aboutsummaryrefslogtreecommitdiff
path: root/sys/sys/qmath.h
blob: 1b718f7edebf376bdbca0c17b4ab25f85a093c2c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/*-
 * Copyright (c) 2018 Netflix, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD$
 */

/*
 * Data types and APIs for fixed-point math based on the "Q" number format.
 *
 * Author: Lawrence Stewart <lstewart@netflix.com>
 *
 * The 3 LSBs of all base data types are reserved for embedded control data:
 *   bits 1-2 specify the radix point shift index i.e. 00,01,10,11 == 1,2,3,4
 *   bit 3 specifies the radix point shift index multiplier as 2 (0) or 16 (1)
 *
 * This scheme can therefore represent Q numbers with [2,4,6,8,16,32,48,64] bits
 * of precision after the binary radix point. The number of bits available for
 * the integral component depends on the underlying storage type chosen.
 */

#ifndef	_SYS_QMATH_H_
#define	_SYS_QMATH_H_

#include <machine/_stdint.h>

typedef int8_t		s8q_t;
typedef uint8_t		u8q_t;
typedef int16_t		s16q_t;
typedef uint16_t	u16q_t;
typedef int32_t		s32q_t;
typedef uint32_t	u32q_t;
typedef int64_t		s64q_t;
typedef uint64_t	u64q_t;
/* typedef int128_t	s128q_t; Not yet */
/* typedef uint128_t	u128q_t; Not yet */
typedef	s64q_t		smaxq_t;
typedef	u64q_t		umaxq_t;

#if defined(__GNUC__) && !defined(__clang__)
/* Ancient GCC hack to de-const, remove when GCC4 is removed. */
#define	Q_BT(q)		__typeof(1 * q)
#else
/* The underlying base type of 'q'. */
#define	Q_BT(q)		__typeof(q)
#endif

/* Type-cast variable 'v' to the same underlying type as 'q'. */
#define	Q_TC(q, v)	((__typeof(q))(v))

/* Number of total bits associated with the data type underlying 'q'. */
#define	Q_NTBITS(q)	((uint32_t)(sizeof(q) << 3))

/* Number of LSBs reserved for control data. */
#define	Q_NCBITS	((uint32_t)3)

/* Number of control-encoded bits reserved for fractional component data. */
#define	Q_NFCBITS(q) \
    ((uint32_t)(((Q_GCRAW(q) & 0x3) + 1) << ((Q_GCRAW(q) & 0x4) ? 4 : 1)))

/* Min/max number of bits that can be reserved for fractional component data. */
#define	Q_MINNFBITS(q)	((uint32_t)(2))
#define	Q_MAXNFBITS(q)	((uint32_t)(Q_NTBITS(q) - Q_SIGNED(q) - Q_NCBITS))

/*
 * Number of bits actually reserved for fractional component data. This can be
 * less than the value returned by Q_NFCBITS() as we treat any excess
 * control-encoded number of bits for the underlying data type as meaning all
 * available bits are reserved for fractional component data i.e. zero int bits.
 */
#define	Q_NFBITS(q) \
    (Q_NFCBITS(q) > Q_MAXNFBITS(q) ? Q_MAXNFBITS(q) : Q_NFCBITS(q))

/* Number of bits available for integer component data. */
#define	Q_NIBITS(q)	((uint32_t)(Q_NTBITS(q) - Q_RPSHFT(q) - Q_SIGNED(q)))

/* The radix point offset relative to the LSB. */
#define	Q_RPSHFT(q)	(Q_NCBITS + Q_NFBITS(q))

/* The sign bit offset relative to the LSB. */
#define	Q_SIGNSHFT(q)	(Q_NTBITS(q) - 1)

/* Set the sign bit to 0 ('isneg' is F) or 1 ('isneg' is T). */
#define	Q_SSIGN(q, isneg) \
    ((q) = ((Q_SIGNED(q) && (isneg)) ?	(q) | (1ULL << Q_SIGNSHFT(q)) : \
					(q) & ~(1ULL << Q_SIGNSHFT(q))))

/* Manipulate the 'q' bits holding control/sign data. */
#define	Q_CRAWMASK(q)	0x7ULL
#define	Q_SRAWMASK(q)	(1ULL << Q_SIGNSHFT(q))
#define	Q_GCRAW(q)	((q) & Q_CRAWMASK(q))
#define	Q_GCVAL(q)	Q_GCRAW(q)
#define	Q_SCVAL(q, cv)	((q) = ((q) & ~Q_CRAWMASK(q)) | (cv))

/* Manipulate the 'q' bits holding combined integer/fractional data. */
#define	Q_IFRAWMASK(q) \
    Q_TC(q, Q_SIGNED(q) ? ~(Q_SRAWMASK(q) | Q_CRAWMASK(q)) : ~Q_CRAWMASK(q))
#define	Q_IFMAXVAL(q)	Q_TC(q, Q_IFRAWMASK(q) >> Q_NCBITS)
#define	Q_IFMINVAL(q)	Q_TC(q, Q_SIGNED(q) ? -Q_IFMAXVAL(q) : 0)
#define	Q_IFVALIMASK(q)	Q_TC(q, ~Q_IFVALFMASK(q))
#define	Q_IFVALFMASK(q)	Q_TC(q, (1ULL << Q_NFBITS(q)) - 1)
#define	Q_GIFRAW(q)	Q_TC(q, (q) & Q_IFRAWMASK(q))
#define	Q_GIFABSVAL(q)	Q_TC(q, Q_GIFRAW(q) >> Q_NCBITS)
#define	Q_GIFVAL(q)	Q_TC(q, Q_LTZ(q) ? -Q_GIFABSVAL(q) : Q_GIFABSVAL(q))
#define	Q_SIFVAL(q, ifv) \
    ((q) = ((q) & (~(Q_SRAWMASK(q) | Q_IFRAWMASK(q)))) | \
    (Q_TC(q, Q_ABS(ifv)) << Q_NCBITS) | \
    (Q_LTZ(ifv) ? 1ULL << Q_SIGNSHFT(q) : 0))
#define	Q_SIFVALS(q, iv, fv) \
    ((q) = ((q) & (~(Q_SRAWMASK(q) | Q_IFRAWMASK(q)))) | \
    (Q_TC(q, Q_ABS(iv)) << Q_RPSHFT(q)) | \
    (Q_TC(q, Q_ABS(fv)) << Q_NCBITS) | \
    (Q_LTZ(iv) || Q_LTZ(fv) ? 1ULL << Q_SIGNSHFT(q) : 0))

/* Manipulate the 'q' bits holding integer data. */
#define	Q_IRAWMASK(q)	Q_TC(q, Q_IFRAWMASK(q) & ~Q_FRAWMASK(q))
#define	Q_IMAXVAL(q)	Q_TC(q, Q_IRAWMASK(q) >> Q_RPSHFT(q))
#define	Q_IMINVAL(q)	Q_TC(q, Q_SIGNED(q) ? -Q_IMAXVAL(q) : 0)
#define	Q_GIRAW(q)	Q_TC(q, (q) & Q_IRAWMASK(q))
#define	Q_GIABSVAL(q)	Q_TC(q, Q_GIRAW(q) >> Q_RPSHFT(q))
#define	Q_GIVAL(q)	Q_TC(q, Q_LTZ(q) ? -Q_GIABSVAL(q) : Q_GIABSVAL(q))
#define	Q_SIVAL(q, iv) \
    ((q) = ((q) & ~(Q_SRAWMASK(q) | Q_IRAWMASK(q))) | \
    (Q_TC(q, Q_ABS(iv)) << Q_RPSHFT(q)) | \
    (Q_LTZ(iv) ? 1ULL << Q_SIGNSHFT(q) : 0))

/* Manipulate the 'q' bits holding fractional data. */
#define	Q_FRAWMASK(q)	Q_TC(q, ((1ULL << Q_NFBITS(q)) - 1) << Q_NCBITS)
#define	Q_FMAXVAL(q)	Q_TC(q, Q_FRAWMASK(q) >> Q_NCBITS)
#define	Q_GFRAW(q)	Q_TC(q, (q) & Q_FRAWMASK(q))
#define	Q_GFABSVAL(q)	Q_TC(q, Q_GFRAW(q) >> Q_NCBITS)
#define	Q_GFVAL(q)	Q_TC(q, Q_LTZ(q) ? -Q_GFABSVAL(q) : Q_GFABSVAL(q))
#define	Q_SFVAL(q, fv) \
    ((q) = ((q) & ~(Q_SRAWMASK(q) | Q_FRAWMASK(q))) | \
    (Q_TC(q, Q_ABS(fv)) << Q_NCBITS) | \
    (Q_LTZ(fv) ? 1ULL << Q_SIGNSHFT(q) : 0))

/*
 * Calculate the number of bits required per 'base' digit, rounding up or down
 * for non power-of-two bases.
 */
#define	Q_BITSPERBASEDOWN(base) (flsll(base) - 1)
#define	Q_BITSPERBASEUP(base) (flsll(base) - (__builtin_popcountll(base) == 1))
#define	Q_BITSPERBASE(base, rnd) Q_BITSPERBASE##rnd(base)

/*
 * Upper bound number of digits required to render 'nbits' worth of integer
 * component bits with numeric base 'base'. Overestimates for power-of-two
 * bases.
 */
#define	Q_NIBITS2NCHARS(nbits, base)					\
({									\
 	int _bitsperbase = Q_BITSPERBASE(base, DOWN);			\
	(((nbits) + _bitsperbase - 1) / _bitsperbase);			\
})

#define	Q_NFBITS2NCHARS(nbits, base) (nbits)

/*
 * Maximum number of chars required to render 'q' as a C-string of base 'base'.
 * Includes space for sign, radix point and NUL-terminator.
 */
#define	Q_MAXSTRLEN(q, base) \
    (2 + Q_NIBITS2NCHARS(Q_NIBITS(q), base) + \
    Q_NFBITS2NCHARS(Q_NFBITS(q), base) + Q_SIGNED(q))

/* Yield the next char from integer bits. */
#define	Q_IBITS2CH(q, bits, base)					\
({									\
    __typeof(bits) _tmp = (bits) / (base);				\
    int _idx = (bits) - (_tmp * (base));				\
    (bits) = _tmp;							\
    "0123456789abcdef"[_idx];						\
})

/* Yield the next char from fractional bits. */
#define	Q_FBITS2CH(q, bits, base)					\
({									\
    int _carry = 0, _idx, _nfbits = Q_NFBITS(q), _shift = 0;		\
    /*									\
     * Normalise enough MSBs to yield the next digit, multiply by the	\
     * base, and truncate residual fractional bits post multiplication.	\
     */									\
    if (_nfbits > Q_BITSPERBASEUP(base)) {				\
        /* Break multiplication into two steps to ensure no overflow. */\
        _shift = _nfbits >> 1;						\
        _carry = (((bits) & ((1ULL << _shift) - 1)) * (base)) >> _shift;\
    }									\
    _idx = ((((bits) >> _shift) * (base)) + _carry) >> (_nfbits - _shift);\
    (bits) *= (base); /* With _idx computed, no overflow concern. */	\
    (bits) &= (1ULL << _nfbits) - 1; /* Exclude residual int bits. */	\
    "0123456789abcdef"[_idx];						\
})

/*
 * Render the C-string representation of 'q' into 's'. Returns a pointer to the
 * final '\0' to allow for easy calculation of the rendered length and easy
 * appending to the C-string.
 */
#define	Q_TOSTR(q, prec, base, s, slen)					\
({									\
	char *_r, *_s = s;						\
	int _i;								\
	if (Q_LTZ(q) && ((ptrdiff_t)(slen)) > 0)			\
		*_s++ = '-';						\
	Q_BT(q) _part = Q_GIABSVAL(q);					\
	_r = _s;							\
	do {								\
		/* Render integer chars in reverse order. */		\
		if ((_s - (s)) < ((ptrdiff_t)(slen)))			\
			*_s++ = Q_IBITS2CH(q, _part, base);		\
		else							\
			_r = NULL;					\
	} while (_part > 0 && _r != NULL);				\
	if (!((_s - (s)) < ((ptrdiff_t)(slen))))			\
		_r = NULL;						\
	_i = (_s - _r) >> 1; /* N digits requires int(N/2) swaps. */	\
	while (_i-- > 0 && _r != NULL) {				\
		/* Work from middle out to reverse integer chars. */	\
		*_s = *(_r + _i); /* Stash LHS char temporarily. */	\
		*(_r + _i) = *(_s - _i - 1); /* Copy RHS char to LHS. */\
		*(_s - _i - 1) = *_s; /* Copy LHS char to RHS. */	\
	}								\
	_i = (prec);							\
	if (_i != 0 && _r != NULL) {					\
		if ((_s - (s)) < ((ptrdiff_t)(slen)))			\
			*_s++ = '.';					\
		else							\
			_r = NULL;					\
		_part = Q_GFABSVAL(q);					\
		if (_i < 0 || _i > (int)Q_NFBITS(q))			\
			_i = Q_NFBITS(q);				\
		while (_i-- > 0 && _r != NULL) {			\
			/* Render fraction chars in correct order. */	\
			if ((_s - (s)) < ((ptrdiff_t)(slen)))		\
				*_s++ = Q_FBITS2CH(q, _part, base);	\
			else						\
				_r = NULL;				\
		}							\
	}								\
	if ((_s - (s)) < ((ptrdiff_t)(slen)) && _r != NULL)		\
		*_s = '\0';						\
	else {								\
		_r = NULL;						\
		if (((ptrdiff_t)(slen)) > 0)				\
			*(s) = '\0';					\
	}								\
	/* Return a pointer to the '\0' or NULL on overflow. */		\
	(_r != NULL ? _s : _r);						\
})

/* Left shift an integral value to align with the int bits of 'q'. */
#define	Q_SHL(q, iv) \
    (Q_LTZ(iv) ? -(int64_t)(Q_ABS(iv) << Q_NFBITS(q)) :	\
    Q_TC(q, iv) << Q_NFBITS(q))

/* Calculate the relative fractional precision between 'a' and 'b' in bits. */
#define	Q_RELPREC(a, b)	((int)Q_NFBITS(a) - (int)Q_NFBITS(b))

/*
 * Determine control bits for the desired 'rpshft' radix point shift. Rounds up
 * to the nearest valid shift supported by the encoding scheme.
 */
#define	Q_CTRLINI(rpshft) \
    (((rpshft) <= 8) ? (((rpshft) - 1) >> 1) : (0x4 | (((rpshft) - 1) >> 4)))

/*
 * Convert decimal fractional value 'dfv' to its binary-encoded representation
 * with 'nfbits' of binary precision. 'dfv' must be passed as a preprocessor
 * literal to preserve leading zeroes. The returned result can be used to set a
 * Q number's fractional bits e.g. using Q_SFVAL().
 */
#define	Q_DFV2BFV(dfv, nfbits)				\
({							\
	uint64_t _bfv = 0, _thresh = 5, _tmp = dfv;	\
	int _i = sizeof(""#dfv) - 1;			\
	/*						\
	 * Compute decimal threshold to determine which \
	 * conversion rounds will yield a binary 1.	\
	 */						\
	while (--_i > 0) {_thresh *= 10;}		\
	_i = (nfbits) - 1;				\
	while (_i >= 0) {				\
		if (_thresh <= _tmp) {			\
			_bfv |= 1ULL << _i;		\
			_tmp = _tmp - _thresh;		\
		}					\
		_i--; _tmp <<= 1;			\
	}						\
	_bfv;						\
})

/*
 * Initialise 'q' with raw integer value 'iv', decimal fractional value 'dfv',
 * and radix point shift 'rpshft'. Must be done in two steps in case 'iv'
 * depends on control bits being set e.g. when passing Q_INTMAX(q) as 'iv'.
 */
#define	Q_INI(q, iv, dfv, rpshft) \
({ \
    (*(q)) = Q_CTRLINI(rpshft); \
    Q_SIFVALS(*(q), iv, Q_DFV2BFV(dfv, Q_NFBITS(*(q)))); \
})

/* Test if 'a' and 'b' fractional precision is the same (T) or not (F). */
#define	Q_PRECEQ(a, b)	(Q_NFBITS(a) == Q_NFBITS(b))

/* Test if 'n' is a signed type (T) or not (F). Works with any numeric type. */
#define	Q_SIGNED(n)	(Q_TC(n, -1) < 0)

/*
 * Test if 'n' is negative. Works with any numeric type that uses the MSB as the
 * sign bit, and also works with Q numbers.
 */
#define	Q_LTZ(n)	(Q_SIGNED(n) && ((n) & Q_SRAWMASK(n)))

/*
 * Return absolute value of 'n'. Works with any standard numeric type that uses
 * the MSB as the sign bit, and is signed/unsigned type safe.
 * Does not work with Q numbers; use Q_QABS() instead.
 */
#define	Q_ABS(n)	(Q_LTZ(n) ? -(n) : (n))

/*
 * Return an absolute value interpretation of 'q'.
 */
#define	Q_QABS(q)	(Q_SIGNED(q) ? (q) & ~Q_SRAWMASK(q) : (q))

/* Convert 'q' to float or double representation. */
#define	Q_Q2F(q)	((float)Q_GIFVAL(q) / (float)(1ULL << Q_NFBITS(q)))
#define	Q_Q2D(q)	((double)Q_GIFVAL(q) / (double)(1ULL << Q_NFBITS(q)))

/* Numerically compare 'a' and 'b' as whole numbers using provided operators. */
#define	Q_QCMPQ(a, b, intcmp, fraccmp) \
    ((Q_GIVAL(a) intcmp Q_GIVAL(b)) || \
    ((Q_GIVAL(a) == Q_GIVAL(b)) && (Q_GFVAL(a) fraccmp Q_GFVAL(b))))

/* Test if 'a' is numerically less than 'b' (T) or not (F). */
#define	Q_QLTQ(a, b)	Q_QCMPQ(a, b, <, <)

/* Test if 'a' is numerically less than or equal to 'b' (T) or not (F). */
#define	Q_QLEQ(a, b)	Q_QCMPQ(a, b, <, <=)

/* Test if 'a' is numerically greater than 'b' (T) or not (F). */
#define	Q_QGTQ(a, b)	Q_QCMPQ(a, b, >, >)

/* Test if 'a' is numerically greater than or equal to 'b' (T) or not (F). */
#define	Q_QGEQ(a, b)	Q_QCMPQ(a, b, >, >=)

/* Test if 'a' is numerically equal to 'b' (T) or not (F). */
#define	Q_QEQ(a, b)	Q_QCMPQ(a, b, ==, ==)

/* Test if 'a' is numerically not equal to 'b' (T) or not (F). */
#define	Q_QNEQ(a, b)	Q_QCMPQ(a, b, !=, !=)

/* Returns the numerically larger of 'a' and 'b'. */
#define	Q_QMAXQ(a, b)	(Q_GT(a, b) ? (a) : (b))

/* Returns the numerically smaller of 'a' and 'b'. */
#define	Q_QMINQ(a, b)	(Q_LT(a, b) ? (a) : (b))

/*
 * Test if 'a' can be represented by 'b' with full accuracy (T) or not (F).
 * The type casting has to be done to a's type so that any truncation caused by
 * the casts will not affect the logic.
 */
#define	Q_QCANREPQ(a, b) \
    ((((Q_LTZ(a) && Q_SIGNED(b)) || !Q_LTZ(a)) && \
    Q_GIABSVAL(a) <= Q_TC(a, Q_IMAXVAL(b)) && \
    Q_GFABSVAL(a) <= Q_TC(a, Q_FMAXVAL(b))) ? \
    0 : EOVERFLOW)

/* Test if raw integer value 'i' can be represented by 'q' (T) or not (F). */
#define	Q_QCANREPI(q, i) \
    ((((Q_LTZ(i) && Q_SIGNED(q)) || !Q_LTZ(i)) && \
    Q_ABS(i) <= Q_TC(i, Q_IMAXVAL(q))) ? 0 : EOVERFLOW)

/*
 * Returns a Q variable debug format string with appropriate modifiers and
 * padding relevant to the underlying Q data type.
 */
#define	Q_DEBUGFMT_(prefmt, postfmt, mod, hexpad)			\
    prefmt								\
    /* Var name + address. */						\
    "\"%s\"@%p"								\
    /* Data type. */							\
    "\n\ttype=%c%dq_t, "						\
    /* Qm.n notation; 'm' = # int bits, 'n' = # frac bits. */		\
    "Qm.n=Q%d.%d, "							\
    /* Radix point shift relative to the underlying data type's LSB. */	\
    "rpshft=%d, "							\
    /* Min/max integer values which can be represented. */		\
    "imin=0x%0" #mod "x, "						\
    "imax=0x%0" #mod "x"						\
    /* Raw hex dump of all bits. */					\
    "\n\tqraw=0x%0" #hexpad #mod "x"					\
    /* Bit masks for int/frac/ctrl bits. */				\
    "\n\timask=0x%0" #hexpad #mod "x, "					\
    "fmask=0x%0" #hexpad #mod "x, "					\
    "cmask=0x%0" #hexpad #mod "x, "					\
    "ifmask=0x%0" #hexpad #mod "x"					\
    /* Hex dump of masked int bits; 'iraw' includes shift */		\
    "\n\tiraw=0x%0" #hexpad #mod "x, "					\
    "iabsval=0x%" #mod "x, "						\
    "ival=0x%" #mod "x"					\
    /* Hex dump of masked frac bits; 'fraw' includes shift */		\
    "\n\tfraw=0x%0" #hexpad #mod "x, "					\
    "fabsval=0x%" #mod "x, "						\
    "fval=0x%" #mod "x"							\
    "%s"								\
    postfmt

#define	Q_DEBUGFMT(q, prefmt, postfmt)					\
      sizeof(q) == 8 ? Q_DEBUGFMT_(prefmt, postfmt, j, 16)	:	\
      sizeof(q) == 4 ? Q_DEBUGFMT_(prefmt, postfmt,  , 8)	:	\
      sizeof(q) == 2 ? Q_DEBUGFMT_(prefmt, postfmt, h, 4)	:	\
      sizeof(q) == 1 ? Q_DEBUGFMT_(prefmt, postfmt, hh, 2)	:	\
      prefmt "\"%s\"@%p: invalid" postfmt				\

/*
 * Returns a format string and data suitable for printf-like rendering
 * e.g. Print to console with a trailing newline: printf(Q_DEBUG(q, "", "\n"));
 */
#define	Q_DEBUG(q, prefmt, postfmt, incfmt)				\
      Q_DEBUGFMT(q, prefmt, postfmt)					\
    , #q								\
    , &(q)								\
    , Q_SIGNED(q) ? 's' : 'u'						\
    , Q_NTBITS(q)							\
    , Q_NIBITS(q)							\
    , Q_NFBITS(q)							\
    , Q_RPSHFT(q)							\
    , Q_IMINVAL(q)							\
    , Q_IMAXVAL(q)							\
    , (q)								\
    , Q_IRAWMASK(q)							\
    , Q_FRAWMASK(q)							\
    , Q_TC(q, Q_CRAWMASK(q))						\
    , Q_IFRAWMASK(q)							\
    , Q_GIRAW(q)							\
    , Q_GIABSVAL(q)							\
    , Q_GIVAL(q)							\
    , Q_GFRAW(q)							\
    , Q_GFABSVAL(q)							\
    , Q_GFVAL(q)							\
    , (incfmt) ? Q_DEBUGFMT(q, "\nfmt:", "") : ""			\

/*
 * If precision differs, attempt to normalise to the greater precision that
 * preserves the integer component of both 'a' and 'b'.
 */
#define	Q_NORMPREC(a, b)						\
({									\
	int _perr = 0, _relprec = Q_RELPREC(*(a), b);			\
	if (_relprec != 0)						\
		_perr = ERANGE; /* XXXLAS: Do precision normalisation! */\
	_perr;								\
})

/* Clone r's control bits and int/frac value into 'l'. */
#define	Q_QCLONEQ(l, r)							\
({									\
	Q_BT(*(l)) _l = Q_GCVAL(r);					\
	int _err = Q_QCANREPQ(r, _l);					\
	if (!_err) {							\
		*(l) = _l;						\
		Q_SIFVAL(*(l), Q_GIFVAL(r));				\
	}								\
	_err;								\
})

/* Copy r's int/frac vals into 'l', retaining 'l's precision and signedness. */
#define	Q_QCPYVALQ(l, r)						\
({									\
	int _err = Q_QCANREPQ(r, *(l));					\
	if (!_err)							\
		Q_SIFVALS(*(l), Q_GIVAL(r), Q_GFVAL(r));		\
	_err;								\
})

#define	Q_QADDSUBQ(a, b, eop)						\
({									\
	int _aserr;							\
	if ((_aserr = Q_NORMPREC(a, b))) while (0); /* NOP */		\
	else if ((eop) == '+') {					\
		if (Q_IFMAXVAL(*(a)) - Q_GIFABSVAL(b) < Q_GIFVAL(*(a)))	\
			_aserr = EOVERFLOW; /* [+/-a + +b] > max(a) */	\
		else							\
			Q_SIFVAL(*(a), Q_GIFVAL(*(a)) + Q_TC(*(a),	\
			    Q_GIFABSVAL(b)));				\
	} else { /* eop == '-' */					\
		if (Q_IFMINVAL(*(a)) + Q_GIFABSVAL(b) > Q_GIFVAL(*(a)))	\
			_aserr = EOVERFLOW; /* [+/-a - +b] < min(a) */	\
		else							\
			Q_SIFVAL(*(a), Q_GIFVAL(*(a)) - Q_TC(*(a),	\
			    Q_GIFABSVAL(b)));				\
	}								\
	_aserr;								\
})
#define	Q_QADDQ(a, b) Q_QADDSUBQ(a, b, (Q_LTZ(b) ? '-' : '+'))
#define	Q_QSUBQ(a, b) Q_QADDSUBQ(a, b, (Q_LTZ(b) ? '+' : '-'))

#define	Q_QDIVQ(a, b)							\
({									\
	int _err;							\
	if ((_err = Q_NORMPREC(a, b))) while (0); /* NOP */		\
	else if (Q_GIFABSVAL(b) == 0 || (!Q_SIGNED(*(a)) && Q_LTZ(b)))	\
		_err = EINVAL; /* Divide by zero or cannot represent. */\
	/* XXXLAS: Handle overflow. */					\
	else if (Q_GIFABSVAL(*(a)) != 0) { /* Result expected. */	\
		Q_SIFVAL(*(a),						\
		    ((Q_GIVAL(*(a)) << Q_NFBITS(*(a))) / Q_GIFVAL(b)) +	\
		    (Q_GFVAL(b) == 0 ? 0 :				\
		    ((Q_GFVAL(*(a)) << Q_NFBITS(*(a))) / Q_GFVAL(b))));	\
	}								\
	_err;								\
})

#define	Q_QMULQ(a, b)							\
({									\
	int _mulerr;							\
	if ((_mulerr = Q_NORMPREC(a, b))) while (0); /* NOP */		\
	else if (!Q_SIGNED(*(a)) && Q_LTZ(b))				\
		_mulerr = EINVAL;					\
	else if (Q_GIFABSVAL(b) != 0 &&					\
	    Q_IFMAXVAL(*(a)) / Q_GIFABSVAL(b) < Q_GIFABSVAL(*(a)))	\
		_mulerr = EOVERFLOW;					\
	else								\
		Q_SIFVAL(*(a), (Q_GIFVAL(*(a)) * Q_GIFVAL(b)) >>	\
		    Q_NFBITS(*(a)));					\
	_mulerr;							\
})

#define	Q_QCPYVALI(q, i)						\
({									\
	int _err = Q_QCANREPI(*(q), i);					\
	if (!_err)							\
		Q_SIFVAL(*(q), Q_SHL(*(q), i));				\
	_err;								\
})

#define	Q_QADDSUBI(q, i, eop)						\
({									\
	int _aserr = 0;							\
	if (Q_NTBITS(*(q)) < (uint32_t)flsll(Q_ABS(i)))			\
		_aserr = EOVERFLOW; /* i cannot fit in q's type. */	\
	else if ((eop) == '+') {					\
		if (Q_IMAXVAL(*(q)) - Q_TC(*(q), Q_ABS(i)) <		\
		    Q_GIVAL(*(q)))					\
			_aserr = EOVERFLOW; /* [+/-q + +i] > max(q) */	\
		else							\
			Q_SIFVAL(*(q), Q_GIFVAL(*(q)) +			\
			    Q_SHL(*(q), Q_ABS(i)));			\
	} else { /* eop == '-' */					\
		if (Q_IMINVAL(*(q)) + Q_ABS(i) > Q_GIVAL(*(q)))		\
			_aserr = EOVERFLOW; /* [+/-q - +i] < min(q) */	\
		else							\
			Q_SIFVAL(*(q), Q_GIFVAL(*(q)) -			\
			    Q_SHL(*(q), Q_ABS(i)));			\
	}								\
	_aserr;								\
})
#define	Q_QADDI(q, i) Q_QADDSUBI(q, i, (Q_LTZ(i) ? '-' : '+'))
#define	Q_QSUBI(q, i) Q_QADDSUBI(q, i, (Q_LTZ(i) ? '+' : '-'))

#define	Q_QDIVI(q, i)							\
({									\
	int _diverr = 0;						\
	if ((i) == 0 || (!Q_SIGNED(*(q)) && Q_LTZ(i)))			\
		_diverr = EINVAL; /* Divide by zero or cannot represent. */\
	else if (Q_GIFABSVAL(*(q)) != 0) { /* Result expected. */	\
		Q_SIFVAL(*(q), Q_GIFVAL(*(q)) / Q_TC(*(q), i));		\
		if (Q_GIFABSVAL(*(q)) == 0)				\
			_diverr = ERANGE; /* q underflow. */		\
	}								\
	_diverr;							\
})

#define	Q_QMULI(q, i)							\
({									\
	int _mulerr = 0;						\
	if (!Q_SIGNED(*(q)) && Q_LTZ(i))				\
		_mulerr = EINVAL; /* Cannot represent. */		\
	else if ((i) != 0 && Q_IFMAXVAL(*(q)) / Q_TC(*(q), Q_ABS(i)) <	\
	    Q_GIFABSVAL(*(q)))						\
		_mulerr = EOVERFLOW;					\
	else								\
		Q_SIFVAL(*(q), Q_GIFVAL(*(q)) * Q_TC(*(q), i));		\
	_mulerr;							\
})

#define	Q_QFRACI(q, in, id)						\
({									\
	uint64_t _tmp;							\
	int _err = 0;							\
	if ((id) == 0)							\
		_err = EINVAL; /* Divide by zero. */			\
	else if ((in) == 0)						\
		Q_SIFVAL(*(q), in);					\
	else if ((_tmp = Q_ABS(in)) > (UINT64_MAX >> Q_RPSHFT(*(q))))	\
		_err = EOVERFLOW; /* _tmp overflow. */			\
	else {								\
		_tmp = Q_SHL(*(q), _tmp) / Q_ABS(id);			\
		if (Q_QCANREPI(*(q), _tmp & Q_IFVALIMASK(*(q))))	\
			_err = EOVERFLOW; /* q overflow. */		\
		else {							\
			Q_SIFVAL(*(q), _tmp);				\
			Q_SSIGN(*(q), (Q_LTZ(in) && !Q_LTZ(id)) ||	\
			    (!Q_LTZ(in) && Q_LTZ(id)));			\
			if (_tmp == 0)					\
				_err = ERANGE; /* q underflow. */	\
		}							\
	}								\
	_err;								\
})

#endif	/* _SYS_QMATH_H_ */