aboutsummaryrefslogtreecommitdiff
path: root/sys/riscv/riscv/pmap.c
blob: 270b8d56d35406310f9579b1267dd8bc457df570 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
/*-
 * SPDX-License-Identifier: BSD-4-Clause
 *
 * Copyright (c) 1991 Regents of the University of California.
 * All rights reserved.
 * Copyright (c) 1994 John S. Dyson
 * All rights reserved.
 * Copyright (c) 1994 David Greenman
 * All rights reserved.
 * Copyright (c) 2003 Peter Wemm
 * All rights reserved.
 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
 * All rights reserved.
 * Copyright (c) 2014 Andrew Turner
 * All rights reserved.
 * Copyright (c) 2014 The FreeBSD Foundation
 * All rights reserved.
 * Copyright (c) 2015-2017 Ruslan Bukin <br@bsdpad.com>
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * the Systems Programming Group of the University of Utah Computer
 * Science Department and William Jolitz of UUNET Technologies Inc.
 *
 * Portions of this software were developed by Andrew Turner under
 * sponsorship from The FreeBSD Foundation.
 *
 * Portions of this software were developed by SRI International and the
 * University of Cambridge Computer Laboratory under DARPA/AFRL contract
 * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
 *
 * Portions of this software were developed by the University of Cambridge
 * Computer Laboratory as part of the CTSRD Project, with support from the
 * UK Higher Education Innovation Fund (HEIF).
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
 */
/*-
 * Copyright (c) 2003 Networks Associates Technology, Inc.
 * All rights reserved.
 *
 * This software was developed for the FreeBSD Project by Jake Burkholder,
 * Safeport Network Services, and Network Associates Laboratories, the
 * Security Research Division of Network Associates, Inc. under
 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
 * CHATS research program.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

/*
 *	Manages physical address maps.
 *
 *	Since the information managed by this module is
 *	also stored by the logical address mapping module,
 *	this module may throw away valid virtual-to-physical
 *	mappings at almost any time.  However, invalidations
 *	of virtual-to-physical mappings must be done as
 *	requested.
 *
 *	In order to cope with hardware architectures which
 *	make virtual-to-physical map invalidates expensive,
 *	this module may delay invalidate or reduced protection
 *	operations until such time as they are actually
 *	necessary.  This module is given full information as
 *	to which processors are currently using which maps,
 *	and to when physical maps must be made correct.
 */

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sx.h>
#include <sys/vmem.h>
#include <sys/vmmeter.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/smp.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_radix.h>
#include <vm/vm_reserv.h>
#include <vm/uma.h>

#include <machine/machdep.h>
#include <machine/md_var.h>
#include <machine/pcb.h>

#define	NPDEPG		(PAGE_SIZE/(sizeof (pd_entry_t)))
#define	NUPDE			(NPDEPG * NPDEPG)
#define	NUSERPGTBLS		(NUPDE + NPDEPG)

#if !defined(DIAGNOSTIC)
#ifdef __GNUC_GNU_INLINE__
#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
#else
#define PMAP_INLINE	extern inline
#endif
#else
#define PMAP_INLINE
#endif

#ifdef PV_STATS
#define PV_STAT(x)	do { x ; } while (0)
#else
#define PV_STAT(x)	do { } while (0)
#endif

#define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)

#define	NPV_LIST_LOCKS	MAXCPU

#define	PHYS_TO_PV_LIST_LOCK(pa)	\
			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])

#define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
	struct rwlock **_lockp = (lockp);		\
	struct rwlock *_new_lock;			\
							\
	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
	if (_new_lock != *_lockp) {			\
		if (*_lockp != NULL)			\
			rw_wunlock(*_lockp);		\
		*_lockp = _new_lock;			\
		rw_wlock(*_lockp);			\
	}						\
} while (0)

#define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))

#define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
	struct rwlock **_lockp = (lockp);		\
							\
	if (*_lockp != NULL) {				\
		rw_wunlock(*_lockp);			\
		*_lockp = NULL;				\
	}						\
} while (0)

#define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))

/* The list of all the user pmaps */
LIST_HEAD(pmaplist, pmap);
static struct pmaplist allpmaps;

static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");

struct pmap kernel_pmap_store;

vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
vm_offset_t kernel_vm_end = 0;

vm_paddr_t dmap_phys_base;	/* The start of the dmap region */
vm_paddr_t dmap_phys_max;	/* The limit of the dmap region */
vm_offset_t dmap_max_addr;	/* The virtual address limit of the dmap */

/* This code assumes all L1 DMAP entries will be used */
CTASSERT((DMAP_MIN_ADDRESS  & ~L1_OFFSET) == DMAP_MIN_ADDRESS);
CTASSERT((DMAP_MAX_ADDRESS  & ~L1_OFFSET) == DMAP_MAX_ADDRESS);

static struct rwlock_padalign pvh_global_lock;

/*
 * Data for the pv entry allocation mechanism
 */
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
static struct mtx pv_chunks_mutex;
static struct rwlock pv_list_locks[NPV_LIST_LOCKS];

static void	free_pv_chunk(struct pv_chunk *pc);
static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
		    vm_offset_t va);
static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
    vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
    pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
    vm_page_t m, struct rwlock **lockp);

static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
		struct rwlock **lockp);

static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
    struct spglist *free);
static int pmap_unuse_l3(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);

/*
 * These load the old table data and store the new value.
 * They need to be atomic as the System MMU may write to the table at
 * the same time as the CPU.
 */
#define	pmap_load_store(table, entry) atomic_swap_64(table, entry)
#define	pmap_set(table, mask) atomic_set_64(table, mask)
#define	pmap_load_clear(table) atomic_swap_64(table, 0)
#define	pmap_load(table) (*table)

/********************/
/* Inline functions */
/********************/

static __inline void
pagecopy(void *s, void *d)
{

	memcpy(d, s, PAGE_SIZE);
}

static __inline void
pagezero(void *p)
{

	bzero(p, PAGE_SIZE);
}

#define	pmap_l1_index(va)	(((va) >> L1_SHIFT) & Ln_ADDR_MASK)
#define	pmap_l2_index(va)	(((va) >> L2_SHIFT) & Ln_ADDR_MASK)
#define	pmap_l3_index(va)	(((va) >> L3_SHIFT) & Ln_ADDR_MASK)

#define	PTE_TO_PHYS(pte)	((pte >> PTE_PPN0_S) * PAGE_SIZE)

static __inline pd_entry_t *
pmap_l1(pmap_t pmap, vm_offset_t va)
{

	return (&pmap->pm_l1[pmap_l1_index(va)]);
}

static __inline pd_entry_t *
pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
{
	vm_paddr_t phys;
	pd_entry_t *l2;

	phys = PTE_TO_PHYS(pmap_load(l1));
	l2 = (pd_entry_t *)PHYS_TO_DMAP(phys);

	return (&l2[pmap_l2_index(va)]);
}

static __inline pd_entry_t *
pmap_l2(pmap_t pmap, vm_offset_t va)
{
	pd_entry_t *l1;

	l1 = pmap_l1(pmap, va);
	if (l1 == NULL)
		return (NULL);
	if ((pmap_load(l1) & PTE_V) == 0)
		return (NULL);
	if ((pmap_load(l1) & PTE_RX) != 0)
		return (NULL);

	return (pmap_l1_to_l2(l1, va));
}

static __inline pt_entry_t *
pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
{
	vm_paddr_t phys;
	pt_entry_t *l3;

	phys = PTE_TO_PHYS(pmap_load(l2));
	l3 = (pd_entry_t *)PHYS_TO_DMAP(phys);

	return (&l3[pmap_l3_index(va)]);
}

static __inline pt_entry_t *
pmap_l3(pmap_t pmap, vm_offset_t va)
{
	pd_entry_t *l2;

	l2 = pmap_l2(pmap, va);
	if (l2 == NULL)
		return (NULL);
	if ((pmap_load(l2) & PTE_V) == 0)
		return (NULL);
	if ((pmap_load(l2) & PTE_RX) != 0)
		return (NULL);

	return (pmap_l2_to_l3(l2, va));
}


static __inline int
pmap_is_write(pt_entry_t entry)
{

	return (entry & PTE_W);
}

static __inline int
pmap_is_current(pmap_t pmap)
{

	return ((pmap == pmap_kernel()) ||
	    (pmap == curthread->td_proc->p_vmspace->vm_map.pmap));
}

static __inline int
pmap_l3_valid(pt_entry_t l3)
{

	return (l3 & PTE_V);
}

static __inline int
pmap_l3_valid_cacheable(pt_entry_t l3)
{

	/* TODO */

	return (0);
}

#define	PTE_SYNC(pte)	cpu_dcache_wb_range((vm_offset_t)pte, sizeof(*pte))

/* Checks if the page is dirty. */
static inline int
pmap_page_dirty(pt_entry_t pte)
{

	return (pte & PTE_D);
}

static __inline void
pmap_resident_count_inc(pmap_t pmap, int count)
{

	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
	pmap->pm_stats.resident_count += count;
}

static __inline void
pmap_resident_count_dec(pmap_t pmap, int count)
{

	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
	KASSERT(pmap->pm_stats.resident_count >= count,
	    ("pmap %p resident count underflow %ld %d", pmap,
	    pmap->pm_stats.resident_count, count));
	pmap->pm_stats.resident_count -= count;
}

static void
pmap_distribute_l1(struct pmap *pmap, vm_pindex_t l1index,
    pt_entry_t entry)
{
	struct pmap *user_pmap;
	pd_entry_t *l1;

	/* Distribute new kernel L1 entry to all the user pmaps */
	if (pmap != kernel_pmap)
		return;

	LIST_FOREACH(user_pmap, &allpmaps, pm_list) {
		l1 = &user_pmap->pm_l1[l1index];
		if (entry)
			pmap_load_store(l1, entry);
		else
			pmap_load_clear(l1);
	}
}

static pt_entry_t *
pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot,
    u_int *l2_slot)
{
	pt_entry_t *l2;
	pd_entry_t *l1;

	l1 = (pd_entry_t *)l1pt;
	*l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK;

	/* Check locore has used a table L1 map */
	KASSERT((l1[*l1_slot] & PTE_RX) == 0,
		("Invalid bootstrap L1 table"));

	/* Find the address of the L2 table */
	l2 = (pt_entry_t *)init_pt_va;
	*l2_slot = pmap_l2_index(va);

	return (l2);
}

static vm_paddr_t
pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
{
	u_int l1_slot, l2_slot;
	pt_entry_t *l2;
	u_int ret;

	l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot);

	/* Check locore has used L2 superpages */
	KASSERT((l2[l2_slot] & PTE_RX) != 0,
		("Invalid bootstrap L2 table"));

	/* L2 is superpages */
	ret = (l2[l2_slot] >> PTE_PPN1_S) << L2_SHIFT;
	ret += (va & L2_OFFSET);

	return (ret);
}

static void
pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa, vm_paddr_t max_pa)
{
	vm_offset_t va;
	vm_paddr_t pa;
	pd_entry_t *l1;
	u_int l1_slot;
	pt_entry_t entry;
	pn_t pn;

	pa = dmap_phys_base = min_pa & ~L1_OFFSET;
	va = DMAP_MIN_ADDRESS;
	l1 = (pd_entry_t *)kern_l1;
	l1_slot = pmap_l1_index(DMAP_MIN_ADDRESS);

	for (; va < DMAP_MAX_ADDRESS && pa < max_pa;
	    pa += L1_SIZE, va += L1_SIZE, l1_slot++) {
		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));

		/* superpages */
		pn = (pa / PAGE_SIZE);
		entry = (PTE_V | PTE_RWX);
		entry |= (pn << PTE_PPN0_S);
		pmap_load_store(&l1[l1_slot], entry);
	}

	/* Set the upper limit of the DMAP region */
	dmap_phys_max = pa;
	dmap_max_addr = va;

	cpu_dcache_wb_range((vm_offset_t)l1, PAGE_SIZE);
	cpu_tlb_flushID();
}

static vm_offset_t
pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
{
	vm_offset_t l2pt, l3pt;
	pt_entry_t entry;
	pd_entry_t *l2;
	vm_paddr_t pa;
	u_int l2_slot;
	pn_t pn;

	KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));

	l2 = pmap_l2(kernel_pmap, va);
	l2 = (pd_entry_t *)((uintptr_t)l2 & ~(PAGE_SIZE - 1));
	l2pt = (vm_offset_t)l2;
	l2_slot = pmap_l2_index(va);
	l3pt = l3_start;

	for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
		KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));

		pa = pmap_early_vtophys(l1pt, l3pt);
		pn = (pa / PAGE_SIZE);
		entry = (PTE_V);
		entry |= (pn << PTE_PPN0_S);
		pmap_load_store(&l2[l2_slot], entry);
		l3pt += PAGE_SIZE;
	}


	/* Clean the L2 page table */
	memset((void *)l3_start, 0, l3pt - l3_start);
	cpu_dcache_wb_range(l3_start, l3pt - l3_start);

	cpu_dcache_wb_range((vm_offset_t)l2, PAGE_SIZE);

	return (l3pt);
}

/*
 *	Bootstrap the system enough to run with virtual memory.
 */
void
pmap_bootstrap(vm_offset_t l1pt, vm_paddr_t kernstart, vm_size_t kernlen)
{
	u_int l1_slot, l2_slot, avail_slot, map_slot, used_map_slot;
	uint64_t kern_delta;
	pt_entry_t *l2;
	vm_offset_t va, freemempos;
	vm_offset_t dpcpu, msgbufpv;
	vm_paddr_t pa, min_pa, max_pa;
	int i;

	kern_delta = KERNBASE - kernstart;
	physmem = 0;

	printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
	printf("%lx\n", l1pt);
	printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK);

	/* Set this early so we can use the pagetable walking functions */
	kernel_pmap_store.pm_l1 = (pd_entry_t *)l1pt;
	PMAP_LOCK_INIT(kernel_pmap);

 	/*
	 * Initialize the global pv list lock.
	 */
	rw_init(&pvh_global_lock, "pmap pv global");

	LIST_INIT(&allpmaps);

	/* Assume the address we were loaded to is a valid physical address */
	min_pa = max_pa = KERNBASE - kern_delta;

	/*
	 * Find the minimum physical address. physmap is sorted,
	 * but may contain empty ranges.
	 */
	for (i = 0; i < (physmap_idx * 2); i += 2) {
		if (physmap[i] == physmap[i + 1])
			continue;
		if (physmap[i] <= min_pa)
			min_pa = physmap[i];
		if (physmap[i + 1] > max_pa)
			max_pa = physmap[i + 1];
	}
	printf("physmap_idx %lx\n", physmap_idx);
	printf("min_pa %lx\n", min_pa);
	printf("max_pa %lx\n", max_pa);

	/* Create a direct map region early so we can use it for pa -> va */
	pmap_bootstrap_dmap(l1pt, min_pa, max_pa);

	va = KERNBASE;
	pa = KERNBASE - kern_delta;

	/*
	 * Start to initialize phys_avail by copying from physmap
	 * up to the physical address KERNBASE points at.
	 */
	map_slot = avail_slot = 0;
	for (; map_slot < (physmap_idx * 2); map_slot += 2) {
		if (physmap[map_slot] == physmap[map_slot + 1])
			continue;

		if (physmap[map_slot] <= pa &&
		    physmap[map_slot + 1] > pa)
			break;

		phys_avail[avail_slot] = physmap[map_slot];
		phys_avail[avail_slot + 1] = physmap[map_slot + 1];
		physmem += (phys_avail[avail_slot + 1] -
		    phys_avail[avail_slot]) >> PAGE_SHIFT;
		avail_slot += 2;
	}

	/* Add the memory before the kernel */
	if (physmap[avail_slot] < pa) {
		phys_avail[avail_slot] = physmap[map_slot];
		phys_avail[avail_slot + 1] = pa;
		physmem += (phys_avail[avail_slot + 1] -
		    phys_avail[avail_slot]) >> PAGE_SHIFT;
		avail_slot += 2;
	}
	used_map_slot = map_slot;

	/*
	 * Read the page table to find out what is already mapped.
	 * This assumes we have mapped a block of memory from KERNBASE
	 * using a single L1 entry.
	 */
	l2 = pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot);

	/* Sanity check the index, KERNBASE should be the first VA */
	KASSERT(l2_slot == 0, ("The L2 index is non-zero"));

	/* Find how many pages we have mapped */
	for (; l2_slot < Ln_ENTRIES; l2_slot++) {
		if ((l2[l2_slot] & PTE_V) == 0)
			break;

		/* Check locore used L2 superpages */
		KASSERT((l2[l2_slot] & PTE_RX) != 0,
		    ("Invalid bootstrap L2 table"));

		va += L2_SIZE;
		pa += L2_SIZE;
	}

	va = roundup2(va, L2_SIZE);

	freemempos = KERNBASE + kernlen;
	freemempos = roundup2(freemempos, PAGE_SIZE);

	/* Create the l3 tables for the early devmap */
	freemempos = pmap_bootstrap_l3(l1pt,
	    VM_MAX_KERNEL_ADDRESS - L2_SIZE, freemempos);

	cpu_tlb_flushID();

#define alloc_pages(var, np)						\
	(var) = freemempos;						\
	freemempos += (np * PAGE_SIZE);					\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	/* Allocate dynamic per-cpu area. */
	alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu, 0);

	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
	alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
	msgbufp = (void *)msgbufpv;

	virtual_avail = roundup2(freemempos, L2_SIZE);
	virtual_end = VM_MAX_KERNEL_ADDRESS - L2_SIZE;
	kernel_vm_end = virtual_avail;
	
	pa = pmap_early_vtophys(l1pt, freemempos);

	/* Finish initialising physmap */
	map_slot = used_map_slot;
	for (; avail_slot < (PHYS_AVAIL_SIZE - 2) &&
	    map_slot < (physmap_idx * 2); map_slot += 2) {
		if (physmap[map_slot] == physmap[map_slot + 1]) {
			continue;
		}

		/* Have we used the current range? */
		if (physmap[map_slot + 1] <= pa) {
			continue;
		}

		/* Do we need to split the entry? */
		if (physmap[map_slot] < pa) {
			phys_avail[avail_slot] = pa;
			phys_avail[avail_slot + 1] = physmap[map_slot + 1];
		} else {
			phys_avail[avail_slot] = physmap[map_slot];
			phys_avail[avail_slot + 1] = physmap[map_slot + 1];
		}
		physmem += (phys_avail[avail_slot + 1] -
		    phys_avail[avail_slot]) >> PAGE_SHIFT;

		avail_slot += 2;
	}
	phys_avail[avail_slot] = 0;
	phys_avail[avail_slot + 1] = 0;

	/*
	 * Maxmem isn't the "maximum memory", it's one larger than the
	 * highest page of the physical address space.  It should be
	 * called something like "Maxphyspage".
	 */
	Maxmem = atop(phys_avail[avail_slot - 1]);

	cpu_tlb_flushID();
}

/*
 *	Initialize a vm_page's machine-dependent fields.
 */
void
pmap_page_init(vm_page_t m)
{

	TAILQ_INIT(&m->md.pv_list);
	m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
}

/*
 *	Initialize the pmap module.
 *	Called by vm_init, to initialize any structures that the pmap
 *	system needs to map virtual memory.
 */
void
pmap_init(void)
{
	int i;

	/*
	 * Initialize the pv chunk list mutex.
	 */
	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);

	/*
	 * Initialize the pool of pv list locks.
	 */
	for (i = 0; i < NPV_LIST_LOCKS; i++)
		rw_init(&pv_list_locks[i], "pmap pv list");
}

/*
 * Normal, non-SMP, invalidation functions.
 * We inline these within pmap.c for speed.
 */
PMAP_INLINE void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{

	/* TODO */

	sched_pin();
	__asm __volatile("sfence.vma %0" :: "r" (va) : "memory");
	sched_unpin();
}

PMAP_INLINE void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{

	/* TODO */

	sched_pin();
	__asm __volatile("sfence.vma");
	sched_unpin();
}

PMAP_INLINE void
pmap_invalidate_all(pmap_t pmap)
{

	/* TODO */

	sched_pin();
	__asm __volatile("sfence.vma");
	sched_unpin();
}

/*
 *	Routine:	pmap_extract
 *	Function:
 *		Extract the physical page address associated
 *		with the given map/virtual_address pair.
 */
vm_paddr_t 
pmap_extract(pmap_t pmap, vm_offset_t va)
{
	pd_entry_t *l2p, l2;
	pt_entry_t *l3p, l3;
	vm_paddr_t pa;

	pa = 0;
	PMAP_LOCK(pmap);
	/*
	 * Start with the l2 tabel. We are unable to allocate
	 * pages in the l1 table.
	 */
	l2p = pmap_l2(pmap, va);
	if (l2p != NULL) {
		l2 = pmap_load(l2p);
		if ((l2 & PTE_RX) == 0) {
			l3p = pmap_l2_to_l3(l2p, va);
			if (l3p != NULL) {
				l3 = pmap_load(l3p);
				pa = PTE_TO_PHYS(l3);
				pa |= (va & L3_OFFSET);
			}
		} else {
			/* L2 is superpages */
			pa = (l2 >> PTE_PPN1_S) << L2_SHIFT;
			pa |= (va & L2_OFFSET);
		}
	}
	PMAP_UNLOCK(pmap);
	return (pa);
}

/*
 *	Routine:	pmap_extract_and_hold
 *	Function:
 *		Atomically extract and hold the physical page
 *		with the given pmap and virtual address pair
 *		if that mapping permits the given protection.
 */
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
	pt_entry_t *l3p, l3;
	vm_paddr_t phys;
	vm_paddr_t pa;
	vm_page_t m;

	pa = 0;
	m = NULL;
	PMAP_LOCK(pmap);
retry:
	l3p = pmap_l3(pmap, va);
	if (l3p != NULL && (l3 = pmap_load(l3p)) != 0) {
		if ((pmap_is_write(l3)) || ((prot & VM_PROT_WRITE) == 0)) {
			phys = PTE_TO_PHYS(l3);
			if (vm_page_pa_tryrelock(pmap, phys, &pa))
				goto retry;
			m = PHYS_TO_VM_PAGE(phys);
			vm_page_hold(m);
		}
	}
	PA_UNLOCK_COND(pa);
	PMAP_UNLOCK(pmap);
	return (m);
}

vm_paddr_t
pmap_kextract(vm_offset_t va)
{
	pd_entry_t *l2;
	pt_entry_t *l3;
	vm_paddr_t pa;

	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
		pa = DMAP_TO_PHYS(va);
	} else {
		l2 = pmap_l2(kernel_pmap, va);
		if (l2 == NULL)
			panic("pmap_kextract: No l2");
		if ((pmap_load(l2) & PTE_RX) != 0) {
			/* superpages */
			pa = (pmap_load(l2) >> PTE_PPN1_S) << L2_SHIFT;
			pa |= (va & L2_OFFSET);
			return (pa);
		}

		l3 = pmap_l2_to_l3(l2, va);
		if (l3 == NULL)
			panic("pmap_kextract: No l3...");
		pa = PTE_TO_PHYS(pmap_load(l3));
		pa |= (va & PAGE_MASK);
	}
	return (pa);
}

/***************************************************
 * Low level mapping routines.....
 ***************************************************/

void
pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
{
	pt_entry_t entry;
	pt_entry_t *l3;
	vm_offset_t va;
	pn_t pn;

	KASSERT((pa & L3_OFFSET) == 0,
	   ("pmap_kenter_device: Invalid physical address"));
	KASSERT((sva & L3_OFFSET) == 0,
	   ("pmap_kenter_device: Invalid virtual address"));
	KASSERT((size & PAGE_MASK) == 0,
	    ("pmap_kenter_device: Mapping is not page-sized"));

	va = sva;
	while (size != 0) {
		l3 = pmap_l3(kernel_pmap, va);
		KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));

		pn = (pa / PAGE_SIZE);
		entry = (PTE_V | PTE_RWX);
		entry |= (pn << PTE_PPN0_S);
		pmap_load_store(l3, entry);

		PTE_SYNC(l3);

		va += PAGE_SIZE;
		pa += PAGE_SIZE;
		size -= PAGE_SIZE;
	}
	pmap_invalidate_range(kernel_pmap, sva, va);
}

/*
 * Remove a page from the kernel pagetables.
 * Note: not SMP coherent.
 */
PMAP_INLINE void
pmap_kremove(vm_offset_t va)
{
	pt_entry_t *l3;

	l3 = pmap_l3(kernel_pmap, va);
	KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));

	if (pmap_l3_valid_cacheable(pmap_load(l3)))
		cpu_dcache_wb_range(va, L3_SIZE);
	pmap_load_clear(l3);
	PTE_SYNC(l3);
	pmap_invalidate_page(kernel_pmap, va);
}

void
pmap_kremove_device(vm_offset_t sva, vm_size_t size)
{
	pt_entry_t *l3;
	vm_offset_t va;

	KASSERT((sva & L3_OFFSET) == 0,
	   ("pmap_kremove_device: Invalid virtual address"));
	KASSERT((size & PAGE_MASK) == 0,
	    ("pmap_kremove_device: Mapping is not page-sized"));

	va = sva;
	while (size != 0) {
		l3 = pmap_l3(kernel_pmap, va);
		KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));
		pmap_load_clear(l3);
		PTE_SYNC(l3);

		va += PAGE_SIZE;
		size -= PAGE_SIZE;
	}
	pmap_invalidate_range(kernel_pmap, sva, va);
}

/*
 *	Used to map a range of physical addresses into kernel
 *	virtual address space.
 *
 *	The value passed in '*virt' is a suggested virtual address for
 *	the mapping. Architectures which can support a direct-mapped
 *	physical to virtual region can return the appropriate address
 *	within that region, leaving '*virt' unchanged. Other
 *	architectures should map the pages starting at '*virt' and
 *	update '*virt' with the first usable address after the mapped
 *	region.
 */
vm_offset_t
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
{

	return PHYS_TO_DMAP(start);
}


/*
 * Add a list of wired pages to the kva
 * this routine is only used for temporary
 * kernel mappings that do not need to have
 * page modification or references recorded.
 * Note that old mappings are simply written
 * over.  The page *must* be wired.
 * Note: SMP coherent.  Uses a ranged shootdown IPI.
 */
void
pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
{
	pt_entry_t *l3, pa;
	vm_offset_t va;
	vm_page_t m;
	pt_entry_t entry;
	pn_t pn;
	int i;

	va = sva;
	for (i = 0; i < count; i++) {
		m = ma[i];
		pa = VM_PAGE_TO_PHYS(m);
		pn = (pa / PAGE_SIZE);
		l3 = pmap_l3(kernel_pmap, va);

		entry = (PTE_V | PTE_RWX);
		entry |= (pn << PTE_PPN0_S);
		pmap_load_store(l3, entry);

		PTE_SYNC(l3);
		va += L3_SIZE;
	}
	pmap_invalidate_range(kernel_pmap, sva, va);
}

/*
 * This routine tears out page mappings from the
 * kernel -- it is meant only for temporary mappings.
 * Note: SMP coherent.  Uses a ranged shootdown IPI.
 */
void
pmap_qremove(vm_offset_t sva, int count)
{
	pt_entry_t *l3;
	vm_offset_t va;

	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));

	va = sva;
	while (count-- > 0) {
		l3 = pmap_l3(kernel_pmap, va);
		KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));

		if (pmap_l3_valid_cacheable(pmap_load(l3)))
			cpu_dcache_wb_range(va, L3_SIZE);
		pmap_load_clear(l3);
		PTE_SYNC(l3);

		va += PAGE_SIZE;
	}
	pmap_invalidate_range(kernel_pmap, sva, va);
}

/***************************************************
 * Page table page management routines.....
 ***************************************************/
/*
 * Schedule the specified unused page table page to be freed.  Specifically,
 * add the page to the specified list of pages that will be released to the
 * physical memory manager after the TLB has been updated.
 */
static __inline void
pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
    boolean_t set_PG_ZERO)
{

	if (set_PG_ZERO)
		m->flags |= PG_ZERO;
	else
		m->flags &= ~PG_ZERO;
	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
}
	
/*
 * Decrements a page table page's wire count, which is used to record the
 * number of valid page table entries within the page.  If the wire count
 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
 * page table page was unmapped and FALSE otherwise.
 */
static inline boolean_t
pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{

	--m->wire_count;
	if (m->wire_count == 0) {
		_pmap_unwire_l3(pmap, va, m, free);
		return (TRUE);
	} else {
		return (FALSE);
	}
}

static void
_pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
	vm_paddr_t phys;

	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
	/*
	 * unmap the page table page
	 */
	if (m->pindex >= NUPDE) {
		/* PD page */
		pd_entry_t *l1;
		l1 = pmap_l1(pmap, va);
		pmap_load_clear(l1);
		pmap_distribute_l1(pmap, pmap_l1_index(va), 0);
		PTE_SYNC(l1);
	} else {
		/* PTE page */
		pd_entry_t *l2;
		l2 = pmap_l2(pmap, va);
		pmap_load_clear(l2);
		PTE_SYNC(l2);
	}
	pmap_resident_count_dec(pmap, 1);
	if (m->pindex < NUPDE) {
		pd_entry_t *l1;
		/* We just released a PT, unhold the matching PD */
		vm_page_t pdpg;

		l1 = pmap_l1(pmap, va);
		phys = PTE_TO_PHYS(pmap_load(l1));
		pdpg = PHYS_TO_VM_PAGE(phys);
		pmap_unwire_l3(pmap, va, pdpg, free);
	}
	pmap_invalidate_page(pmap, va);

	vm_wire_sub(1);

	/* 
	 * Put page on a list so that it is released after
	 * *ALL* TLB shootdown is done
	 */
	pmap_add_delayed_free_list(m, free, TRUE);
}

/*
 * After removing an l3 entry, this routine is used to
 * conditionally free the page, and manage the hold/wire counts.
 */
static int
pmap_unuse_l3(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
    struct spglist *free)
{
	vm_paddr_t phys;
	vm_page_t mpte;

	if (va >= VM_MAXUSER_ADDRESS)
		return (0);
	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));

	phys = PTE_TO_PHYS(ptepde);

	mpte = PHYS_TO_VM_PAGE(phys);
	return (pmap_unwire_l3(pmap, va, mpte, free));
}

void
pmap_pinit0(pmap_t pmap)
{

	PMAP_LOCK_INIT(pmap);
	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
	pmap->pm_l1 = kernel_pmap->pm_l1;
}

int
pmap_pinit(pmap_t pmap)
{
	vm_paddr_t l1phys;
	vm_page_t l1pt;

	/*
	 * allocate the l1 page
	 */
	while ((l1pt = vm_page_alloc(NULL, 0xdeadbeef, VM_ALLOC_NORMAL |
	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
		vm_wait(NULL);

	l1phys = VM_PAGE_TO_PHYS(l1pt);
	pmap->pm_l1 = (pd_entry_t *)PHYS_TO_DMAP(l1phys);

	if ((l1pt->flags & PG_ZERO) == 0)
		pagezero(pmap->pm_l1);

	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));

	/* Install kernel pagetables */
	memcpy(pmap->pm_l1, kernel_pmap->pm_l1, PAGE_SIZE);

	/* Add to the list of all user pmaps */
	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);

	return (1);
}

/*
 * This routine is called if the desired page table page does not exist.
 *
 * If page table page allocation fails, this routine may sleep before
 * returning NULL.  It sleeps only if a lock pointer was given.
 *
 * Note: If a page allocation fails at page table level two or three,
 * one or two pages may be held during the wait, only to be released
 * afterwards.  This conservative approach is easily argued to avoid
 * race conditions.
 */
static vm_page_t
_pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
{
	vm_page_t m, /*pdppg, */pdpg;
	pt_entry_t entry;
	vm_paddr_t phys;
	pn_t pn;

	PMAP_LOCK_ASSERT(pmap, MA_OWNED);

	/*
	 * Allocate a page table page.
	 */
	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
		if (lockp != NULL) {
			RELEASE_PV_LIST_LOCK(lockp);
			PMAP_UNLOCK(pmap);
			rw_runlock(&pvh_global_lock);
			vm_wait(NULL);
			rw_rlock(&pvh_global_lock);
			PMAP_LOCK(pmap);
		}

		/*
		 * Indicate the need to retry.  While waiting, the page table
		 * page may have been allocated.
		 */
		return (NULL);
	}

	if ((m->flags & PG_ZERO) == 0)
		pmap_zero_page(m);

	/*
	 * Map the pagetable page into the process address space, if
	 * it isn't already there.
	 */

	if (ptepindex >= NUPDE) {
		pd_entry_t *l1;
		vm_pindex_t l1index;

		l1index = ptepindex - NUPDE;
		l1 = &pmap->pm_l1[l1index];

		pn = (VM_PAGE_TO_PHYS(m) / PAGE_SIZE);
		entry = (PTE_V);
		entry |= (pn << PTE_PPN0_S);
		pmap_load_store(l1, entry);
		pmap_distribute_l1(pmap, l1index, entry);

		PTE_SYNC(l1);

	} else {
		vm_pindex_t l1index;
		pd_entry_t *l1, *l2;

		l1index = ptepindex >> (L1_SHIFT - L2_SHIFT);
		l1 = &pmap->pm_l1[l1index];
		if (pmap_load(l1) == 0) {
			/* recurse for allocating page dir */
			if (_pmap_alloc_l3(pmap, NUPDE + l1index,
			    lockp) == NULL) {
				vm_page_unwire_noq(m);
				vm_page_free_zero(m);
				return (NULL);
			}
		} else {
			phys = PTE_TO_PHYS(pmap_load(l1));
			pdpg = PHYS_TO_VM_PAGE(phys);
			pdpg->wire_count++;
		}

		phys = PTE_TO_PHYS(pmap_load(l1));
		l2 = (pd_entry_t *)PHYS_TO_DMAP(phys);
		l2 = &l2[ptepindex & Ln_ADDR_MASK];

		pn = (VM_PAGE_TO_PHYS(m) / PAGE_SIZE);
		entry = (PTE_V);
		entry |= (pn << PTE_PPN0_S);
		pmap_load_store(l2, entry);

		PTE_SYNC(l2);
	}

	pmap_resident_count_inc(pmap, 1);

	return (m);
}

static vm_page_t
pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
{
	vm_pindex_t ptepindex;
	pd_entry_t *l2;
	vm_paddr_t phys;
	vm_page_t m;

	/*
	 * Calculate pagetable page index
	 */
	ptepindex = pmap_l2_pindex(va);
retry:
	/*
	 * Get the page directory entry
	 */
	l2 = pmap_l2(pmap, va);

	/*
	 * If the page table page is mapped, we just increment the
	 * hold count, and activate it.
	 */
	if (l2 != NULL && pmap_load(l2) != 0) {
		phys = PTE_TO_PHYS(pmap_load(l2));
		m = PHYS_TO_VM_PAGE(phys);
		m->wire_count++;
	} else {
		/*
		 * Here if the pte page isn't mapped, or if it has been
		 * deallocated.
		 */
		m = _pmap_alloc_l3(pmap, ptepindex, lockp);
		if (m == NULL && lockp != NULL)
			goto retry;
	}
	return (m);
}


/***************************************************
 * Pmap allocation/deallocation routines.
 ***************************************************/

/*
 * Release any resources held by the given physical map.
 * Called when a pmap initialized by pmap_pinit is being released.
 * Should only be called if the map contains no valid mappings.
 */
void
pmap_release(pmap_t pmap)
{
	vm_page_t m;

	KASSERT(pmap->pm_stats.resident_count == 0,
	    ("pmap_release: pmap resident count %ld != 0",
	    pmap->pm_stats.resident_count));

	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_l1));
	vm_page_unwire_noq(m);
	vm_page_free_zero(m);

	/* Remove pmap from the allpmaps list */
	LIST_REMOVE(pmap, pm_list);

	/* Remove kernel pagetables */
	bzero(pmap->pm_l1, PAGE_SIZE);
}

#if 0
static int
kvm_size(SYSCTL_HANDLER_ARGS)
{
	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;

	return sysctl_handle_long(oidp, &ksize, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
    0, 0, kvm_size, "LU", "Size of KVM");

static int
kvm_free(SYSCTL_HANDLER_ARGS)
{
	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;

	return sysctl_handle_long(oidp, &kfree, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
    0, 0, kvm_free, "LU", "Amount of KVM free");
#endif /* 0 */

/*
 * grow the number of kernel page table entries, if needed
 */
void
pmap_growkernel(vm_offset_t addr)
{
	vm_paddr_t paddr;
	vm_page_t nkpg;
	pd_entry_t *l1, *l2;
	pt_entry_t entry;
	pn_t pn;

	mtx_assert(&kernel_map->system_mtx, MA_OWNED);

	addr = roundup2(addr, L2_SIZE);
	if (addr - 1 >= kernel_map->max_offset)
		addr = kernel_map->max_offset;
	while (kernel_vm_end < addr) {
		l1 = pmap_l1(kernel_pmap, kernel_vm_end);
		if (pmap_load(l1) == 0) {
			/* We need a new PDP entry */
			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT,
			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
			if (nkpg == NULL)
				panic("pmap_growkernel: no memory to grow kernel");
			if ((nkpg->flags & PG_ZERO) == 0)
				pmap_zero_page(nkpg);
			paddr = VM_PAGE_TO_PHYS(nkpg);

			pn = (paddr / PAGE_SIZE);
			entry = (PTE_V);
			entry |= (pn << PTE_PPN0_S);
			pmap_load_store(l1, entry);
			pmap_distribute_l1(kernel_pmap,
			    pmap_l1_index(kernel_vm_end), entry);

			PTE_SYNC(l1);
			continue; /* try again */
		}
		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
		if ((pmap_load(l2) & PTE_A) != 0) {
			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
				kernel_vm_end = kernel_map->max_offset;
				break;
			}
			continue;
		}

		nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT,
		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
		    VM_ALLOC_ZERO);
		if (nkpg == NULL)
			panic("pmap_growkernel: no memory to grow kernel");
		if ((nkpg->flags & PG_ZERO) == 0) {
			pmap_zero_page(nkpg);
		}
		paddr = VM_PAGE_TO_PHYS(nkpg);

		pn = (paddr / PAGE_SIZE);
		entry = (PTE_V);
		entry |= (pn << PTE_PPN0_S);
		pmap_load_store(l2, entry);

		PTE_SYNC(l2);
		pmap_invalidate_page(kernel_pmap, kernel_vm_end);

		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
			kernel_vm_end = kernel_map->max_offset;
			break;                       
		}
	}
}


/***************************************************
 * page management routines.
 ***************************************************/

CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
CTASSERT(_NPCM == 3);
CTASSERT(_NPCPV == 168);

static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)
{

	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
}

#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)

#define	PC_FREE0	0xfffffffffffffffful
#define	PC_FREE1	0xfffffffffffffffful
#define	PC_FREE2	0x000000fffffffffful

static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };

#if 0
#ifdef PV_STATS
static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;

SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
	"Current number of pv entry chunks");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
	"Current number of pv entry chunks allocated");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
	"Current number of pv entry chunks frees");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
	"Number of times tried to get a chunk page but failed.");

static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
static int pv_entry_spare;

SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
	"Current number of pv entry frees");
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
	"Current number of pv entry allocs");
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
	"Current number of pv entries");
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
	"Current number of spare pv entries");
#endif
#endif /* 0 */

/*
 * We are in a serious low memory condition.  Resort to
 * drastic measures to free some pages so we can allocate
 * another pv entry chunk.
 *
 * Returns NULL if PV entries were reclaimed from the specified pmap.
 *
 * We do not, however, unmap 2mpages because subsequent accesses will
 * allocate per-page pv entries until repromotion occurs, thereby
 * exacerbating the shortage of free pv entries.
 */
static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
{

	panic("RISCVTODO: reclaim_pv_chunk");
}

/*
 * free the pv_entry back to the free list
 */
static void
free_pv_entry(pmap_t pmap, pv_entry_t pv)
{
	struct pv_chunk *pc;
	int idx, field, bit;

	rw_assert(&pvh_global_lock, RA_LOCKED);
	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
	pc = pv_to_chunk(pv);
	idx = pv - &pc->pc_pventry[0];
	field = idx / 64;
	bit = idx % 64;
	pc->pc_map[field] |= 1ul << bit;
	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
	    pc->pc_map[2] != PC_FREE2) {
		/* 98% of the time, pc is already at the head of the list. */
		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
		}
		return;
	}
	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
	free_pv_chunk(pc);
}

static void
free_pv_chunk(struct pv_chunk *pc)
{
	vm_page_t m;

	mtx_lock(&pv_chunks_mutex);
 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
	mtx_unlock(&pv_chunks_mutex);
	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
	/* entire chunk is free, return it */
	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
#if 0 /* TODO: For minidump */
	dump_drop_page(m->phys_addr);
#endif
	vm_page_unwire(m, PQ_NONE);
	vm_page_free(m);
}

/*
 * Returns a new PV entry, allocating a new PV chunk from the system when
 * needed.  If this PV chunk allocation fails and a PV list lock pointer was
 * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
 * returned.
 *
 * The given PV list lock may be released.
 */
static pv_entry_t
get_pv_entry(pmap_t pmap, struct rwlock **lockp)
{
	int bit, field;
	pv_entry_t pv;
	struct pv_chunk *pc;
	vm_page_t m;

	rw_assert(&pvh_global_lock, RA_LOCKED);
	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
retry:
	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
	if (pc != NULL) {
		for (field = 0; field < _NPCM; field++) {
			if (pc->pc_map[field]) {
				bit = ffsl(pc->pc_map[field]) - 1;
				break;
			}
		}
		if (field < _NPCM) {
			pv = &pc->pc_pventry[field * 64 + bit];
			pc->pc_map[field] &= ~(1ul << bit);
			/* If this was the last item, move it to tail */
			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
			    pc->pc_map[2] == 0) {
				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
				    pc_list);
			}
			PV_STAT(atomic_add_long(&pv_entry_count, 1));
			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
			return (pv);
		}
	}
	/* No free items, allocate another chunk */
	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
	    VM_ALLOC_WIRED);
	if (m == NULL) {
		if (lockp == NULL) {
			PV_STAT(pc_chunk_tryfail++);
			return (NULL);
		}
		m = reclaim_pv_chunk(pmap, lockp);
		if (m == NULL)
			goto retry;
	}
	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
#if 0 /* TODO: This is for minidump */
	dump_add_page(m->phys_addr);
#endif
	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
	pc->pc_pmap = pmap;
	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
	pc->pc_map[1] = PC_FREE1;
	pc->pc_map[2] = PC_FREE2;
	mtx_lock(&pv_chunks_mutex);
	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
	mtx_unlock(&pv_chunks_mutex);
	pv = &pc->pc_pventry[0];
	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
	PV_STAT(atomic_add_long(&pv_entry_count, 1));
	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
	return (pv);
}

/*
 * First find and then remove the pv entry for the specified pmap and virtual
 * address from the specified pv list.  Returns the pv entry if found and NULL
 * otherwise.  This operation can be performed on pv lists for either 4KB or
 * 2MB page mappings.
 */
static __inline pv_entry_t
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
	pv_entry_t pv;

	rw_assert(&pvh_global_lock, RA_LOCKED);
	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
			pvh->pv_gen++;
			break;
		}
	}
	return (pv);
}

/*
 * First find and then destroy the pv entry for the specified pmap and virtual
 * address.  This operation can be performed on pv lists for either 4KB or 2MB
 * page mappings.
 */
static void
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
	pv_entry_t pv;

	pv = pmap_pvh_remove(pvh, pmap, va);

	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
	free_pv_entry(pmap, pv);
}

/*
 * Conditionally create the PV entry for a 4KB page mapping if the required
 * memory can be allocated without resorting to reclamation.
 */
static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
    struct rwlock **lockp)
{
	pv_entry_t pv;

	rw_assert(&pvh_global_lock, RA_LOCKED);
	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
	/* Pass NULL instead of the lock pointer to disable reclamation. */
	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
		pv->pv_va = va;
		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
		m->md.pv_gen++;
		return (TRUE);
	} else
		return (FALSE);
}

/*
 * pmap_remove_l3: do the things to unmap a page in a process
 */
static int
pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va, 
    pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
{
	pt_entry_t old_l3;
	vm_paddr_t phys;
	vm_page_t m;

	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
	if (pmap_is_current(pmap) && pmap_l3_valid_cacheable(pmap_load(l3)))
		cpu_dcache_wb_range(va, L3_SIZE);
	old_l3 = pmap_load_clear(l3);
	PTE_SYNC(l3);
	pmap_invalidate_page(pmap, va);
	if (old_l3 & PTE_SW_WIRED)
		pmap->pm_stats.wired_count -= 1;
	pmap_resident_count_dec(pmap, 1);
	if (old_l3 & PTE_SW_MANAGED) {
		phys = PTE_TO_PHYS(old_l3);
		m = PHYS_TO_VM_PAGE(phys);
		if (pmap_page_dirty(old_l3))
			vm_page_dirty(m);
		if (old_l3 & PTE_A)
			vm_page_aflag_set(m, PGA_REFERENCED);
		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
		pmap_pvh_free(&m->md, pmap, va);
	}

	return (pmap_unuse_l3(pmap, va, l2e, free));
}

/*
 *	Remove the given range of addresses from the specified map.
 *
 *	It is assumed that the start and end are properly
 *	rounded to the page size.
 */
void
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
	struct rwlock *lock;
	vm_offset_t va, va_next;
	pd_entry_t *l1, *l2;
	pt_entry_t l3_pte, *l3;
	struct spglist free;

	/*
	 * Perform an unsynchronized read.  This is, however, safe.
	 */
	if (pmap->pm_stats.resident_count == 0)
		return;

	SLIST_INIT(&free);

	rw_rlock(&pvh_global_lock);
	PMAP_LOCK(pmap);

	lock = NULL;
	for (; sva < eva; sva = va_next) {
		if (pmap->pm_stats.resident_count == 0)
			break;

		l1 = pmap_l1(pmap, sva);
		if (pmap_load(l1) == 0) {
			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
			if (va_next < sva)
				va_next = eva;
			continue;
		}

		/*
		 * Calculate index for next page table.
		 */
		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
		if (va_next < sva)
			va_next = eva;

		l2 = pmap_l1_to_l2(l1, sva);
		if (l2 == NULL)
			continue;

		l3_pte = pmap_load(l2);

		/*
		 * Weed out invalid mappings.
		 */
		if (l3_pte == 0)
			continue;
		if ((pmap_load(l2) & PTE_RX) != 0)
			continue;

		/*
		 * Limit our scan to either the end of the va represented
		 * by the current page table page, or to the end of the
		 * range being removed.
		 */
		if (va_next > eva)
			va_next = eva;

		va = va_next;
		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
		    sva += L3_SIZE) {
			if (l3 == NULL)
				panic("l3 == NULL");
			if (pmap_load(l3) == 0) {
				if (va != va_next) {
					pmap_invalidate_range(pmap, va, sva);
					va = va_next;
				}
				continue;
			}
			if (va == va_next)
				va = sva;
			if (pmap_remove_l3(pmap, l3, sva, l3_pte, &free,
			    &lock)) {
				sva += L3_SIZE;
				break;
			}
		}
		if (va != va_next)
			pmap_invalidate_range(pmap, va, sva);
	}
	if (lock != NULL)
		rw_wunlock(lock);
	rw_runlock(&pvh_global_lock);	
	PMAP_UNLOCK(pmap);
	vm_page_free_pages_toq(&free, false);
}

/*
 *	Routine:	pmap_remove_all
 *	Function:
 *		Removes this physical page from
 *		all physical maps in which it resides.
 *		Reflects back modify bits to the pager.
 *
 *	Notes:
 *		Original versions of this routine were very
 *		inefficient because they iteratively called
 *		pmap_remove (slow...)
 */

void
pmap_remove_all(vm_page_t m)
{
	pv_entry_t pv;
	pmap_t pmap;
	pt_entry_t *l3, tl3;
	pd_entry_t *l2, tl2;
	struct spglist free;

	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
	    ("pmap_remove_all: page %p is not managed", m));
	SLIST_INIT(&free);
	rw_wlock(&pvh_global_lock);
	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
		pmap = PV_PMAP(pv);
		PMAP_LOCK(pmap);
		pmap_resident_count_dec(pmap, 1);
		l2 = pmap_l2(pmap, pv->pv_va);
		KASSERT(l2 != NULL, ("pmap_remove_all: no l2 table found"));
		tl2 = pmap_load(l2);

		KASSERT((tl2 & PTE_RX) == 0,
		    ("pmap_remove_all: found a table when expecting "
		    "a block in %p's pv list", m));

		l3 = pmap_l2_to_l3(l2, pv->pv_va);
		if (pmap_is_current(pmap) &&
		    pmap_l3_valid_cacheable(pmap_load(l3)))
			cpu_dcache_wb_range(pv->pv_va, L3_SIZE);
		tl3 = pmap_load_clear(l3);
		PTE_SYNC(l3);
		pmap_invalidate_page(pmap, pv->pv_va);
		if (tl3 & PTE_SW_WIRED)
			pmap->pm_stats.wired_count--;
		if ((tl3 & PTE_A) != 0)
			vm_page_aflag_set(m, PGA_REFERENCED);

		/*
		 * Update the vm_page_t clean and reference bits.
		 */
		if (pmap_page_dirty(tl3))
			vm_page_dirty(m);
		pmap_unuse_l3(pmap, pv->pv_va, pmap_load(l2), &free);
		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
		m->md.pv_gen++;
		free_pv_entry(pmap, pv);
		PMAP_UNLOCK(pmap);
	}
	vm_page_aflag_clear(m, PGA_WRITEABLE);
	rw_wunlock(&pvh_global_lock);
	vm_page_free_pages_toq(&free, false);
}

/*
 *	Set the physical protection on the
 *	specified range of this map as requested.
 */
void
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
	vm_offset_t va, va_next;
	pd_entry_t *l1, *l2;
	pt_entry_t *l3p, l3;
	pt_entry_t entry;

	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
		pmap_remove(pmap, sva, eva);
		return;
	}

	if ((prot & VM_PROT_WRITE) == VM_PROT_WRITE)
		return;

	PMAP_LOCK(pmap);
	for (; sva < eva; sva = va_next) {

		l1 = pmap_l1(pmap, sva);
		if (pmap_load(l1) == 0) {
			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
			if (va_next < sva)
				va_next = eva;
			continue;
		}

		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
		if (va_next < sva)
			va_next = eva;

		l2 = pmap_l1_to_l2(l1, sva);
		if (l2 == NULL)
			continue;
		if (pmap_load(l2) == 0)
			continue;
		if ((pmap_load(l2) & PTE_RX) != 0)
			continue;

		if (va_next > eva)
			va_next = eva;

		va = va_next;
		for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
		    sva += L3_SIZE) {
			l3 = pmap_load(l3p);
			if (pmap_l3_valid(l3)) {
				entry = pmap_load(l3p);
				entry &= ~(PTE_W);
				pmap_load_store(l3p, entry);
				PTE_SYNC(l3p);
				/* XXX: Use pmap_invalidate_range */
				pmap_invalidate_page(pmap, sva);
			}
		}
	}
	PMAP_UNLOCK(pmap);
}

/*
 *	Insert the given physical page (p) at
 *	the specified virtual address (v) in the
 *	target physical map with the protection requested.
 *
 *	If specified, the page will be wired down, meaning
 *	that the related pte can not be reclaimed.
 *
 *	NB:  This is the only routine which MAY NOT lazy-evaluate
 *	or lose information.  That is, this routine must actually
 *	insert this page into the given map NOW.
 */
int
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
    u_int flags, int8_t psind __unused)
{
	struct rwlock *lock;
	pd_entry_t *l1, *l2;
	pt_entry_t new_l3, orig_l3;
	pt_entry_t *l3;
	pv_entry_t pv;
	vm_paddr_t opa, pa, l2_pa, l3_pa;
	vm_page_t mpte, om, l2_m, l3_m;
	boolean_t nosleep;
	pt_entry_t entry;
	pn_t l2_pn;
	pn_t l3_pn;
	pn_t pn;

	va = trunc_page(va);
	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
		VM_OBJECT_ASSERT_LOCKED(m->object);
	pa = VM_PAGE_TO_PHYS(m);
	pn = (pa / PAGE_SIZE);

	new_l3 = PTE_V | PTE_R | PTE_X;
	if (prot & VM_PROT_WRITE)
		new_l3 |= PTE_W;
	if ((va >> 63) == 0)
		new_l3 |= PTE_U;

	new_l3 |= (pn << PTE_PPN0_S);
	if ((flags & PMAP_ENTER_WIRED) != 0)
		new_l3 |= PTE_SW_WIRED;
	if ((m->oflags & VPO_UNMANAGED) == 0)
		new_l3 |= PTE_SW_MANAGED;

	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);

	mpte = NULL;

	lock = NULL;
	rw_rlock(&pvh_global_lock);
	PMAP_LOCK(pmap);

	if (va < VM_MAXUSER_ADDRESS) {
		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
		mpte = pmap_alloc_l3(pmap, va, nosleep ? NULL : &lock);
		if (mpte == NULL && nosleep) {
			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
			if (lock != NULL)
				rw_wunlock(lock);
			rw_runlock(&pvh_global_lock);
			PMAP_UNLOCK(pmap);
			return (KERN_RESOURCE_SHORTAGE);
		}
		l3 = pmap_l3(pmap, va);
	} else {
		l3 = pmap_l3(pmap, va);
		/* TODO: This is not optimal, but should mostly work */
		if (l3 == NULL) {
			l2 = pmap_l2(pmap, va);
			if (l2 == NULL) {
				l2_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
				    VM_ALLOC_ZERO);
				if (l2_m == NULL)
					panic("pmap_enter: l2 pte_m == NULL");
				if ((l2_m->flags & PG_ZERO) == 0)
					pmap_zero_page(l2_m);

				l2_pa = VM_PAGE_TO_PHYS(l2_m);
				l2_pn = (l2_pa / PAGE_SIZE);

				l1 = pmap_l1(pmap, va);
				entry = (PTE_V);
				entry |= (l2_pn << PTE_PPN0_S);
				pmap_load_store(l1, entry);
				pmap_distribute_l1(pmap, pmap_l1_index(va), entry);
				PTE_SYNC(l1);

				l2 = pmap_l1_to_l2(l1, va);
			}

			KASSERT(l2 != NULL,
			    ("No l2 table after allocating one"));

			l3_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
			    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
			if (l3_m == NULL)
				panic("pmap_enter: l3 pte_m == NULL");
			if ((l3_m->flags & PG_ZERO) == 0)
				pmap_zero_page(l3_m);

			l3_pa = VM_PAGE_TO_PHYS(l3_m);
			l3_pn = (l3_pa / PAGE_SIZE);
			entry = (PTE_V);
			entry |= (l3_pn << PTE_PPN0_S);
			pmap_load_store(l2, entry);
			PTE_SYNC(l2);
			l3 = pmap_l2_to_l3(l2, va);
		}
		pmap_invalidate_page(pmap, va);
	}

	orig_l3 = pmap_load(l3);
	opa = PTE_TO_PHYS(orig_l3);
	pv = NULL;

	/*
	 * Is the specified virtual address already mapped?
	 */
	if (pmap_l3_valid(orig_l3)) {
		/*
		 * Wiring change, just update stats. We don't worry about
		 * wiring PT pages as they remain resident as long as there
		 * are valid mappings in them. Hence, if a user page is wired,
		 * the PT page will be also.
		 */
		if ((flags & PMAP_ENTER_WIRED) != 0 &&
		    (orig_l3 & PTE_SW_WIRED) == 0)
			pmap->pm_stats.wired_count++;
		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
		    (orig_l3 & PTE_SW_WIRED) != 0)
			pmap->pm_stats.wired_count--;

		/*
		 * Remove the extra PT page reference.
		 */
		if (mpte != NULL) {
			mpte->wire_count--;
			KASSERT(mpte->wire_count > 0,
			    ("pmap_enter: missing reference to page table page,"
			     " va: 0x%lx", va));
		}

		/*
		 * Has the physical page changed?
		 */
		if (opa == pa) {
			/*
			 * No, might be a protection or wiring change.
			 */
			if ((orig_l3 & PTE_SW_MANAGED) != 0) {
				if (pmap_is_write(new_l3))
					vm_page_aflag_set(m, PGA_WRITEABLE);
			}
			goto validate;
		}

		/* Flush the cache, there might be uncommitted data in it */
		if (pmap_is_current(pmap) && pmap_l3_valid_cacheable(orig_l3))
			cpu_dcache_wb_range(va, L3_SIZE);

		/*
		 * The physical page has changed.  Temporarily invalidate
		 * the mapping.  This ensures that all threads sharing the
		 * pmap keep a consistent view of the mapping, which is
		 * necessary for the correct handling of COW faults.  It
		 * also permits reuse of the old mapping's PV entry,
		 * avoiding an allocation.
		 *
		 * For consistency, handle unmanaged mappings the same way.
		 */
		orig_l3 = pmap_load_clear(l3);
		KASSERT(PTE_TO_PHYS(orig_l3) == opa,
		    ("pmap_enter: unexpected pa update for %#lx", va));
		if ((orig_l3 & PTE_SW_MANAGED) != 0) {
			om = PHYS_TO_VM_PAGE(opa);

			/*
			 * The pmap lock is sufficient to synchronize with
			 * concurrent calls to pmap_page_test_mappings() and
			 * pmap_ts_referenced().
			 */
			if (pmap_page_dirty(orig_l3))
				vm_page_dirty(om);
			if ((orig_l3 & PTE_A) != 0)
				vm_page_aflag_set(om, PGA_REFERENCED);
			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
			pv = pmap_pvh_remove(&om->md, pmap, va);
			if ((new_l3 & PTE_SW_MANAGED) == 0)
				free_pv_entry(pmap, pv);
			if ((om->aflags & PGA_WRITEABLE) != 0 &&
			    TAILQ_EMPTY(&om->md.pv_list))
				vm_page_aflag_clear(om, PGA_WRITEABLE);
		}
		pmap_invalidate_page(pmap, va);
		orig_l3 = 0;
	} else {
		/*
		 * Increment the counters.
		 */
		if ((new_l3 & PTE_SW_WIRED) != 0)
			pmap->pm_stats.wired_count++;
		pmap_resident_count_inc(pmap, 1);
	}
	/*
	 * Enter on the PV list if part of our managed memory.
	 */
	if ((new_l3 & PTE_SW_MANAGED) != 0) {
		if (pv == NULL) {
			pv = get_pv_entry(pmap, &lock);
			pv->pv_va = va;
		}
		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
		m->md.pv_gen++;
		if (pmap_is_write(new_l3))
			vm_page_aflag_set(m, PGA_WRITEABLE);
	}

	/*
	 * Update the L3 entry.
	 */
	if (orig_l3 != 0) {
validate:
		orig_l3 = pmap_load_store(l3, new_l3);
		PTE_SYNC(l3);
		KASSERT(PTE_TO_PHYS(orig_l3) == pa,
		    ("pmap_enter: invalid update"));
		if (pmap_page_dirty(orig_l3) &&
		    (orig_l3 & PTE_SW_MANAGED) != 0)
			vm_page_dirty(m);
	} else {
		pmap_load_store(l3, new_l3);
		PTE_SYNC(l3);
	}
	pmap_invalidate_page(pmap, va);
	if ((pmap != pmap_kernel()) && (pmap == &curproc->p_vmspace->vm_pmap))
	    cpu_icache_sync_range(va, PAGE_SIZE);

	if (lock != NULL)
		rw_wunlock(lock);
	rw_runlock(&pvh_global_lock);
	PMAP_UNLOCK(pmap);
	return (KERN_SUCCESS);
}

/*
 * Maps a sequence of resident pages belonging to the same object.
 * The sequence begins with the given page m_start.  This page is
 * mapped at the given virtual address start.  Each subsequent page is
 * mapped at a virtual address that is offset from start by the same
 * amount as the page is offset from m_start within the object.  The
 * last page in the sequence is the page with the largest offset from
 * m_start that can be mapped at a virtual address less than the given
 * virtual address end.  Not every virtual page between start and end
 * is mapped; only those for which a resident page exists with the
 * corresponding offset from m_start are mapped.
 */
void
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
    vm_page_t m_start, vm_prot_t prot)
{
	struct rwlock *lock;
	vm_offset_t va;
	vm_page_t m, mpte;
	vm_pindex_t diff, psize;

	VM_OBJECT_ASSERT_LOCKED(m_start->object);

	psize = atop(end - start);
	mpte = NULL;
	m = m_start;
	lock = NULL;
	rw_rlock(&pvh_global_lock);
	PMAP_LOCK(pmap);
	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
		va = start + ptoa(diff);
		mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte, &lock);
		m = TAILQ_NEXT(m, listq);
	}
	if (lock != NULL)
		rw_wunlock(lock);
	rw_runlock(&pvh_global_lock);
	PMAP_UNLOCK(pmap);
}

/*
 * this code makes some *MAJOR* assumptions:
 * 1. Current pmap & pmap exists.
 * 2. Not wired.
 * 3. Read access.
 * 4. No page table pages.
 * but is *MUCH* faster than pmap_enter...
 */

void
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
	struct rwlock *lock;

	lock = NULL;
	rw_rlock(&pvh_global_lock);
	PMAP_LOCK(pmap);
	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
	if (lock != NULL)
		rw_wunlock(lock);
	rw_runlock(&pvh_global_lock);
	PMAP_UNLOCK(pmap);
}

static vm_page_t
pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
    vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
{
	struct spglist free;
	vm_paddr_t phys;
	pd_entry_t *l2;
	pt_entry_t *l3;
	vm_paddr_t pa;
	pt_entry_t entry;
	pn_t pn;

	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
	    (m->oflags & VPO_UNMANAGED) != 0,
	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
	rw_assert(&pvh_global_lock, RA_LOCKED);
	PMAP_LOCK_ASSERT(pmap, MA_OWNED);

	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
	/*
	 * In the case that a page table page is not
	 * resident, we are creating it here.
	 */
	if (va < VM_MAXUSER_ADDRESS) {
		vm_pindex_t l2pindex;

		/*
		 * Calculate pagetable page index
		 */
		l2pindex = pmap_l2_pindex(va);
		if (mpte && (mpte->pindex == l2pindex)) {
			mpte->wire_count++;
		} else {
			/*
			 * Get the l2 entry
			 */
			l2 = pmap_l2(pmap, va);

			/*
			 * If the page table page is mapped, we just increment
			 * the hold count, and activate it.  Otherwise, we
			 * attempt to allocate a page table page.  If this
			 * attempt fails, we don't retry.  Instead, we give up.
			 */
			if (l2 != NULL && pmap_load(l2) != 0) {
				phys = PTE_TO_PHYS(pmap_load(l2));
				mpte = PHYS_TO_VM_PAGE(phys);
				mpte->wire_count++;
			} else {
				/*
				 * Pass NULL instead of the PV list lock
				 * pointer, because we don't intend to sleep.
				 */
				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
				if (mpte == NULL)
					return (mpte);
			}
		}
		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
		l3 = &l3[pmap_l3_index(va)];
	} else {
		mpte = NULL;
		l3 = pmap_l3(kernel_pmap, va);
	}
	if (l3 == NULL)
		panic("pmap_enter_quick_locked: No l3");
	if (pmap_load(l3) != 0) {
		if (mpte != NULL) {
			mpte->wire_count--;
			mpte = NULL;
		}
		return (mpte);
	}

	/*
	 * Enter on the PV list if part of our managed memory.
	 */
	if ((m->oflags & VPO_UNMANAGED) == 0 &&
	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
		if (mpte != NULL) {
			SLIST_INIT(&free);
			if (pmap_unwire_l3(pmap, va, mpte, &free)) {
				pmap_invalidate_page(pmap, va);
				vm_page_free_pages_toq(&free, false);
			}
			mpte = NULL;
		}
		return (mpte);
	}

	/*
	 * Increment counters
	 */
	pmap_resident_count_inc(pmap, 1);

	pa = VM_PAGE_TO_PHYS(m);
	pn = (pa / PAGE_SIZE);

	/* RISCVTODO: check permissions */
	entry = (PTE_V | PTE_RWX);
	entry |= (pn << PTE_PPN0_S);

	/*
	 * Now validate mapping with RO protection
	 */
	if ((m->oflags & VPO_UNMANAGED) == 0)
		entry |= PTE_SW_MANAGED;
	pmap_load_store(l3, entry);

	PTE_SYNC(l3);
	pmap_invalidate_page(pmap, va);
	return (mpte);
}

/*
 * This code maps large physical mmap regions into the
 * processor address space.  Note that some shortcuts
 * are taken, but the code works.
 */
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
    vm_pindex_t pindex, vm_size_t size)
{

	VM_OBJECT_ASSERT_WLOCKED(object);
	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
	    ("pmap_object_init_pt: non-device object"));
}

/*
 *	Clear the wired attribute from the mappings for the specified range of
 *	addresses in the given pmap.  Every valid mapping within that range
 *	must have the wired attribute set.  In contrast, invalid mappings
 *	cannot have the wired attribute set, so they are ignored.
 *
 *	The wired attribute of the page table entry is not a hardware feature,
 *	so there is no need to invalidate any TLB entries.
 */
void
pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
	vm_offset_t va_next;
	pd_entry_t *l1, *l2;
	pt_entry_t *l3;
	boolean_t pv_lists_locked;

	pv_lists_locked = FALSE;
	PMAP_LOCK(pmap);
	for (; sva < eva; sva = va_next) {
		l1 = pmap_l1(pmap, sva);
		if (pmap_load(l1) == 0) {
			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
			if (va_next < sva)
				va_next = eva;
			continue;
		}

		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
		if (va_next < sva)
			va_next = eva;

		l2 = pmap_l1_to_l2(l1, sva);
		if (pmap_load(l2) == 0)
			continue;

		if (va_next > eva)
			va_next = eva;
		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
		    sva += L3_SIZE) {
			if (pmap_load(l3) == 0)
				continue;
			if ((pmap_load(l3) & PTE_SW_WIRED) == 0)
				panic("pmap_unwire: l3 %#jx is missing "
				    "PTE_SW_WIRED", (uintmax_t)*l3);

			/*
			 * PG_W must be cleared atomically.  Although the pmap
			 * lock synchronizes access to PG_W, another processor
			 * could be setting PG_M and/or PG_A concurrently.
			 */
			atomic_clear_long(l3, PTE_SW_WIRED);
			pmap->pm_stats.wired_count--;
		}
	}
	if (pv_lists_locked)
		rw_runlock(&pvh_global_lock);
	PMAP_UNLOCK(pmap);
}

/*
 *	Copy the range specified by src_addr/len
 *	from the source map to the range dst_addr/len
 *	in the destination map.
 *
 *	This routine is only advisory and need not do anything.
 */

void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
    vm_offset_t src_addr)
{

}

/*
 *	pmap_zero_page zeros the specified hardware page by mapping
 *	the page into KVM and using bzero to clear its contents.
 */
void
pmap_zero_page(vm_page_t m)
{
	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));

	pagezero((void *)va);
}

/*
 *	pmap_zero_page_area zeros the specified hardware page by mapping 
 *	the page into KVM and using bzero to clear its contents.
 *
 *	off and size may not cover an area beyond a single hardware page.
 */
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));

	if (off == 0 && size == PAGE_SIZE)
		pagezero((void *)va);
	else
		bzero((char *)va + off, size);
}

/*
 *	pmap_copy_page copies the specified (machine independent)
 *	page by mapping the page into virtual memory and using
 *	bcopy to copy the page, one machine dependent page at a
 *	time.
 */
void
pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
{
	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));

	pagecopy((void *)src, (void *)dst);
}

int unmapped_buf_allowed = 1;

void
pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
    vm_offset_t b_offset, int xfersize)
{
	void *a_cp, *b_cp;
	vm_page_t m_a, m_b;
	vm_paddr_t p_a, p_b;
	vm_offset_t a_pg_offset, b_pg_offset;
	int cnt;

	while (xfersize > 0) {
		a_pg_offset = a_offset & PAGE_MASK;
		m_a = ma[a_offset >> PAGE_SHIFT];
		p_a = m_a->phys_addr;
		b_pg_offset = b_offset & PAGE_MASK;
		m_b = mb[b_offset >> PAGE_SHIFT];
		p_b = m_b->phys_addr;
		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
			panic("!DMAP a %lx", p_a);
		} else {
			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
		}
		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
			panic("!DMAP b %lx", p_b);
		} else {
			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
		}
		bcopy(a_cp, b_cp, cnt);
		a_offset += cnt;
		b_offset += cnt;
		xfersize -= cnt;
	}
}

vm_offset_t
pmap_quick_enter_page(vm_page_t m)
{

	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
}

void
pmap_quick_remove_page(vm_offset_t addr)
{
}

/*
 * Returns true if the pmap's pv is one of the first
 * 16 pvs linked to from this page.  This count may
 * be changed upwards or downwards in the future; it
 * is only necessary that true be returned for a small
 * subset of pmaps for proper page aging.
 */
boolean_t
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
	struct rwlock *lock;
	pv_entry_t pv;
	int loops = 0;
	boolean_t rv;

	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
	    ("pmap_page_exists_quick: page %p is not managed", m));
	rv = FALSE;
	rw_rlock(&pvh_global_lock);
	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
	rw_rlock(lock);
	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
		if (PV_PMAP(pv) == pmap) {
			rv = TRUE;
			break;
		}
		loops++;
		if (loops >= 16)
			break;
	}
	rw_runlock(lock);
	rw_runlock(&pvh_global_lock);
	return (rv);
}

/*
 *	pmap_page_wired_mappings:
 *
 *	Return the number of managed mappings to the given physical page
 *	that are wired.
 */
int
pmap_page_wired_mappings(vm_page_t m)
{
	struct rwlock *lock;
	pmap_t pmap;
	pt_entry_t *l3;
	pv_entry_t pv;
	int count, md_gen;

	if ((m->oflags & VPO_UNMANAGED) != 0)
		return (0);
	rw_rlock(&pvh_global_lock);
	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
	rw_rlock(lock);
restart:
	count = 0;
	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
		pmap = PV_PMAP(pv);
		if (!PMAP_TRYLOCK(pmap)) {
			md_gen = m->md.pv_gen;
			rw_runlock(lock);
			PMAP_LOCK(pmap);
			rw_rlock(lock);
			if (md_gen != m->md.pv_gen) {
				PMAP_UNLOCK(pmap);
				goto restart;
			}
		}
		l3 = pmap_l3(pmap, pv->pv_va);
		if (l3 != NULL && (pmap_load(l3) & PTE_SW_WIRED) != 0)
			count++;
		PMAP_UNLOCK(pmap);
	}
	rw_runlock(lock);
	rw_runlock(&pvh_global_lock);
	return (count);
}

/*
 * Destroy all managed, non-wired mappings in the given user-space
 * pmap.  This pmap cannot be active on any processor besides the
 * caller.
 *
 * This function cannot be applied to the kernel pmap.  Moreover, it
 * is not intended for general use.  It is only to be used during
 * process termination.  Consequently, it can be implemented in ways
 * that make it faster than pmap_remove().  First, it can more quickly
 * destroy mappings by iterating over the pmap's collection of PV
 * entries, rather than searching the page table.  Second, it doesn't
 * have to test and clear the page table entries atomically, because
 * no processor is currently accessing the user address space.  In
 * particular, a page table entry's dirty bit won't change state once
 * this function starts.
 */
void
pmap_remove_pages(pmap_t pmap)
{
	pd_entry_t ptepde, *l2;
	pt_entry_t *l3, tl3;
	struct spglist free;
	vm_page_t m;
	pv_entry_t pv;
	struct pv_chunk *pc, *npc;
	struct rwlock *lock;
	int64_t bit;
	uint64_t inuse, bitmask;
	int allfree, field, freed, idx;
	vm_paddr_t pa;

	lock = NULL;

	SLIST_INIT(&free);
	rw_rlock(&pvh_global_lock);
	PMAP_LOCK(pmap);
	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
		allfree = 1;
		freed = 0;
		for (field = 0; field < _NPCM; field++) {
			inuse = ~pc->pc_map[field] & pc_freemask[field];
			while (inuse != 0) {
				bit = ffsl(inuse) - 1;
				bitmask = 1UL << bit;
				idx = field * 64 + bit;
				pv = &pc->pc_pventry[idx];
				inuse &= ~bitmask;

				l2 = pmap_l2(pmap, pv->pv_va);
				ptepde = pmap_load(l2);
				l3 = pmap_l2_to_l3(l2, pv->pv_va);
				tl3 = pmap_load(l3);

/*
 * We cannot remove wired pages from a process' mapping at this time
 */
				if (tl3 & PTE_SW_WIRED) {
					allfree = 0;
					continue;
				}

				pa = PTE_TO_PHYS(tl3);
				m = PHYS_TO_VM_PAGE(pa);
				KASSERT(m->phys_addr == pa,
				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
				    m, (uintmax_t)m->phys_addr,
				    (uintmax_t)tl3));

				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
				    m < &vm_page_array[vm_page_array_size],
				    ("pmap_remove_pages: bad l3 %#jx",
				    (uintmax_t)tl3));

				if (pmap_is_current(pmap) &&
				    pmap_l3_valid_cacheable(pmap_load(l3)))
					cpu_dcache_wb_range(pv->pv_va, L3_SIZE);
				pmap_load_clear(l3);
				PTE_SYNC(l3);
				pmap_invalidate_page(pmap, pv->pv_va);

				/*
				 * Update the vm_page_t clean/reference bits.
				 */
				if (pmap_page_dirty(tl3))
					vm_page_dirty(m);

				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);

				/* Mark free */
				pc->pc_map[field] |= bitmask;

				pmap_resident_count_dec(pmap, 1);
				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
				m->md.pv_gen++;

				pmap_unuse_l3(pmap, pv->pv_va, ptepde, &free);
				freed++;
			}
		}
		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
		if (allfree) {
			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
			free_pv_chunk(pc);
		}
	}
	pmap_invalidate_all(pmap);
	if (lock != NULL)
		rw_wunlock(lock);
	rw_runlock(&pvh_global_lock);
	PMAP_UNLOCK(pmap);
	vm_page_free_pages_toq(&free, false);
}

/*
 * This is used to check if a page has been accessed or modified. As we
 * don't have a bit to see if it has been modified we have to assume it
 * has been if the page is read/write.
 */
static boolean_t
pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
{
	struct rwlock *lock;
	pv_entry_t pv;
	pt_entry_t *l3, mask, value;
	pmap_t pmap;
	int md_gen;
	boolean_t rv;

	rv = FALSE;
	rw_rlock(&pvh_global_lock);
	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
	rw_rlock(lock);
restart:
	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
		pmap = PV_PMAP(pv);
		if (!PMAP_TRYLOCK(pmap)) {
			md_gen = m->md.pv_gen;
			rw_runlock(lock);
			PMAP_LOCK(pmap);
			rw_rlock(lock);
			if (md_gen != m->md.pv_gen) {
				PMAP_UNLOCK(pmap);
				goto restart;
			}
		}
		l3 = pmap_l3(pmap, pv->pv_va);
		mask = 0;
		value = 0;
		if (modified) {
			mask |= PTE_D;
			value |= PTE_D;
		}
		if (accessed) {
			mask |= PTE_A;
			value |= PTE_A;
		}

#if 0
		if (modified) {
			mask |= ATTR_AP_RW_BIT;
			value |= ATTR_AP(ATTR_AP_RW);
		}
		if (accessed) {
			mask |= ATTR_AF | ATTR_DESCR_MASK;
			value |= ATTR_AF | L3_PAGE;
		}
#endif

		rv = (pmap_load(l3) & mask) == value;
		PMAP_UNLOCK(pmap);
		if (rv)
			goto out;
	}
out:
	rw_runlock(lock);
	rw_runlock(&pvh_global_lock);
	return (rv);
}

/*
 *	pmap_is_modified:
 *
 *	Return whether or not the specified physical page was modified
 *	in any physical maps.
 */
boolean_t
pmap_is_modified(vm_page_t m)
{

	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
	    ("pmap_is_modified: page %p is not managed", m));

	/*
	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
	 * is clear, no PTEs can have PG_M set.
	 */
	VM_OBJECT_ASSERT_WLOCKED(m->object);
	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
		return (FALSE);
	return (pmap_page_test_mappings(m, FALSE, TRUE));
}

/*
 *	pmap_is_prefaultable:
 *
 *	Return whether or not the specified virtual address is eligible
 *	for prefault.
 */
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
	pt_entry_t *l3;
	boolean_t rv;

	rv = FALSE;
	PMAP_LOCK(pmap);
	l3 = pmap_l3(pmap, addr);
	if (l3 != NULL && pmap_load(l3) != 0) {
		rv = TRUE;
	}
	PMAP_UNLOCK(pmap);
	return (rv);
}

/*
 *	pmap_is_referenced:
 *
 *	Return whether or not the specified physical page was referenced
 *	in any physical maps.
 */
boolean_t
pmap_is_referenced(vm_page_t m)
{

	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
	    ("pmap_is_referenced: page %p is not managed", m));
	return (pmap_page_test_mappings(m, TRUE, FALSE));
}

/*
 * Clear the write and modified bits in each of the given page's mappings.
 */
void
pmap_remove_write(vm_page_t m)
{
	pmap_t pmap;
	struct rwlock *lock;
	pv_entry_t pv;
	pt_entry_t *l3, oldl3;
	pt_entry_t newl3;
	int md_gen;

	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
	    ("pmap_remove_write: page %p is not managed", m));

	/*
	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
	 * set by another thread while the object is locked.  Thus,
	 * if PGA_WRITEABLE is clear, no page table entries need updating.
	 */
	VM_OBJECT_ASSERT_WLOCKED(m->object);
	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
		return;
	rw_rlock(&pvh_global_lock);
	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
retry_pv_loop:
	rw_wlock(lock);
	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
		pmap = PV_PMAP(pv);
		if (!PMAP_TRYLOCK(pmap)) {
			md_gen = m->md.pv_gen;
			rw_wunlock(lock);
			PMAP_LOCK(pmap);
			rw_wlock(lock);
			if (md_gen != m->md.pv_gen) {
				PMAP_UNLOCK(pmap);
				rw_wunlock(lock);
				goto retry_pv_loop;
			}
		}
		l3 = pmap_l3(pmap, pv->pv_va);
retry:
		oldl3 = pmap_load(l3);

		if (pmap_is_write(oldl3)) {
			newl3 = oldl3 & ~(PTE_W);
			if (!atomic_cmpset_long(l3, oldl3, newl3))
				goto retry;
			/* TODO: use pmap_page_dirty(oldl3) ? */
			if ((oldl3 & PTE_A) != 0)
				vm_page_dirty(m);
			pmap_invalidate_page(pmap, pv->pv_va);
		}
		PMAP_UNLOCK(pmap);
	}
	rw_wunlock(lock);
	vm_page_aflag_clear(m, PGA_WRITEABLE);
	rw_runlock(&pvh_global_lock);
}

static __inline boolean_t
safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
{

	return (FALSE);
}

/*
 *	pmap_ts_referenced:
 *
 *	Return a count of reference bits for a page, clearing those bits.
 *	It is not necessary for every reference bit to be cleared, but it
 *	is necessary that 0 only be returned when there are truly no
 *	reference bits set.
 *
 *	As an optimization, update the page's dirty field if a modified bit is
 *	found while counting reference bits.  This opportunistic update can be
 *	performed at low cost and can eliminate the need for some future calls
 *	to pmap_is_modified().  However, since this function stops after
 *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
 *	dirty pages.  Those dirty pages will only be detected by a future call
 *	to pmap_is_modified().
 */
int
pmap_ts_referenced(vm_page_t m)
{
	pv_entry_t pv, pvf;
	pmap_t pmap;
	struct rwlock *lock;
	pd_entry_t *l2;
	pt_entry_t *l3, old_l3;
	vm_paddr_t pa;
	int cleared, md_gen, not_cleared;
	struct spglist free;

	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
	    ("pmap_ts_referenced: page %p is not managed", m));
	SLIST_INIT(&free);
	cleared = 0;
	pa = VM_PAGE_TO_PHYS(m);
	lock = PHYS_TO_PV_LIST_LOCK(pa);
	rw_rlock(&pvh_global_lock);
	rw_wlock(lock);
retry:
	not_cleared = 0;
	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
		goto out;
	pv = pvf;
	do {
		if (pvf == NULL)
			pvf = pv;
		pmap = PV_PMAP(pv);
		if (!PMAP_TRYLOCK(pmap)) {
			md_gen = m->md.pv_gen;
			rw_wunlock(lock);
			PMAP_LOCK(pmap);
			rw_wlock(lock);
			if (md_gen != m->md.pv_gen) {
				PMAP_UNLOCK(pmap);
				goto retry;
			}
		}
		l2 = pmap_l2(pmap, pv->pv_va);

		KASSERT((pmap_load(l2) & PTE_RX) == 0,
		    ("pmap_ts_referenced: found an invalid l2 table"));

		l3 = pmap_l2_to_l3(l2, pv->pv_va);
		old_l3 = pmap_load(l3);
		if (pmap_page_dirty(old_l3))
			vm_page_dirty(m);
		if ((old_l3 & PTE_A) != 0) {
			if (safe_to_clear_referenced(pmap, old_l3)) {
				/*
				 * TODO: We don't handle the access flag
				 * at all. We need to be able to set it in
				 * the exception handler.
				 */
				panic("RISCVTODO: safe_to_clear_referenced\n");
			} else if ((old_l3 & PTE_SW_WIRED) == 0) {
				/*
				 * Wired pages cannot be paged out so
				 * doing accessed bit emulation for
				 * them is wasted effort. We do the
				 * hard work for unwired pages only.
				 */
				pmap_remove_l3(pmap, l3, pv->pv_va,
				    pmap_load(l2), &free, &lock);
				pmap_invalidate_page(pmap, pv->pv_va);
				cleared++;
				if (pvf == pv)
					pvf = NULL;
				pv = NULL;
				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
				    ("inconsistent pv lock %p %p for page %p",
				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
			} else
				not_cleared++;
		}
		PMAP_UNLOCK(pmap);
		/* Rotate the PV list if it has more than one entry. */
		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
			m->md.pv_gen++;
		}
	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
	    not_cleared < PMAP_TS_REFERENCED_MAX);
out:
	rw_wunlock(lock);
	rw_runlock(&pvh_global_lock);
	vm_page_free_pages_toq(&free, false);
	return (cleared + not_cleared);
}

/*
 *	Apply the given advice to the specified range of addresses within the
 *	given pmap.  Depending on the advice, clear the referenced and/or
 *	modified flags in each mapping and set the mapped page's dirty field.
 */
void
pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
{
}

/*
 *	Clear the modify bits on the specified physical page.
 */
void
pmap_clear_modify(vm_page_t m)
{

	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
	    ("pmap_clear_modify: page %p is not managed", m));
	VM_OBJECT_ASSERT_WLOCKED(m->object);
	KASSERT(!vm_page_xbusied(m),
	    ("pmap_clear_modify: page %p is exclusive busied", m));

	/*
	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
	 * If the object containing the page is locked and the page is not
	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
	 */
	if ((m->aflags & PGA_WRITEABLE) == 0)
		return;

	/* RISCVTODO: We lack support for tracking if a page is modified */
}

void *
pmap_mapbios(vm_paddr_t pa, vm_size_t size)
{

        return ((void *)PHYS_TO_DMAP(pa));
}

void
pmap_unmapbios(vm_paddr_t pa, vm_size_t size)
{
}

/*
 * Sets the memory attribute for the specified page.
 */
void
pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
{

	m->md.pv_memattr = ma;

	/*
	 * RISCVTODO: Implement the below (from the amd64 pmap)
	 * If "m" is a normal page, update its direct mapping.  This update
	 * can be relied upon to perform any cache operations that are
	 * required for data coherence.
	 */
	if ((m->flags & PG_FICTITIOUS) == 0 &&
	    PHYS_IN_DMAP(VM_PAGE_TO_PHYS(m)))
		panic("RISCVTODO: pmap_page_set_memattr");
}

/*
 * perform the pmap work for mincore
 */
int
pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
{

	panic("RISCVTODO: pmap_mincore");
}

void
pmap_activate(struct thread *td)
{
	pmap_t pmap;
	uint64_t reg;

	critical_enter();
	pmap = vmspace_pmap(td->td_proc->p_vmspace);
	td->td_pcb->pcb_l1addr = vtophys(pmap->pm_l1);

	reg = SATP_MODE_SV39;
	reg |= (td->td_pcb->pcb_l1addr >> PAGE_SHIFT);
	__asm __volatile("csrw sptbr, %0" :: "r"(reg));

	pmap_invalidate_all(pmap);
	critical_exit();
}

void
pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
{

	panic("RISCVTODO: pmap_sync_icache");
}

/*
 *	Increase the starting virtual address of the given mapping if a
 *	different alignment might result in more superpage mappings.
 */
void
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
    vm_offset_t *addr, vm_size_t size)
{
}

/**
 * Get the kernel virtual address of a set of physical pages. If there are
 * physical addresses not covered by the DMAP perform a transient mapping
 * that will be removed when calling pmap_unmap_io_transient.
 *
 * \param page        The pages the caller wishes to obtain the virtual
 *                    address on the kernel memory map.
 * \param vaddr       On return contains the kernel virtual memory address
 *                    of the pages passed in the page parameter.
 * \param count       Number of pages passed in.
 * \param can_fault   TRUE if the thread using the mapped pages can take
 *                    page faults, FALSE otherwise.
 *
 * \returns TRUE if the caller must call pmap_unmap_io_transient when
 *          finished or FALSE otherwise.
 *
 */
boolean_t
pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
    boolean_t can_fault)
{
	vm_paddr_t paddr;
	boolean_t needs_mapping;
	int error, i;

	/*
	 * Allocate any KVA space that we need, this is done in a separate
	 * loop to prevent calling vmem_alloc while pinned.
	 */
	needs_mapping = FALSE;
	for (i = 0; i < count; i++) {
		paddr = VM_PAGE_TO_PHYS(page[i]);
		if (__predict_false(paddr >= DMAP_MAX_PHYSADDR)) {
			error = vmem_alloc(kernel_arena, PAGE_SIZE,
			    M_BESTFIT | M_WAITOK, &vaddr[i]);
			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
			needs_mapping = TRUE;
		} else {
			vaddr[i] = PHYS_TO_DMAP(paddr);
		}
	}

	/* Exit early if everything is covered by the DMAP */
	if (!needs_mapping)
		return (FALSE);

	if (!can_fault)
		sched_pin();
	for (i = 0; i < count; i++) {
		paddr = VM_PAGE_TO_PHYS(page[i]);
		if (paddr >= DMAP_MAX_PHYSADDR) {
			panic(
			   "pmap_map_io_transient: TODO: Map out of DMAP data");
		}
	}

	return (needs_mapping);
}

void
pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
    boolean_t can_fault)
{
	vm_paddr_t paddr;
	int i;

	if (!can_fault)
		sched_unpin();
	for (i = 0; i < count; i++) {
		paddr = VM_PAGE_TO_PHYS(page[i]);
		if (paddr >= DMAP_MAX_PHYSADDR) {
			panic("RISCVTODO: pmap_unmap_io_transient: Unmap data");
		}
	}
}