_LOCK(sb);
			if (sb->sb_tlsdcc == 0) {
				/*
				 * sbcut/drop/flush discarded these
				 * mbufs.
				 */
				m_freem(data);
				break;
			}

			/*
			 * Drop this TLS record's data, but keep
			 * decrypting subsequent records.
			 */
			sb->sb_ccc -= tls_len;
			sb->sb_tlsdcc = 0;

			CURVNET_SET(so->so_vnet);
			so->so_error = EBADMSG;
			sorwakeup_locked(so);
			CURVNET_RESTORE();

			m_freem(data);

			SOCKBUF_LOCK(sb);
			continue;
		}

		/* Allocate the control mbuf. */
		tgr.tls_type = hdr->tls_type;
		tgr.tls_vmajor = hdr->tls_vmajor;
		tgr.tls_vminor = hdr->tls_vminor;
		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
		    trail_len);
		control = sbcreatecontrol_how(&tgr, sizeof(tgr),
		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);

		SOCKBUF_LOCK(sb);
		if (sb->sb_tlsdcc == 0) {
			/* sbcut/drop/flush discarded these mbufs. */
			MPASS(sb->sb_tlscc == 0);
			m_freem(data);
			m_freem(control);
			break;
		}

		/*
		 * Clear the 'dcc' accounting in preparation for
		 * adding the decrypted record.
		 */
		sb->sb_ccc -= tls_len;
		sb->sb_tlsdcc = 0;
		SBCHECK(sb);

		/* If there is no payload, drop all of the data. */
		if (tgr.tls_length == htobe16(0)) {
			m_freem(data);
			data = NULL;
		} else {
			/* Trim header. */
			remain = tls->params.tls_hlen;
			while (remain > 0) {
				if (data->m_len > remain) {
					data->m_data += remain;
					data->m_len -= remain;
					break;
				}
				remain -= data->m_len;
				data = m_free(data);
			}

			/* Trim trailer and clear M_NOTREADY. */
			remain = be16toh(tgr.tls_length);
			m = data;
			for (m = data; remain > m->m_len; m = m->m_next) {
				m->m_flags &= ~M_NOTREADY;
				remain -= m->m_len;
			}
			m->m_len = remain;
			m_freem(m->m_next);
			m->m_next = NULL;
			m->m_flags &= ~M_NOTREADY;

			/* Set EOR on the final mbuf. */
			m->m_flags |= M_EOR;
		}

		sbappendcontrol_locked(sb, data, control, 0);
	}

	sb->sb_flags &= ~SB_TLS_RX_RUNNING;

	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
		so->so_error = EMSGSIZE;

	sorwakeup_locked(so);

deref:
	SOCKBUF_UNLOCK_ASSERT(sb);

	CURVNET_SET(so->so_vnet);
	SOCK_LOCK(so);
	sorele(so);
	CURVNET_RESTORE();
}

void
ktls_enqueue_to_free(struct mbuf *m)
{
	struct ktls_wq *wq;
	bool running;

	/* Mark it for freeing. */
	m->m_epg_flags |= EPG_FLAG_2FREE;
	wq = &ktls_wq[m->m_epg_tls->wq_index];
	mtx_lock(&wq->mtx);
	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
	running = wq->running;
	mtx_unlock(&wq->mtx);
	if (!running)
		wakeup(wq);
}

void
ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
{
	struct ktls_wq *wq;
	bool running;

	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
	    (M_EXTPG | M_NOTREADY)),
	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));

	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));

	m->m_epg_enc_cnt = page_count;

	/*
	 * Save a pointer to the socket.  The caller is responsible
	 * for taking an additional reference via soref().
	 */
	m->m_epg_so = so;

	wq = &ktls_wq[m->m_epg_tls->wq_index];
	mtx_lock(&wq->mtx);
	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
	running = wq->running;
	mtx_unlock(&wq->mtx);
	if (!running)
		wakeup(wq);
	counter_u64_add(ktls_cnt_tx_queued, 1);
}

static __noinline void
ktls_encrypt(struct mbuf *top)
{
	struct ktls_session *tls;
	struct socket *so;
	struct mbuf *m;
	vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
	struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
	struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
	vm_page_t pg;
	int error, i, len, npages, off, total_pages;
	bool is_anon;

	so = top->m_epg_so;
	tls = top->m_epg_tls;
	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
#ifdef INVARIANTS
	top->m_epg_so = NULL;
#endif
	total_pages = top->m_epg_enc_cnt;
	npages = 0;

	/*
	 * Encrypt the TLS records in the chain of mbufs starting with
	 * 'top'.  'total_pages' gives us a total count of pages and is
	 * used to know when we have finished encrypting the TLS
	 * records originally queued with 'top'.
	 *
	 * NB: These mbufs are queued in the socket buffer and
	 * 'm_next' is traversing the mbufs in the socket buffer.  The
	 * socket buffer lock is not held while traversing this chain.
	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
	 * pointers should be stable.  However, the 'm_next' of the
	 * last mbuf encrypted is not necessarily NULL.  It can point
	 * to other mbufs appended while 'top' was on the TLS work
	 * queue.
	 *
	 * Each mbuf holds an entire TLS record.
	 */
	error = 0;
	for (m = top; npages != total_pages; m = m->m_next) {
		KASSERT(m->m_epg_tls == tls,
		    ("different TLS sessions in a single mbuf chain: %p vs %p",
		    tls, m->m_epg_tls));
		KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
		    (M_EXTPG | M_NOTREADY),
		    ("%p not unready & nomap mbuf (top = %p)\n", m, top));
		KASSERT(npages + m->m_epg_npgs <= total_pages,
		    ("page count mismatch: top %p, total_pages %d, m %p", top,
		    total_pages, m));

		/*
		 * Generate source and destination ivoecs to pass to
		 * the SW encryption backend.  For writable mbufs, the
		 * destination iovec is a copy of the source and
		 * encryption is done in place.  For file-backed mbufs
		 * (from sendfile), anonymous wired pages are
		 * allocated and assigned to the destination iovec.
		 */
		is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0;

		off = m->m_epg_1st_off;
		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
			len = m_epg_pagelen(m, i, off);
			src_iov[i].iov_len = len;
			src_iov[i].iov_base =
			    (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) +
				off;

			if (is_anon) {
				dst_iov[i].iov_base = src_iov[i].iov_base;
				dst_iov[i].iov_len = src_iov[i].iov_len;
				continue;
			}
retry_page:
			pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
			    VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED);
			if (pg == NULL) {
				vm_wait(NULL);
				goto retry_page;
			}
			parray[i] = VM_PAGE_TO_PHYS(pg);
			dst_iov[i].iov_base =
			    (char *)(void *)PHYS_TO_DMAP(parray[i]) + off;
			dst_iov[i].iov_len = len;
		}

		if (__predict_false(m->m_epg_npgs == 0)) {
			/* TLS 1.0 empty fragment. */
			npages++;
		} else
			npages += i;

		error = (*tls->sw_encrypt)(tls,
		    (const struct tls_record_layer *)m->m_epg_hdr,
		    m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno,
		    m->m_epg_record_type);
		if (error) {
			counter_u64_add(ktls_offload_failed_crypto, 1);
			break;
		}

		/*
		 * For file-backed mbufs, release the file-backed
		 * pages and replace them in the ext_pgs array with
		 * the anonymous wired pages allocated above.
		 */
		if (!is_anon) {
			/* Free the old pages. */
			m->m_ext.ext_free(m);

			/* Replace them with the new pages. */
			for (i = 0; i < m->m_epg_npgs; i++)
				m->m_epg_pa[i] = parray[i];

			/* Use the basic free routine. */
			m->m_ext.ext_free = mb_free_mext_pgs;

			/* Pages are now writable. */
			m->m_epg_flags |= EPG_FLAG_ANON;
		}

		/*
		 * Drop a reference to the session now that it is no
		 * longer needed.  Existing code depends on encrypted
		 * records having no associated session vs
		 * yet-to-be-encrypted records having an associated
		 * session.
		 */
		m->m_epg_tls = NULL;
		ktls_free(tls);
	}

	CURVNET_SET(so->so_vnet);
	if (error == 0) {
		(void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages);
	} else {
		so->so_proto->pr_usrreqs->pru_abort(so);
		so->so_error = EIO;
		mb_free_notready(top, total_pages);
	}

	SOCK_LOCK(so);
	sorele(so);
	CURVNET_RESTORE();
}

static void
ktls_work_thread(void *ctx)
{
	struct ktls_wq *wq = ctx;
	struct mbuf *m, *n;
	struct socket *so, *son;
	STAILQ_HEAD(, mbuf) local_m_head;
	STAILQ_HEAD(, socket) local_so_head;

	if (ktls_bind_threads > 1) {
		curthread->td_domain.dr_policy =
			DOMAINSET_PREF(PCPU_GET(domain));
	}
#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
	fpu_kern_thread(0);
#endif
	for (;;) {
		mtx_lock(&wq->mtx);
		while (STAILQ_EMPTY(&wq->m_head) &&
		    STAILQ_EMPTY(&wq->so_head)) {
			wq->running = false;
			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
			wq->running = true;
		}

		STAILQ_INIT(&local_m_head);
		STAILQ_CONCAT(&local_m_head, &wq->m_head);
		STAILQ_INIT(&local_so_head);
		STAILQ_CONCAT(&local_so_head, &wq->so_head);
		mtx_unlock(&wq->mtx);

		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
			if (m->m_epg_flags & EPG_FLAG_2FREE) {
				ktls_free(m->m_epg_tls);
				uma_zfree(zone_mbuf, m);
			} else {
				ktls_encrypt(m);
				counter_u64_add(ktls_cnt_tx_queued, -1);
			}
		}

		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
			ktls_decrypt(so);
			counter_u64_add(ktls_cnt_rx_queued, -1);
		}
	}
}