aboutsummaryrefslogtreecommitdiff
path: root/sys/netinet/in_fib_dxr.c
blob: 3aa357cadedc93212668b36c6716ca3272b3bc0b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2012-2021 Marko Zec
 * Copyright (c) 2005, 2018 University of Zagreb
 * Copyright (c) 2005 International Computer Science Institute
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * An implementation of DXR, a simple IPv4 LPM scheme with compact lookup
 * structures and a trivial search procedure.  More significant bits of
 * the search key are used to directly index a two-stage trie, while the
 * remaining bits are used for finding the next hop in a sorted array.
 * More details in:
 *
 * M. Zec, L. Rizzo, M. Mikuc, DXR: towards a billion routing lookups per
 * second in software, ACM SIGCOMM Computer Communication Review, September
 * 2012
 *
 * M. Zec, M. Mikuc, Pushing the envelope: beyond two billion IP routing
 * lookups per second on commodity CPUs, IEEE SoftCOM, September 2017, Split
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_inet.h"

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/epoch.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>

#include <vm/uma.h>

#include <netinet/in.h>
#include <netinet/in_fib.h>

#include <net/route.h>
#include <net/route/route_ctl.h>
#include <net/route/fib_algo.h>

#define	DXR_TRIE_BITS		20

CTASSERT(DXR_TRIE_BITS >= 16 && DXR_TRIE_BITS <= 24);

/* DXR2: two-stage primary trie, instead of a single direct lookup table */
#define	DXR2

#if DXR_TRIE_BITS > 16
#define	DXR_D			16
#else
#define	DXR_D			(DXR_TRIE_BITS - 1)
#endif
#define	DXR_X			(DXR_TRIE_BITS - DXR_D)

#define	D_TBL_SIZE		(1 << DXR_D)
#define	DIRECT_TBL_SIZE		(1 << DXR_TRIE_BITS)
#define	DXR_RANGE_MASK		(0xffffffffU >> DXR_TRIE_BITS)
#define	DXR_RANGE_SHIFT		(32 - DXR_TRIE_BITS)

#define	DESC_BASE_BITS		22
#define	DESC_FRAGMENTS_BITS	(32 - DESC_BASE_BITS)
#define	BASE_MAX		((1 << DESC_BASE_BITS) - 1)
#define	RTBL_SIZE_INCR		(BASE_MAX / 64)

#if DXR_TRIE_BITS < 24
#define	FRAGS_MASK_SHORT	((1 << (23 - DXR_TRIE_BITS)) - 1)
#else
#define	FRAGS_MASK_SHORT	0
#endif
#define	FRAGS_PREF_SHORT	(((1 << DESC_FRAGMENTS_BITS) - 1) & \
				 ~FRAGS_MASK_SHORT)
#define	FRAGS_MARK_XL		(FRAGS_PREF_SHORT - 1)
#define	FRAGS_MARK_HIT		(FRAGS_PREF_SHORT - 2)

#define	IS_SHORT_FORMAT(x)	((x & FRAGS_PREF_SHORT) == FRAGS_PREF_SHORT)
#define	IS_LONG_FORMAT(x)	((x & FRAGS_PREF_SHORT) != FRAGS_PREF_SHORT)
#define	IS_XL_FORMAT(x)		(x == FRAGS_MARK_XL)

#define	RE_SHORT_MAX_NH		((1 << (DXR_TRIE_BITS - 8)) - 1)

#define	CHUNK_HASH_BITS		16
#define	CHUNK_HASH_SIZE		(1 << CHUNK_HASH_BITS)
#define	CHUNK_HASH_MASK		(CHUNK_HASH_SIZE - 1)

#define	TRIE_HASH_BITS		16
#define	TRIE_HASH_SIZE		(1 << TRIE_HASH_BITS)
#define	TRIE_HASH_MASK		(TRIE_HASH_SIZE - 1)

#define	XTBL_SIZE_INCR		(DIRECT_TBL_SIZE / 16)

/* Lookup structure elements */

struct direct_entry {
	uint32_t		fragments: DESC_FRAGMENTS_BITS,
				base: DESC_BASE_BITS;
};

struct range_entry_long {
	uint32_t		start: DXR_RANGE_SHIFT,
				nexthop: DXR_TRIE_BITS;
};

#if DXR_TRIE_BITS < 24
struct range_entry_short {
	uint16_t		start: DXR_RANGE_SHIFT - 8,
				nexthop: DXR_TRIE_BITS - 8;
};
#endif

/* Auxiliary structures */

struct heap_entry {
	uint32_t		start;
	uint32_t		end;
	uint32_t		preflen;
	uint32_t		nexthop;
};

struct chunk_desc {
	LIST_ENTRY(chunk_desc)	cd_all_le;
	LIST_ENTRY(chunk_desc)	cd_hash_le;
	uint32_t		cd_hash;
	uint32_t		cd_refcnt;
	uint32_t		cd_base;
	uint32_t		cd_cur_size;
	uint32_t		cd_max_size;
};

struct trie_desc {
	LIST_ENTRY(trie_desc)	td_all_le;
	LIST_ENTRY(trie_desc)	td_hash_le;
	uint32_t		td_hash;
	uint32_t		td_index;
	uint32_t		td_refcnt;
};

struct dxr_aux {
	/* Glue to external state */
	struct fib_data		*fd;
	uint32_t		fibnum;
	int			refcnt;

	/* Auxiliary build-time tables */
	struct direct_entry	direct_tbl[DIRECT_TBL_SIZE];
	uint16_t		d_tbl[D_TBL_SIZE];
	struct direct_entry	*x_tbl;
	union {
		struct range_entry_long	re;
		uint32_t	fragments;
	}			*range_tbl;

	/* Auxiliary internal state */
	uint32_t		updates_mask[DIRECT_TBL_SIZE / 32];
	struct trie_desc	*trietbl[D_TBL_SIZE];
	LIST_HEAD(, chunk_desc)	chunk_hashtbl[CHUNK_HASH_SIZE];
	LIST_HEAD(, chunk_desc)	all_chunks;
	LIST_HEAD(, chunk_desc) unused_chunks; /* abuses hash link entry */
	LIST_HEAD(, trie_desc)	trie_hashtbl[TRIE_HASH_SIZE];
	LIST_HEAD(, trie_desc)	all_trie;
	LIST_HEAD(, trie_desc)	unused_trie; /* abuses hash link entry */
	struct sockaddr_in	dst;
	struct sockaddr_in	mask;
	struct heap_entry	heap[33];
	uint32_t		prefixes;
	uint32_t		updates_low;
	uint32_t		updates_high;
	uint32_t		all_chunks_cnt;
	uint32_t		unused_chunks_cnt;
	uint32_t		xtbl_size;
	uint32_t		all_trie_cnt;
	uint32_t		unused_trie_cnt;
	uint32_t		trie_rebuilt_prefixes;
	uint32_t		heap_index;
	uint32_t		d_bits;
	uint32_t		rtbl_size;
	uint32_t		rtbl_top;
	uint32_t		rtbl_work_frags;
	uint32_t		work_chunk;
};

/* Main lookup structure container */

struct dxr {
	/* Lookup tables */
	uint16_t		d_shift;
	uint16_t		x_shift;
	uint32_t		x_mask;
	void			*d;
	void			*x;
	void			*r;
	struct nhop_object	**nh_tbl;

	/* Glue to external state */
	struct dxr_aux		*aux;
	struct fib_data		*fd;
	struct epoch_context	epoch_ctx;
	uint32_t		fibnum;
};

static MALLOC_DEFINE(M_DXRLPM, "dxr", "DXR LPM");
static MALLOC_DEFINE(M_DXRAUX, "dxr aux", "DXR auxiliary");

uma_zone_t chunk_zone;
uma_zone_t trie_zone;

SYSCTL_DECL(_net_route_algo);
SYSCTL_NODE(_net_route_algo, OID_AUTO, dxr, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
    "DXR tunables");

VNET_DEFINE_STATIC(int, max_trie_holes) = 8;
#define	V_max_trie_holes	VNET(max_trie_holes)
SYSCTL_INT(_net_route_algo_dxr, OID_AUTO, max_trie_holes,
    CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(max_trie_holes), 0,
    "Trie fragmentation threshold before triggering a full rebuild");

VNET_DEFINE_STATIC(int, max_range_holes) = 16;
#define	V_max_range_holes	VNET(max_range_holes)
SYSCTL_INT(_net_route_algo_dxr, OID_AUTO, max_range_holes,
    CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(max_range_holes), 0,
    "Range table fragmentation threshold before triggering a full rebuild");

/* Binary search for a matching address range */
#define	DXR_LOOKUP_STAGE					\
	if (masked_dst < range[middle].start) {			\
		upperbound = middle;				\
		middle = (middle + lowerbound) / 2;		\
	} else if (masked_dst < range[middle + 1].start)	\
		return (range[middle].nexthop);			\
	else {							\
		lowerbound = middle + 1;			\
		middle = (upperbound + middle + 1) / 2;		\
	}							\
	if (upperbound == lowerbound)				\
		return (range[lowerbound].nexthop);

static int
dxr_lookup(struct dxr *dxr, uint32_t dst)
{
#ifdef DXR2
	uint16_t *dt = dxr->d;
	struct direct_entry *xt = dxr->x;
	int xi;
#else
	struct direct_entry *dt = dxr->d;
#endif
	struct direct_entry de;
	struct range_entry_long	*rt;
	uint32_t base;
	uint32_t upperbound;
	uint32_t middle;
	uint32_t lowerbound;
	uint32_t masked_dst;

#ifdef DXR2
	xi = (dt[dst >> dxr->d_shift] << dxr->x_shift) +
	    ((dst >> DXR_RANGE_SHIFT) & dxr->x_mask);
	de = xt[xi];
#else
	de = dt[dst >> DXR_RANGE_SHIFT];
#endif

	if (__predict_true(de.fragments == FRAGS_MARK_HIT))
		return (de.base);

	rt = dxr->r;
	base = de.base;
	lowerbound = 0;
	masked_dst = dst & DXR_RANGE_MASK;

#if DXR_TRIE_BITS < 24
	if (__predict_true(IS_SHORT_FORMAT(de.fragments))) {
		upperbound = de.fragments & FRAGS_MASK_SHORT;
		struct range_entry_short *range =
		    (struct range_entry_short *) &rt[base];

		masked_dst >>= 8;
		middle = upperbound;
		upperbound = upperbound * 2 + 1;

		for (;;) {
			DXR_LOOKUP_STAGE
			DXR_LOOKUP_STAGE
		}
	}
#endif

	upperbound = de.fragments;
	middle = upperbound / 2;
	struct range_entry_long *range = &rt[base];
	if (__predict_false(IS_XL_FORMAT(de.fragments))) {
		upperbound = *((uint32_t *) range);
		range++;
		middle = upperbound / 2;
	}

	for (;;) {
		DXR_LOOKUP_STAGE
		DXR_LOOKUP_STAGE
	}
}

static void
initheap(struct dxr_aux *da, uint32_t dst_u32, uint32_t chunk)
{
	struct heap_entry *fhp = &da->heap[0];
	struct rtentry *rt;
	struct route_nhop_data rnd;
 
	da->heap_index = 0;
	da->dst.sin_addr.s_addr = htonl(dst_u32);
	rt = fib4_lookup_rt(da->fibnum, da->dst.sin_addr, 0, NHR_UNLOCKED,
	    &rnd);
	if (rt != NULL) {
		struct in_addr addr;
		uint32_t scopeid;

		rt_get_inet_prefix_plen(rt, &addr, &fhp->preflen, &scopeid);
		fhp->start = ntohl(addr.s_addr);
		fhp->end = fhp->start;
		if (fhp->preflen < 32)
			fhp->end |= (0xffffffffU >> fhp->preflen);
		fhp->nexthop = fib_get_nhop_idx(da->fd, rnd.rnd_nhop);
	} else {
		fhp->preflen = fhp->nexthop = fhp->start = 0;
		fhp->end = 0xffffffffU;
	}
}

static uint32_t
chunk_size(struct dxr_aux *da, struct direct_entry *fdesc)
{

	if (IS_SHORT_FORMAT(fdesc->fragments))
		return ((fdesc->fragments & FRAGS_MASK_SHORT) + 1);
	else if (IS_XL_FORMAT(fdesc->fragments))
		return (da->range_tbl[fdesc->base].fragments + 2);
	else /* if (IS_LONG_FORMAT(fdesc->fragments)) */
		return (fdesc->fragments + 1);
}

static uint32_t
chunk_hash(struct dxr_aux *da, struct direct_entry *fdesc)
{
	uint32_t size = chunk_size(da, fdesc);
	uint32_t *p = (uint32_t *) &da->range_tbl[fdesc->base];
	uint32_t *l = (uint32_t *) &da->range_tbl[fdesc->base + size];
	uint32_t hash = fdesc->fragments;

	for (; p < l; p++)
		hash = (hash << 7) + (hash >> 13) + *p;

	return (hash + (hash >> 16));
}

static int
chunk_ref(struct dxr_aux *da, uint32_t chunk)
{
	struct direct_entry *fdesc = &da->direct_tbl[chunk];
	struct chunk_desc *cdp, *empty_cdp;
	uint32_t base = fdesc->base;
	uint32_t size = chunk_size(da, fdesc);
	uint32_t hash = chunk_hash(da, fdesc);

	/* Find an existing descriptor */
	LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK],
	    cd_hash_le) {
		if (cdp->cd_hash != hash || cdp->cd_cur_size != size ||
		    memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base],
		    sizeof(struct range_entry_long) * size))
			continue;
		da->rtbl_top = fdesc->base;
		fdesc->base = cdp->cd_base;
		cdp->cd_refcnt++;
		return (0);
	}

	/* No matching chunks found. Recycle an empty or allocate a new one */
	cdp = NULL;
	LIST_FOREACH(empty_cdp, &da->unused_chunks, cd_hash_le)
		if (empty_cdp->cd_max_size >= size && (cdp == NULL ||
		    empty_cdp->cd_max_size < cdp->cd_max_size)) {
			cdp = empty_cdp;
			if (empty_cdp->cd_max_size == size)
				break;
		}

	if (cdp != NULL) {
		/* Copy from heap into the recycled chunk */
		bcopy(&da->range_tbl[fdesc->base], &da->range_tbl[cdp->cd_base],
		    size * sizeof(struct range_entry_long));
		fdesc->base = cdp->cd_base;
		da->rtbl_top -= size;
		da->unused_chunks_cnt--;
		if (cdp->cd_max_size > size + 1) {
			/* Split the range in two, need a new descriptor */
			empty_cdp = uma_zalloc(chunk_zone, M_NOWAIT);
			if (empty_cdp == NULL)
				return (1);
			empty_cdp->cd_max_size = cdp->cd_max_size - size;
			empty_cdp->cd_base = cdp->cd_base + size;
			LIST_INSERT_AFTER(cdp, empty_cdp, cd_all_le);
			LIST_INSERT_AFTER(cdp, empty_cdp, cd_hash_le);
			da->all_chunks_cnt++;
			da->unused_chunks_cnt++;
			cdp->cd_max_size = size;
		}
		LIST_REMOVE(cdp, cd_hash_le);
	} else {
		/* Alloc a new descriptor */
		cdp = uma_zalloc(chunk_zone, M_NOWAIT);
		if (cdp == NULL)
			return (1);
		cdp->cd_max_size = size;
		cdp->cd_base = fdesc->base;
		LIST_INSERT_HEAD(&da->all_chunks, cdp, cd_all_le);
		da->all_chunks_cnt++;
	}

	cdp->cd_hash = hash;
	cdp->cd_refcnt = 1;
	cdp->cd_cur_size = size;
	LIST_INSERT_HEAD(&da->chunk_hashtbl[hash & CHUNK_HASH_MASK], cdp,
	    cd_hash_le);
	if (da->rtbl_top >= da->rtbl_size) {
		if (da->rtbl_top >= BASE_MAX) {
			FIB_PRINTF(LOG_ERR, da->fd,
			    "structural limit exceeded at %d "
			    "range table elements", da->rtbl_top);
			return (1);
		}
		da->rtbl_size += RTBL_SIZE_INCR;
		if (da->rtbl_top >= BASE_MAX / 4)
			FIB_PRINTF(LOG_WARNING, da->fd, "range table at %d%%",
			    da->rtbl_top * 100 / BASE_MAX);
		da->range_tbl = realloc(da->range_tbl,
		    sizeof(*da->range_tbl) * da->rtbl_size + FRAGS_PREF_SHORT,
		    M_DXRAUX, M_NOWAIT);
		if (da->range_tbl == NULL)
			return (1);
	}

	return (0);
}

static void
chunk_unref(struct dxr_aux *da, uint32_t chunk)
{
	struct direct_entry *fdesc = &da->direct_tbl[chunk];
	struct chunk_desc *cdp;
	uint32_t base = fdesc->base;
	uint32_t size = chunk_size(da, fdesc);
	uint32_t hash = chunk_hash(da, fdesc);

	/* Find an existing descriptor */
	LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK],
	    cd_hash_le)
		if (cdp->cd_hash == hash && cdp->cd_cur_size == size &&
		    memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base],
		    sizeof(struct range_entry_long) * size) == 0)
			break;

	KASSERT(cdp != NULL, ("dxr: dangling chunk"));
	if (--cdp->cd_refcnt > 0)
		return;

	LIST_REMOVE(cdp, cd_hash_le);
	da->unused_chunks_cnt++;
	if (cdp->cd_base + cdp->cd_max_size != da->rtbl_top) {
		LIST_INSERT_HEAD(&da->unused_chunks, cdp, cd_hash_le);
		return;
	}

	do {
		da->all_chunks_cnt--;
		da->unused_chunks_cnt--;
		da->rtbl_top -= cdp->cd_max_size;
		LIST_REMOVE(cdp, cd_all_le);
		uma_zfree(chunk_zone, cdp);
		LIST_FOREACH(cdp, &da->unused_chunks, cd_hash_le)
			if (cdp->cd_base + cdp->cd_max_size == da->rtbl_top) {
				LIST_REMOVE(cdp, cd_hash_le);
				break;
			}
	} while (cdp != NULL);
}

#ifdef DXR2
static uint32_t
trie_hash(struct dxr_aux *da, uint32_t dxr_x, uint32_t index)
{
	uint32_t i, *val;
	uint32_t hash = 0;

	for (i = 0; i < (1 << dxr_x); i++) {
		hash = (hash << 3) ^ (hash >> 3);
		val = (uint32_t *)
		    (void *) &da->direct_tbl[(index << dxr_x) + i];
		hash += (*val << 5);
		hash += (*val >> 5);
	}

	return (hash + (hash >> 16));
}

static int
trie_ref(struct dxr_aux *da, uint32_t index)
{
	struct trie_desc *tp;
	uint32_t dxr_d = da->d_bits;
	uint32_t dxr_x = DXR_TRIE_BITS - dxr_d;
	uint32_t hash = trie_hash(da, dxr_x, index);

	/* Find an existing descriptor */
	LIST_FOREACH(tp, &da->trie_hashtbl[hash & TRIE_HASH_MASK], td_hash_le)
		if (tp->td_hash == hash &&
		    memcmp(&da->direct_tbl[index << dxr_x],
		    &da->x_tbl[tp->td_index << dxr_x],
		    sizeof(*da->x_tbl) << dxr_x) == 0) {
			tp->td_refcnt++;
			da->trietbl[index] = tp;
			return(tp->td_index);
		}

	tp = LIST_FIRST(&da->unused_trie);
	if (tp != NULL) {
		LIST_REMOVE(tp, td_hash_le);
		da->unused_trie_cnt--;
	} else {
		tp = uma_zalloc(trie_zone, M_NOWAIT);
		if (tp == NULL)
			return (-1);
		LIST_INSERT_HEAD(&da->all_trie, tp, td_all_le);
		tp->td_index = da->all_trie_cnt++;
	}

	tp->td_hash = hash;
	tp->td_refcnt = 1;
	LIST_INSERT_HEAD(&da->trie_hashtbl[hash & TRIE_HASH_MASK], tp,
	   td_hash_le);
	memcpy(&da->x_tbl[tp->td_index << dxr_x],
	    &da->direct_tbl[index << dxr_x], sizeof(*da->x_tbl) << dxr_x);
	da->trietbl[index] = tp;
	if (da->all_trie_cnt >= da->xtbl_size >> dxr_x) {
		da->xtbl_size += XTBL_SIZE_INCR;
		da->x_tbl = realloc(da->x_tbl,
		    sizeof(*da->x_tbl) * da->xtbl_size, M_DXRAUX, M_NOWAIT);
		if (da->x_tbl == NULL)
			return (-1);
	}
	return(tp->td_index);
}

static void
trie_unref(struct dxr_aux *da, uint32_t index)
{
	struct trie_desc *tp = da->trietbl[index];

	if (tp == NULL)
		return;
	da->trietbl[index] = NULL;
	if (--tp->td_refcnt > 0)
		return;

	LIST_REMOVE(tp, td_hash_le);
	da->unused_trie_cnt++;
	if (tp->td_index != da->all_trie_cnt - 1) {
		LIST_INSERT_HEAD(&da->unused_trie, tp, td_hash_le);
		return;
	}

	do {
		da->all_trie_cnt--;
		da->unused_trie_cnt--;
		LIST_REMOVE(tp, td_all_le);
		uma_zfree(trie_zone, tp);
		LIST_FOREACH(tp, &da->unused_trie, td_hash_le)
			if (tp->td_index == da->all_trie_cnt - 1) {
				LIST_REMOVE(tp, td_hash_le);
				break;
			}
	} while (tp != NULL);
}
#endif

static void
heap_inject(struct dxr_aux *da, uint32_t start, uint32_t end, uint32_t preflen,
    uint32_t nh)
{
	struct heap_entry *fhp;
	int i;

	for (i = da->heap_index; i >= 0; i--) {
		if (preflen > da->heap[i].preflen)
			break;
		else if (preflen < da->heap[i].preflen)
			da->heap[i + 1] = da->heap[i];
		else
			return;
	}

	fhp = &da->heap[i + 1];
	fhp->preflen = preflen;
	fhp->start = start;
	fhp->end = end;
	fhp->nexthop = nh;
	da->heap_index++;
}

static int
dxr_walk(struct rtentry *rt, void *arg)
{
	struct dxr_aux *da = arg;
	uint32_t chunk = da->work_chunk;
	uint32_t first = chunk << DXR_RANGE_SHIFT;
	uint32_t last = first | DXR_RANGE_MASK;
	struct range_entry_long *fp =
	    &da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re;
	struct heap_entry *fhp = &da->heap[da->heap_index];
	uint32_t preflen, nh, start, end, scopeid;
	struct in_addr addr;

	rt_get_inet_prefix_plen(rt, &addr, &preflen, &scopeid);
	start = ntohl(addr.s_addr);
	if (start > last)
		return (-1);	/* Beyond chunk boundaries, we are done */
	if (start < first)
		return (0);	/* Skip this route */

	end = start;
	if (preflen < 32)
		end |= (0xffffffffU >> preflen);
	nh = fib_get_nhop_idx(da->fd, rt_get_raw_nhop(rt));

	if (start == fhp->start)
		heap_inject(da, start, end, preflen, nh);
	else {
		/* start > fhp->start */
		while (start > fhp->end) {
			uint32_t oend = fhp->end;

			if (da->heap_index > 0) {
				fhp--;
				da->heap_index--;
			} else
				initheap(da, fhp->end + 1, chunk);
			if (fhp->end > oend && fhp->nexthop != fp->nexthop) {
				fp++;
				da->rtbl_work_frags++;
				fp->start = (oend + 1) & DXR_RANGE_MASK;
				fp->nexthop = fhp->nexthop;
			}
		}
		if (start > ((chunk << DXR_RANGE_SHIFT) | fp->start) &&
		    nh != fp->nexthop) {
			fp++;
			da->rtbl_work_frags++;
			fp->start = start & DXR_RANGE_MASK;
		} else if (da->rtbl_work_frags) {
			if ((--fp)->nexthop == nh)
				da->rtbl_work_frags--;
			else
				fp++;
		}
		fp->nexthop = nh;
		heap_inject(da, start, end, preflen, nh);
	}

	return (0);
}

static int
update_chunk(struct dxr_aux *da, uint32_t chunk)
{
	struct range_entry_long *fp;
#if DXR_TRIE_BITS < 24
	struct range_entry_short *fps;
	uint32_t start, nh, i;
#endif
	struct heap_entry *fhp;
	uint32_t first = chunk << DXR_RANGE_SHIFT;
	uint32_t last = first | DXR_RANGE_MASK;

	if (da->direct_tbl[chunk].fragments != FRAGS_MARK_HIT)
		chunk_unref(da, chunk);

	initheap(da, first, chunk);

	fp = &da->range_tbl[da->rtbl_top].re;
	da->rtbl_work_frags = 0;
	fp->start = first & DXR_RANGE_MASK;
	fp->nexthop = da->heap[0].nexthop;

	da->dst.sin_addr.s_addr = htonl(first);
	da->mask.sin_addr.s_addr = htonl(~DXR_RANGE_MASK);

	da->work_chunk = chunk;
	rib_walk_from(da->fibnum, AF_INET, RIB_FLAG_LOCKED,
	    (struct sockaddr *) &da->dst, (struct sockaddr *) &da->mask,
	    dxr_walk, da);

	/* Flush any remaining objects on the heap */
	fp = &da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re;
	fhp = &da->heap[da->heap_index];
	while (fhp->preflen > DXR_TRIE_BITS) {
		uint32_t oend = fhp->end;

		if (da->heap_index > 0) {
			fhp--;
			da->heap_index--;
		} else
			initheap(da, fhp->end + 1, chunk);
		if (fhp->end > oend && fhp->nexthop != fp->nexthop) {
			/* Have we crossed the upper chunk boundary? */
			if (oend >= last)
				break;
			fp++;
			da->rtbl_work_frags++;
			fp->start = (oend + 1) & DXR_RANGE_MASK;
			fp->nexthop = fhp->nexthop;
		}
	}

	/* Direct hit if the chunk contains only a single fragment */
	if (da->rtbl_work_frags == 0) {
		da->direct_tbl[chunk].base = fp->nexthop;
		da->direct_tbl[chunk].fragments = FRAGS_MARK_HIT;
		return (0);
	}

	da->direct_tbl[chunk].base = da->rtbl_top;
	da->direct_tbl[chunk].fragments = da->rtbl_work_frags;

#if DXR_TRIE_BITS < 24
	/* Check whether the chunk can be more compactly encoded */
	fp = &da->range_tbl[da->rtbl_top].re;
	for (i = 0; i <= da->rtbl_work_frags; i++, fp++)
		if ((fp->start & 0xff) != 0 || fp->nexthop > RE_SHORT_MAX_NH)
			break;
	if (i == da->rtbl_work_frags + 1) {
		fp = &da->range_tbl[da->rtbl_top].re;
		fps = (void *) fp;
		for (i = 0; i <= da->rtbl_work_frags; i++, fp++, fps++) {
			start = fp->start;
			nh = fp->nexthop;
			fps->start = start >> 8;
			fps->nexthop = nh;
		}
		fps->start = start >> 8;
		fps->nexthop = nh;
		da->rtbl_work_frags >>= 1;
		da->direct_tbl[chunk].fragments =
		    da->rtbl_work_frags | FRAGS_PREF_SHORT;
	} else
#endif
	if (da->rtbl_work_frags >= FRAGS_MARK_HIT) {
		da->direct_tbl[chunk].fragments = FRAGS_MARK_XL;
		memmove(&da->range_tbl[da->rtbl_top + 1],
		   &da->range_tbl[da->rtbl_top],
		   (da->rtbl_work_frags + 1) * sizeof(*da->range_tbl));
		da->range_tbl[da->rtbl_top].fragments = da->rtbl_work_frags;
		da->rtbl_work_frags++;
	}
	da->rtbl_top += (da->rtbl_work_frags + 1);
	return (chunk_ref(da, chunk));
}

static void
dxr_build(struct dxr *dxr)
{
	struct dxr_aux *da = dxr->aux;
	struct chunk_desc *cdp;
	struct rib_rtable_info rinfo;
	struct timeval t0, t1, t2, t3;
	uint32_t r_size, dxr_tot_size;
	uint32_t i, m, range_rebuild = 0;
#ifdef DXR2
	struct trie_desc *tp;
	uint32_t d_tbl_size, dxr_x, d_size, x_size;
	uint32_t ti, trie_rebuild = 0, prev_size = 0;
#endif

	KASSERT(dxr->d == NULL, ("dxr: d not free"));

	if (da == NULL) {
		da = malloc(sizeof(*dxr->aux), M_DXRAUX, M_NOWAIT);
		if (da == NULL)
			return;
		dxr->aux = da;
		da->fibnum = dxr->fibnum;
		da->refcnt = 1;
		LIST_INIT(&da->all_chunks);
		LIST_INIT(&da->all_trie);
		da->rtbl_size = RTBL_SIZE_INCR;
		da->range_tbl = NULL;
		da->xtbl_size = XTBL_SIZE_INCR;
		da->x_tbl = NULL;
		bzero(&da->dst, sizeof(da->dst));
		bzero(&da->mask, sizeof(da->mask));
		da->dst.sin_len = sizeof(da->dst);
		da->mask.sin_len = sizeof(da->mask);
		da->dst.sin_family = AF_INET;
		da->mask.sin_family = AF_INET;
	}
	if (da->range_tbl == NULL) {
		da->range_tbl = malloc(sizeof(*da->range_tbl) * da->rtbl_size
		    + FRAGS_PREF_SHORT, M_DXRAUX, M_NOWAIT);
		if (da->range_tbl == NULL)
			return;
		range_rebuild = 1;
	}
#ifdef DXR2
	if (da->x_tbl == NULL) {
		da->x_tbl = malloc(sizeof(*da->x_tbl) * da->xtbl_size,
		    M_DXRAUX, M_NOWAIT);
		if (da->x_tbl == NULL)
			return;
		trie_rebuild = 1;
	}
#endif
	da->fd = dxr->fd;

	microuptime(&t0);

	dxr->nh_tbl = fib_get_nhop_array(da->fd);
	fib_get_rtable_info(fib_get_rh(da->fd), &rinfo);

	if (da->updates_low > da->updates_high ||
	    da->unused_chunks_cnt > V_max_range_holes)
		range_rebuild = 1;
	if (range_rebuild) {
		/* Bulk cleanup */
		bzero(da->chunk_hashtbl, sizeof(da->chunk_hashtbl));
		while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) {
			LIST_REMOVE(cdp, cd_all_le);
			uma_zfree(chunk_zone, cdp);
		}
		LIST_INIT(&da->unused_chunks);
		da->all_chunks_cnt = da->unused_chunks_cnt = 0;
		da->rtbl_top = 0;
		da->updates_low = 0;
		da->updates_high = DIRECT_TBL_SIZE - 1;
		memset(da->updates_mask, 0xff, sizeof(da->updates_mask));
		for (i = 0; i < DIRECT_TBL_SIZE; i++) {
			da->direct_tbl[i].fragments = FRAGS_MARK_HIT;
			da->direct_tbl[i].base = 0;
		}
	}
	da->prefixes = rinfo.num_prefixes;

	/* DXR: construct direct & range table */
	for (i = da->updates_low; i <= da->updates_high; i++) {
		m = da->updates_mask[i >> 5] >> (i & 0x1f);
		if (m == 0)
			i |= 0x1f;
		else if (m & 1 && update_chunk(da, i) != 0)
			return;
	}
	r_size = sizeof(*da->range_tbl) * da->rtbl_top;
	microuptime(&t1);

#ifdef DXR2
	if (range_rebuild || da->unused_trie_cnt > V_max_trie_holes ||
	    abs(fls(da->prefixes) - fls(da->trie_rebuilt_prefixes)) > 1)
		trie_rebuild = 1;
	if (trie_rebuild) {
		da->trie_rebuilt_prefixes = da->prefixes;
		da->d_bits = DXR_D;
		da->updates_low = 0;
		da->updates_high = DIRECT_TBL_SIZE - 1;
	}

dxr2_try_squeeze:
	if (trie_rebuild) {
		/* Bulk cleanup */
		bzero(da->trietbl, sizeof(da->trietbl));
		bzero(da->trie_hashtbl, sizeof(da->trie_hashtbl));
		while ((tp = LIST_FIRST(&da->all_trie)) != NULL) {
			LIST_REMOVE(tp, td_all_le);
			uma_zfree(trie_zone, tp);
		}
		LIST_INIT(&da->unused_trie);
		da->all_trie_cnt = da->unused_trie_cnt = 0;
	}

	/* Populate d_tbl, x_tbl */
	dxr_x = DXR_TRIE_BITS - da->d_bits;
	d_tbl_size = (1 << da->d_bits);

	for (i = da->updates_low >> dxr_x; i <= da->updates_high >> dxr_x;
	    i++) {
		if (!trie_rebuild) {
			m = 0;
			for (int j = 0; j < (1 << dxr_x); j += 32)
				m |= da->updates_mask[((i << dxr_x) + j) >> 5];
			if (m == 0)
				continue;
			trie_unref(da, i);
		}
		ti = trie_ref(da, i);
		if (ti < 0)
			return;
		da->d_tbl[i] = ti;
	}

	d_size = sizeof(*da->d_tbl) * d_tbl_size;
	x_size = sizeof(*da->x_tbl) * DIRECT_TBL_SIZE / d_tbl_size
	    * da->all_trie_cnt;
	dxr_tot_size = d_size + x_size + r_size;

	if (trie_rebuild == 1) {
		/* Try to find a more compact D/X split */
		if (prev_size == 0 || dxr_tot_size <= prev_size)
			da->d_bits--;
		else {
			da->d_bits++;
			trie_rebuild = 2;
		}
		prev_size = dxr_tot_size;
		goto dxr2_try_squeeze;
	}
	microuptime(&t2);
#else /* !DXR2 */
	dxr_tot_size = sizeof(da->direct_tbl) + r_size;
	t2 = t1;
#endif

	dxr->d = malloc(dxr_tot_size, M_DXRLPM, M_NOWAIT);
	if (dxr->d == NULL)
		return;
#ifdef DXR2
	memcpy(dxr->d, da->d_tbl, d_size);
	dxr->x = ((char *) dxr->d) + d_size;
	memcpy(dxr->x, da->x_tbl, x_size);
	dxr->r = ((char *) dxr->x) + x_size;
	dxr->d_shift = 32 - da->d_bits;
	dxr->x_shift = dxr_x;
	dxr->x_mask = 0xffffffffU >> (32 - dxr_x);
#else /* !DXR2 */
	memcpy(dxr->d, da->direct_tbl, sizeof(da->direct_tbl));
	dxr->r = ((char *) dxr->d) + sizeof(da->direct_tbl);
#endif
	memcpy(dxr->r, da->range_tbl, r_size);

	if (da->updates_low <= da->updates_high)
		bzero(&da->updates_mask[da->updates_low / 32],
		    (da->updates_high - da->updates_low) / 8 + 1);
	da->updates_low = DIRECT_TBL_SIZE - 1;
	da->updates_high = 0;
	microuptime(&t3);

#ifdef DXR2
	FIB_PRINTF(LOG_INFO, da->fd, "D%dX%dR, %d prefixes, %d nhops (max)",
	    da->d_bits, dxr_x, rinfo.num_prefixes, rinfo.num_nhops);
#else
	FIB_PRINTF(LOG_INFO, da->fd, "D%dR, %d prefixes, %d nhops (max)",
	    DXR_D, rinfo.num_prefixes, rinfo.num_nhops);
#endif
	i = dxr_tot_size * 100;
	if (rinfo.num_prefixes)
		i /= rinfo.num_prefixes;
	FIB_PRINTF(LOG_INFO, da->fd, "%d.%02d KBytes, %d.%02d Bytes/prefix",
	    dxr_tot_size / 1024, dxr_tot_size * 100 / 1024 % 100,
	    i / 100, i % 100);
	i = (t1.tv_sec - t0.tv_sec) * 1000000 + t1.tv_usec - t0.tv_usec;
	FIB_PRINTF(LOG_INFO, da->fd, "range table %s in %u.%03u ms",
	    range_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000);
#ifdef DXR2
	i = (t2.tv_sec - t1.tv_sec) * 1000000 + t2.tv_usec - t1.tv_usec;
	FIB_PRINTF(LOG_INFO, da->fd, "trie %s in %u.%03u ms",
	    trie_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000);
#endif
	i = (t3.tv_sec - t2.tv_sec) * 1000000 + t3.tv_usec - t2.tv_usec;
	FIB_PRINTF(LOG_INFO, da->fd, "snapshot forked in %u.%03u ms",
	    i / 1000, i % 1000);
	FIB_PRINTF(LOG_INFO, da->fd, "range table: %d%%, %d chunks, %d holes",
	    da->rtbl_top * 100 / BASE_MAX, da->all_chunks_cnt,
	    da->unused_chunks_cnt);
}

/*
 * Glue functions for attaching to FreeBSD 13 fib_algo infrastructure.
 */

static struct nhop_object *
dxr_fib_lookup(void *algo_data, const struct flm_lookup_key key,
    uint32_t scopeid)
{
	struct dxr *dxr = algo_data;
	uint32_t nh;

	nh = dxr_lookup(dxr, ntohl(key.addr4.s_addr));

	return (dxr->nh_tbl[nh]);
}

static enum flm_op_result
dxr_init(uint32_t fibnum, struct fib_data *fd, void *old_data, void **data)
{
	struct dxr *old_dxr = old_data;
	struct dxr_aux *da = NULL;
	struct dxr *dxr;

	dxr = malloc(sizeof(*dxr), M_DXRAUX, M_NOWAIT);
	if (dxr == NULL)
		return (FLM_REBUILD);

	/* Check whether we may reuse the old auxiliary structures */
	if (old_dxr != NULL && old_dxr->aux != NULL) {
		da = old_dxr->aux;
		atomic_add_int(&da->refcnt, 1);
	}

	dxr->aux = da;
	dxr->d = NULL;
	dxr->fd = fd;
	dxr->fibnum = fibnum;
	*data = dxr;

	return (FLM_SUCCESS);
}

static void
dxr_destroy(void *data)
{
	struct dxr *dxr = data;
	struct dxr_aux *da;
	struct chunk_desc *cdp;
	struct trie_desc *tp;

	if (dxr->d != NULL)
		free(dxr->d, M_DXRLPM);

	da = dxr->aux;
	free(dxr, M_DXRAUX);

	if (da == NULL || atomic_fetchadd_int(&da->refcnt, -1) > 1)
		return;

	/* Release auxiliary structures */
	while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) {
		LIST_REMOVE(cdp, cd_all_le);
		uma_zfree(chunk_zone, cdp);
	}
	while ((tp = LIST_FIRST(&da->all_trie)) != NULL) {
		LIST_REMOVE(tp, td_all_le);
		uma_zfree(trie_zone, tp);
	}
	free(da->range_tbl, M_DXRAUX);
	free(da->x_tbl, M_DXRAUX);
	free(da, M_DXRAUX);
}

static void 
epoch_dxr_destroy(epoch_context_t ctx)
{
	struct dxr *dxr = __containerof(ctx, struct dxr, epoch_ctx);

	dxr_destroy(dxr);
}

static enum flm_op_result
dxr_dump_end(void *data, struct fib_dp *dp)
{
	struct dxr *dxr = data;
	struct dxr_aux *da;

	dxr_build(dxr);

	da = dxr->aux;
	if (da == NULL)
		return (FLM_REBUILD);

	/* Structural limit exceeded, hard error */
	if (da->rtbl_top >= BASE_MAX)
		return (FLM_ERROR);

	/* A malloc(,, M_NOWAIT) failed somewhere, retry later */
	if (dxr->d == NULL)
		return (FLM_REBUILD);

	dp->f = dxr_fib_lookup;
	dp->arg = dxr;

	return (FLM_SUCCESS);
}

static enum flm_op_result
dxr_dump_rib_item(struct rtentry *rt, void *data)
{
	
	return (FLM_SUCCESS);
}

static enum flm_op_result
dxr_change_rib_item(struct rib_head *rnh, struct rib_cmd_info *rc,
    void *data)
{

	return (FLM_BATCH);
}

static enum flm_op_result
dxr_change_rib_batch(struct rib_head *rnh, struct fib_change_queue *q,
    void *data)
{
	struct dxr *dxr = data;
	struct dxr *new_dxr;
	struct dxr_aux *da;
	struct fib_dp new_dp;
	enum flm_op_result res;
	uint32_t ip, plen, hmask, start, end, i, ui;
#ifdef INVARIANTS
	struct rib_rtable_info rinfo;
	int update_delta = 0;
#endif

	KASSERT(data != NULL, ("%s: NULL data", __FUNCTION__));
	KASSERT(q != NULL, ("%s: NULL q", __FUNCTION__));
	KASSERT(q->count < q->size, ("%s: q->count %d q->size %d",
	    __FUNCTION__, q->count, q->size));

	da = dxr->aux;
	KASSERT(da != NULL, ("%s: NULL dxr->aux", __FUNCTION__));

	FIB_PRINTF(LOG_INFO, da->fd, "processing %d update(s)", q->count);
	for (ui = 0; ui < q->count; ui++) {
#ifdef INVARIANTS
		if (q->entries[ui].nh_new != NULL)
			update_delta++;
		if (q->entries[ui].nh_old != NULL)
			update_delta--;
#endif
		plen = q->entries[ui].plen;
		ip = ntohl(q->entries[ui].addr4.s_addr);
		if (plen < 32)
			hmask = 0xffffffffU >> plen;
		else
			hmask = 0;
		start = (ip & ~hmask) >> DXR_RANGE_SHIFT;
		end = (ip | hmask) >> DXR_RANGE_SHIFT;

		if ((start & 0x1f) == 0 && (end & 0x1f) == 0x1f)
			for (i = start >> 5; i <= end >> 5; i++)
				da->updates_mask[i] = 0xffffffffU;
		else
			for (i = start; i <= end; i++)
				da->updates_mask[i >> 5] |= (1 << (i & 0x1f));
		if (start < da->updates_low)
			da->updates_low = start;
		if (end > da->updates_high)
			da->updates_high = end;
	}

#ifdef INVARIANTS
	fib_get_rtable_info(fib_get_rh(da->fd), &rinfo);
	KASSERT(da->prefixes + update_delta == rinfo.num_prefixes,
	    ("%s: update count mismatch", __FUNCTION__));
#endif

	res = dxr_init(0, dxr->fd, data, (void **) &new_dxr);
	if (res != FLM_SUCCESS)
		return (res);

	dxr_build(new_dxr);

	/* Structural limit exceeded, hard error */
	if (da->rtbl_top >= BASE_MAX) {
		dxr_destroy(new_dxr);
		return (FLM_ERROR);
	}

	/* A malloc(,, M_NOWAIT) failed somewhere, retry later */
	if (new_dxr->d == NULL) {
		dxr_destroy(new_dxr);
		return (FLM_REBUILD);
	}

	new_dp.f = dxr_fib_lookup;
	new_dp.arg = new_dxr;
	if (fib_set_datapath_ptr(dxr->fd, &new_dp)) {
		fib_set_algo_ptr(dxr->fd, new_dxr);
		fib_epoch_call(epoch_dxr_destroy, &dxr->epoch_ctx);
		return (FLM_SUCCESS);
	}

	dxr_destroy(new_dxr);
	return (FLM_REBUILD);
}

static uint8_t
dxr_get_pref(const struct rib_rtable_info *rinfo)
{

	/* Below bsearch4 up to 10 prefixes. Always supersedes dpdk_lpm4. */
	return (251);
}

static struct fib_lookup_module fib_dxr_mod = {
	.flm_name = "dxr",
	.flm_family = AF_INET,
	.flm_init_cb = dxr_init,
	.flm_destroy_cb = dxr_destroy,
	.flm_dump_rib_item_cb = dxr_dump_rib_item,
	.flm_dump_end_cb = dxr_dump_end,
	.flm_change_rib_item_cb = dxr_change_rib_item,
	.flm_change_rib_items_cb = dxr_change_rib_batch,
	.flm_get_pref = dxr_get_pref,
};

static int
dxr_modevent(module_t mod, int type, void *unused)
{
	int error;

	switch (type) {
	case MOD_LOAD:
		chunk_zone = uma_zcreate("dxr chunk", sizeof(struct chunk_desc),
		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
		trie_zone = uma_zcreate("dxr trie", sizeof(struct trie_desc),
		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
		fib_module_register(&fib_dxr_mod);
		return(0);
	case MOD_UNLOAD:
		error = fib_module_unregister(&fib_dxr_mod);
		if (error)
			return (error);
		uma_zdestroy(chunk_zone);
		uma_zdestroy(trie_zone);
		return(0);
	default:
		return(EOPNOTSUPP);
	}
}

static moduledata_t dxr_mod = {"fib_dxr", dxr_modevent, 0};

DECLARE_MODULE(fib_dxr, dxr_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
MODULE_VERSION(fib_dxr, 1);