aboutsummaryrefslogtreecommitdiff
path: root/sys/powerpc/aim/slb.c
blob: fdb429ccb0a827dee3bb0a7ad455dd392c6bb582 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2010 Nathan Whitehorn
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * $FreeBSD$
 */

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/systm.h>

#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>

#include <machine/md_var.h>
#include <machine/platform.h>
#include <machine/vmparam.h>
#include <machine/trap.h>

#include "mmu_oea64.h"

uintptr_t moea64_get_unique_vsid(void);
void moea64_release_vsid(uint64_t vsid);
static void slb_zone_init(void *);

static uma_zone_t slbt_zone;
static uma_zone_t slb_cache_zone;
int n_slbs = 64;

SYSINIT(slb_zone_init, SI_SUB_KMEM, SI_ORDER_ANY, slb_zone_init, NULL);

struct slbtnode {
	uint16_t	ua_alloc;
	uint8_t		ua_level;
	/* Only 36 bits needed for full 64-bit address space. */
	uint64_t	ua_base;
	union {
		struct slbtnode	*ua_child[16];
		struct slb	slb_entries[16];
	} u;
};

/*
 * For a full 64-bit address space, there are 36 bits in play in an
 * esid, so 8 levels, with the leaf being at level 0.
 *
 * |3333|3322|2222|2222|1111|1111|11  |    |    |  esid
 * |5432|1098|7654|3210|9876|5432|1098|7654|3210|  bits
 * +----+----+----+----+----+----+----+----+----+--------
 * | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | level
 */
#define UAD_ROOT_LEVEL  8
#define UAD_LEAF_LEVEL  0

static inline int
esid2idx(uint64_t esid, int level)
{
	int shift;

	shift = level * 4;
	return ((esid >> shift) & 0xF);
}

/*
 * The ua_base field should have 0 bits after the first 4*(level+1)
 * bits; i.e. only
 */
#define uad_baseok(ua)                          \
	(esid2base(ua->ua_base, ua->ua_level) == ua->ua_base)


static inline uint64_t
esid2base(uint64_t esid, int level)
{
	uint64_t mask;
	int shift;

	shift = (level + 1) * 4;
	mask = ~((1ULL << shift) - 1);
	return (esid & mask);
}

/*
 * Allocate a new leaf node for the specified esid/vmhandle from the
 * parent node.
 */
static struct slb *
make_new_leaf(uint64_t esid, uint64_t slbv, struct slbtnode *parent)
{
	struct slbtnode *child;
	struct slb *retval;
	int idx;

	idx = esid2idx(esid, parent->ua_level);
	KASSERT(parent->u.ua_child[idx] == NULL, ("Child already exists!"));

	/* unlock and M_WAITOK and loop? */
	child = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
	KASSERT(child != NULL, ("unhandled NULL case"));

	child->ua_level = UAD_LEAF_LEVEL;
	child->ua_base = esid2base(esid, child->ua_level);
	idx = esid2idx(esid, child->ua_level);
	child->u.slb_entries[idx].slbv = slbv;
	child->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
	setbit(&child->ua_alloc, idx);

	retval = &child->u.slb_entries[idx];

	/*
	 * The above stores must be visible before the next one, so
	 * that a lockless searcher always sees a valid path through
	 * the tree.
	 */
	powerpc_lwsync();

	idx = esid2idx(esid, parent->ua_level);
	parent->u.ua_child[idx] = child;
	setbit(&parent->ua_alloc, idx);

	return (retval);
}

/*
 * Allocate a new intermediate node to fit between the parent and
 * esid.
 */
static struct slbtnode*
make_intermediate(uint64_t esid, struct slbtnode *parent)
{
	struct slbtnode *child, *inter;
	int idx, level;

	idx = esid2idx(esid, parent->ua_level);
	child = parent->u.ua_child[idx];
	KASSERT(esid2base(esid, child->ua_level) != child->ua_base,
	    ("No need for an intermediate node?"));

	/*
	 * Find the level where the existing child and our new esid
	 * meet.  It must be lower than parent->ua_level or we would
	 * have chosen a different index in parent.
	 */
	level = child->ua_level + 1;
	while (esid2base(esid, level) !=
	    esid2base(child->ua_base, level))
		level++;
	KASSERT(level < parent->ua_level,
	    ("Found splitting level %d for %09jx and %09jx, "
	    "but it's the same as %p's",
	    level, esid, child->ua_base, parent));

	/* unlock and M_WAITOK and loop? */
	inter = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
	KASSERT(inter != NULL, ("unhandled NULL case"));

	/* Set up intermediate node to point to child ... */
	inter->ua_level = level;
	inter->ua_base = esid2base(esid, inter->ua_level);
	idx = esid2idx(child->ua_base, inter->ua_level);
	inter->u.ua_child[idx] = child;
	setbit(&inter->ua_alloc, idx);
	powerpc_lwsync();

	/* Set up parent to point to intermediate node ... */
	idx = esid2idx(inter->ua_base, parent->ua_level);
	parent->u.ua_child[idx] = inter;
	setbit(&parent->ua_alloc, idx);

	return (inter);
}

uint64_t
kernel_va_to_slbv(vm_offset_t va)
{
	uint64_t slbv;

	/* Set kernel VSID to deterministic value */
	slbv = (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT)) << SLBV_VSID_SHIFT;

	/* 
	 * Figure out if this is a large-page mapping.
	 */
	if (hw_direct_map && va > DMAP_BASE_ADDRESS && va < DMAP_MAX_ADDRESS) {
		/*
		 * XXX: If we have set up a direct map, assumes
		 * all physical memory is mapped with large pages.
		 */

		if (mem_valid(DMAP_TO_PHYS(va), 0) == 0)
			slbv |= SLBV_L;
	}
		
	return (slbv);
}

struct slb *
user_va_to_slb_entry(pmap_t pm, vm_offset_t va)
{
	uint64_t esid = va >> ADDR_SR_SHFT;
	struct slbtnode *ua;
	int idx;

	ua = pm->pm_slb_tree_root;

	for (;;) {
		KASSERT(uad_baseok(ua), ("uad base %016jx level %d bad!",
		    ua->ua_base, ua->ua_level));
		idx = esid2idx(esid, ua->ua_level);

		/*
		 * This code is specific to ppc64 where a load is
		 * atomic, so no need for atomic_load macro.
		 */
		if (ua->ua_level == UAD_LEAF_LEVEL)
			return ((ua->u.slb_entries[idx].slbe & SLBE_VALID) ?
			    &ua->u.slb_entries[idx] : NULL);

		/*
		 * The following accesses are implicitly ordered under the POWER
		 * ISA by load dependencies (the store ordering is provided by
		 * the powerpc_lwsync() calls elsewhere) and so are run without
		 * barriers.
		 */
		ua = ua->u.ua_child[idx];
		if (ua == NULL ||
		    esid2base(esid, ua->ua_level) != ua->ua_base)
			return (NULL);
	}

	return (NULL);
}

uint64_t
va_to_vsid(pmap_t pm, vm_offset_t va)
{
	struct slb *entry;

	/* Shortcut kernel case */
	if (pm == kernel_pmap)
		return (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT));

	/*
	 * If there is no vsid for this VA, we need to add a new entry
	 * to the PMAP's segment table.
	 */

	entry = user_va_to_slb_entry(pm, va);

	if (entry == NULL)
		return (allocate_user_vsid(pm,
		    (uintptr_t)va >> ADDR_SR_SHFT, 0));

	return ((entry->slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT);
}

uint64_t
allocate_user_vsid(pmap_t pm, uint64_t esid, int large)
{
	uint64_t vsid, slbv;
	struct slbtnode *ua, *next, *inter;
	struct slb *slb;
	int idx;

	KASSERT(pm != kernel_pmap, ("Attempting to allocate a kernel VSID"));

	PMAP_LOCK_ASSERT(pm, MA_OWNED);
	vsid = moea64_get_unique_vsid();

	slbv = vsid << SLBV_VSID_SHIFT;
	if (large)
		slbv |= SLBV_L;

	ua = pm->pm_slb_tree_root;

	/* Descend to the correct leaf or NULL pointer. */
	for (;;) {
		KASSERT(uad_baseok(ua),
		   ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
		idx = esid2idx(esid, ua->ua_level);

		if (ua->ua_level == UAD_LEAF_LEVEL) {
			ua->u.slb_entries[idx].slbv = slbv;
			eieio();
			ua->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT)
			    | SLBE_VALID;
			setbit(&ua->ua_alloc, idx);
			slb = &ua->u.slb_entries[idx];
			break;
		}

		next = ua->u.ua_child[idx];
		if (next == NULL) {
			slb = make_new_leaf(esid, slbv, ua);
			break;
                }

		/*
		 * Check if the next item down has an okay ua_base.
		 * If not, we need to allocate an intermediate node.
		 */
		if (esid2base(esid, next->ua_level) != next->ua_base) {
			inter = make_intermediate(esid, ua);
			slb = make_new_leaf(esid, slbv, inter);
			break;
		}

		ua = next;
	}

	/*
	 * Someone probably wants this soon, and it may be a wired
	 * SLB mapping, so pre-spill this entry.
	 */
	eieio();
	slb_insert_user(pm, slb);

	return (vsid);
}

void
free_vsid(pmap_t pm, uint64_t esid, int large)
{
	struct slbtnode *ua;
	int idx;

	PMAP_LOCK_ASSERT(pm, MA_OWNED);

	ua = pm->pm_slb_tree_root;
	/* Descend to the correct leaf. */
	for (;;) {
		KASSERT(uad_baseok(ua),
		   ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
		
		idx = esid2idx(esid, ua->ua_level);
		if (ua->ua_level == UAD_LEAF_LEVEL) {
			ua->u.slb_entries[idx].slbv = 0;
			eieio();
			ua->u.slb_entries[idx].slbe = 0;
			clrbit(&ua->ua_alloc, idx);
			return;
		}

		ua = ua->u.ua_child[idx];
		if (ua == NULL ||
		    esid2base(esid, ua->ua_level) != ua->ua_base) {
			/* Perhaps just return instead of assert? */
			KASSERT(0,
			    ("Asked to remove an entry that was never inserted!"));
			return;
		}
	}
}

static void
free_slb_tree_node(struct slbtnode *ua)
{
	int idx;

	for (idx = 0; idx < 16; idx++) {
		if (ua->ua_level != UAD_LEAF_LEVEL) {
			if (ua->u.ua_child[idx] != NULL)
				free_slb_tree_node(ua->u.ua_child[idx]);
		} else {
			if (ua->u.slb_entries[idx].slbv != 0)
				moea64_release_vsid(ua->u.slb_entries[idx].slbv
				    >> SLBV_VSID_SHIFT);
		}
	}

	uma_zfree(slbt_zone, ua);
}

void
slb_free_tree(pmap_t pm)
{

	free_slb_tree_node(pm->pm_slb_tree_root);
}

struct slbtnode *
slb_alloc_tree(void)
{
	struct slbtnode *root;

	root = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
	root->ua_level = UAD_ROOT_LEVEL;

	return (root);
}

/* Lock entries mapping kernel text and stacks */

void
slb_insert_kernel(uint64_t slbe, uint64_t slbv)
{
	struct slb *slbcache;
	int i;

	/* We don't want to be preempted while modifying the kernel map */
	critical_enter();

	slbcache = PCPU_GET(aim.slb);

	/* Check for an unused slot, abusing the user slot as a full flag */
	if (slbcache[USER_SLB_SLOT].slbe == 0) {
		for (i = 0; i < n_slbs; i++) {
			if (i == USER_SLB_SLOT)
				continue;
			if (!(slbcache[i].slbe & SLBE_VALID)) 
				goto fillkernslb;
		}

		if (i == n_slbs)
			slbcache[USER_SLB_SLOT].slbe = 1;
	}

	i = mftb() % n_slbs;
	if (i == USER_SLB_SLOT)
			i = (i+1) % n_slbs;

fillkernslb:
	KASSERT(i != USER_SLB_SLOT,
	    ("Filling user SLB slot with a kernel mapping"));
	slbcache[i].slbv = slbv;
	slbcache[i].slbe = slbe | (uint64_t)i;

	/* If it is for this CPU, put it in the SLB right away */
	if (pmap_bootstrapped) {
		/* slbie not required */
		__asm __volatile ("slbmte %0, %1" :: 
		    "r"(slbcache[i].slbv), "r"(slbcache[i].slbe)); 
	}

	critical_exit();
}

void
slb_insert_user(pmap_t pm, struct slb *slb)
{
	int i;

	PMAP_LOCK_ASSERT(pm, MA_OWNED);

	if (pm->pm_slb_len < n_slbs) {
		i = pm->pm_slb_len;
		pm->pm_slb_len++;
	} else {
		i = mftb() % n_slbs;
	}

	/* Note that this replacement is atomic with respect to trap_subr */
	pm->pm_slb[i] = slb;
}

static void *
slb_uma_real_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
    u_int8_t *flags, int wait)
{
	static vm_offset_t realmax = 0;
	void *va;
	vm_page_t m;

	if (realmax == 0)
		realmax = platform_real_maxaddr();

	*flags = UMA_SLAB_PRIV;
	m = vm_page_alloc_contig_domain(NULL, 0, domain,
	    malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED,
	    1, 0, realmax, PAGE_SIZE, PAGE_SIZE, VM_MEMATTR_DEFAULT);
	if (m == NULL)
		return (NULL);

	if (hw_direct_map)
		va = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
	else {
		va = (void *)(VM_PAGE_TO_PHYS(m) | DMAP_BASE_ADDRESS);
		pmap_kenter((vm_offset_t)va, VM_PAGE_TO_PHYS(m));
	}

	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
		bzero(va, PAGE_SIZE);

	return (va);
}

static void
slb_zone_init(void *dummy)
{

	slbt_zone = uma_zcreate("SLB tree node", sizeof(struct slbtnode),
	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
	slb_cache_zone = uma_zcreate("SLB cache",
	    (n_slbs + 1)*sizeof(struct slb *), NULL, NULL, NULL, NULL,
	    UMA_ALIGN_PTR, UMA_ZONE_VM);

	if (platform_real_maxaddr() != VM_MAX_ADDRESS) {
		uma_zone_set_allocf(slb_cache_zone, slb_uma_real_alloc);
		uma_zone_set_allocf(slbt_zone, slb_uma_real_alloc);
	}
}

struct slb **
slb_alloc_user_cache(void)
{
	return (uma_zalloc(slb_cache_zone, M_ZERO));
}

void
slb_free_user_cache(struct slb **slb)
{
	uma_zfree(slb_cache_zone, slb);
}

#if defined(__powerpc64__)
/* Handle kernel SLB faults -- runs in real mode, all seat belts off */
void
handle_kernel_slb_spill(int type, register_t dar, register_t srr0)
{
	struct slb *slbcache;
	uint64_t slbe, slbv;
	uint64_t esid, addr;
	int i;

	addr = (type == EXC_ISE) ? srr0 : dar;
	slbcache = PCPU_GET(aim.slb);
	esid = (uintptr_t)addr >> ADDR_SR_SHFT;
	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
	
	/* See if the hardware flushed this somehow (can happen in LPARs) */
	for (i = 0; i < n_slbs; i++)
		if (slbcache[i].slbe == (slbe | (uint64_t)i))
			return;

	/* Not in the map, needs to actually be added */
	slbv = kernel_va_to_slbv(addr);
	if (slbcache[USER_SLB_SLOT].slbe == 0) {
		for (i = 0; i < n_slbs; i++) {
			if (i == USER_SLB_SLOT)
				continue;
			if (!(slbcache[i].slbe & SLBE_VALID))
				goto fillkernslb;
		}

		if (i == n_slbs)
			slbcache[USER_SLB_SLOT].slbe = 1;
	}

	/* Sacrifice a random SLB entry that is not the user entry */
	i = mftb() % n_slbs;
	if (i == USER_SLB_SLOT)
		i = (i+1) % n_slbs;

fillkernslb:
	/* Write new entry */
	slbcache[i].slbv = slbv;
	slbcache[i].slbe = slbe | (uint64_t)i;

	/* Trap handler will restore from cache on exit */
}

int 
handle_user_slb_spill(pmap_t pm, vm_offset_t addr)
{
	struct slb *user_entry;
	uint64_t esid;
	int i;

	if (pm->pm_slb == NULL)
		return (-1);

	esid = (uintptr_t)addr >> ADDR_SR_SHFT;

	PMAP_LOCK(pm);
	user_entry = user_va_to_slb_entry(pm, addr);

	if (user_entry == NULL) {
		/* allocate_vsid auto-spills it */
		(void)allocate_user_vsid(pm, esid, 0);
	} else {
		/*
		 * Check that another CPU has not already mapped this.
		 * XXX: Per-thread SLB caches would be better.
		 */
		for (i = 0; i < pm->pm_slb_len; i++)
			if (pm->pm_slb[i] == user_entry)
				break;

		if (i == pm->pm_slb_len)
			slb_insert_user(pm, user_entry);
	}
	PMAP_UNLOCK(pm);

	return (0);
}
#endif