aboutsummaryrefslogtreecommitdiff
path: root/sys/ufs/ffs/ffs_subr.c
blob: bcb4d25c8ad94adc95ee0a37fc20383d5251099d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 1982, 1986, 1989, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/param.h>
#include <sys/endian.h>
#include <sys/limits.h>

#ifndef _KERNEL
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <sys/errno.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ffs/fs.h>

uint32_t calculate_crc32c(uint32_t, const void *, size_t);
uint32_t ffs_calc_sbhash(struct fs *);
struct malloc_type;
#define UFS_MALLOC(size, type, flags) malloc(size)
#define UFS_FREE(ptr, type) free(ptr)
#define maxphys MAXPHYS

#else /* _KERNEL */
#include <sys/systm.h>
#include <sys/gsb_crc32.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/ucred.h>

#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ffs/fs.h>

#define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
#define UFS_FREE(ptr, type) free(ptr, type)

#endif /* _KERNEL */

/*
 * Verify an inode check-hash.
 */
int
ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
{
	uint32_t ckhash, save_ckhash;

	/*
	 * Return success if unallocated or we are not doing inode check-hash.
	 */
	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
		return (0);
	/*
	 * Exclude di_ckhash from the crc32 calculation, e.g., always use
	 * a check-hash value of zero when calculating the check-hash.
	 */
	save_ckhash = dip->di_ckhash;
	dip->di_ckhash = 0;
	ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
	dip->di_ckhash = save_ckhash;
	if (save_ckhash == ckhash)
		return (0);
	return (EINVAL);
}

/*
 * Update an inode check-hash.
 */
void
ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
{

	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
		return;
	/*
	 * Exclude old di_ckhash from the crc32 calculation, e.g., always use
	 * a check-hash value of zero when calculating the new check-hash.
	 */
	dip->di_ckhash = 0;
	dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
}

/*
 * These are the low-level functions that actually read and write
 * the superblock and its associated data.
 */
static off_t sblock_try[] = SBLOCKSEARCH;
static int readsuper(void *, struct fs **, off_t, int,
	int (*)(void *, off_t, void **, int));
static int validate_sblock(struct fs *, int);

/*
 * Read a superblock from the devfd device.
 *
 * If an alternate superblock is specified, it is read. Otherwise the
 * set of locations given in the SBLOCKSEARCH list is searched for a
 * superblock. Memory is allocated for the superblock by the readfunc and
 * is returned. If filltype is non-NULL, additional memory is allocated
 * of type filltype and filled in with the superblock summary information.
 * All memory is freed when any error is returned.
 *
 * If a superblock is found, zero is returned. Otherwise one of the
 * following error values is returned:
 *     EIO: non-existent or truncated superblock.
 *     EIO: error reading summary information.
 *     ENOENT: no usable known superblock found.
 *     EILSEQ: filesystem with wrong byte order found.
 *     ENOMEM: failed to allocate space for the superblock.
 *     EINVAL: The previous newfs operation on this volume did not complete.
 *         The administrator must complete newfs before using this volume.
 */
int
ffs_sbget(void *devfd, struct fs **fsp, off_t sblock, int flags,
    struct malloc_type *filltype,
    int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
	struct fs *fs;
	struct fs_summary_info *fs_si;
	int i, error;
	uint64_t size, blks;
	uint8_t *space;
	int32_t *lp;
	char *buf;

	fs = NULL;
	*fsp = NULL;
	if (sblock != UFS_STDSB) {
		if ((error = readsuper(devfd, &fs, sblock,
		    flags | UFS_ALTSBLK, readfunc)) != 0) {
			if (fs != NULL)
				UFS_FREE(fs, filltype);
			return (error);
		}
	} else {
		for (i = 0; sblock_try[i] != -1; i++) {
			if ((error = readsuper(devfd, &fs, sblock_try[i],
			     flags, readfunc)) == 0) {
				if ((flags & UFS_NOCSUM) != 0) {
					*fsp = fs;
					return (0);
				}
				break;
			}
			if (fs != NULL) {
				UFS_FREE(fs, filltype);
				fs = NULL;
			}
			if (error == ENOENT)
				continue;
			return (error);
		}
		if (sblock_try[i] == -1)
			return (ENOENT);
	}
	/*
	 * Read in the superblock summary information.
	 */
	size = fs->fs_cssize;
	blks = howmany(size, fs->fs_fsize);
	if (fs->fs_contigsumsize > 0)
		size += fs->fs_ncg * sizeof(int32_t);
	size += fs->fs_ncg * sizeof(uint8_t);
	if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) {
		UFS_FREE(fs, filltype);
		return (ENOMEM);
	}
	bzero(fs_si, sizeof(*fs_si));
	fs->fs_si = fs_si;
	if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) {
		UFS_FREE(fs->fs_si, filltype);
		UFS_FREE(fs, filltype);
		return (ENOMEM);
	}
	fs->fs_csp = (struct csum *)space;
	for (i = 0; i < blks; i += fs->fs_frag) {
		size = fs->fs_bsize;
		if (i + fs->fs_frag > blks)
			size = (blks - i) * fs->fs_fsize;
		buf = NULL;
		error = (*readfunc)(devfd,
		    dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
		if (error) {
			if (buf != NULL)
				UFS_FREE(buf, filltype);
			UFS_FREE(fs->fs_csp, filltype);
			UFS_FREE(fs->fs_si, filltype);
			UFS_FREE(fs, filltype);
			return (error);
		}
		memcpy(space, buf, size);
		UFS_FREE(buf, filltype);
		space += size;
	}
	if (fs->fs_contigsumsize > 0) {
		fs->fs_maxcluster = lp = (int32_t *)space;
		for (i = 0; i < fs->fs_ncg; i++)
			*lp++ = fs->fs_contigsumsize;
		space = (uint8_t *)lp;
	}
	size = fs->fs_ncg * sizeof(uint8_t);
	fs->fs_contigdirs = (uint8_t *)space;
	bzero(fs->fs_contigdirs, size);
	*fsp = fs;
	return (0);
}

/*
 * Try to read a superblock from the location specified by sblockloc.
 * Return zero on success or an errno on failure.
 */
static int
readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int flags,
    int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
	struct fs *fs;
	int error, res;
	uint32_t ckhash;

	error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
	if (error != 0)
		return (error);
	fs = *fsp;
	if (fs->fs_magic == FS_BAD_MAGIC)
		return (EINVAL);
	/*
	 * For UFS1 with a 65536 block size, the first backup superblock
	 * is at the same location as the UFS2 superblock. Since SBLOCK_UFS2
	 * is the first location checked, the first backup is the superblock
	 * that will be accessed. Here we fail the lookup so that we can
	 * retry with the correct location for the UFS1 superblock.
	 */
	if (fs->fs_magic == FS_UFS1_MAGIC && (flags & UFS_ALTSBLK) == 0 &&
	    fs->fs_bsize == SBLOCK_UFS2 && sblockloc == SBLOCK_UFS2)
		return (ENOENT);
	if ((error = validate_sblock(fs, flags)) > 0)
		return (error);
	/*
	 * If the filesystem has been run on a kernel without
	 * metadata check hashes, disable them.
	 */
	if ((fs->fs_flags & FS_METACKHASH) == 0)
		fs->fs_metackhash = 0;
	/*
	 * Clear any check-hashes that are not maintained
	 * by this kernel. Also clear any unsupported flags.
	 */
	fs->fs_metackhash &= CK_SUPPORTED;
	fs->fs_flags &= FS_SUPPORTED;
	if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) {
		if ((flags & (UFS_NOMSG | UFS_NOHASHFAIL)) ==
		    (UFS_NOMSG | UFS_NOHASHFAIL))
			return (0);
		if ((flags & UFS_NOMSG) != 0)
			return (EINTEGRITY);
#ifdef _KERNEL
		res = uprintf("Superblock check-hash failed: recorded "
		    "check-hash 0x%x != computed check-hash 0x%x%s\n",
		    fs->fs_ckhash, ckhash,
		    (flags & UFS_NOHASHFAIL) != 0 ? " (Ignored)" : "");
#else
		res = 0;
#endif
		/*
		 * Print check-hash failure if no controlling terminal
		 * in kernel or always if in user-mode (libufs).
		 */
		if (res == 0)
			printf("Superblock check-hash failed: recorded "
			    "check-hash 0x%x != computed check-hash "
			    "0x%x%s\n", fs->fs_ckhash, ckhash,
			    (flags & UFS_NOHASHFAIL) ? " (Ignored)" : "");
		if ((flags & UFS_NOHASHFAIL) != 0)
			return (0);
		return (EINTEGRITY);
	}
	/* Have to set for old filesystems that predate this field */
	fs->fs_sblockactualloc = sblockloc;
	/* Not yet any summary information */
	fs->fs_si = NULL;
	return (0);
}

/*
 * Verify the filesystem values.
 */
#define ILOG2(num)	(fls(num) - 1)
#ifdef STANDALONE_SMALL
#define MPRINT(...)	do { } while (0)
#else
#define MPRINT(...)	if (prtmsg) printf(__VA_ARGS__)
#endif
#define FCHK(lhs, op, rhs, fmt)						\
	if (lhs op rhs) {						\
		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
		    #fmt ")\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,	\
		    #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs);	\
		if (error < 0)						\
			return (ENOENT);				\
		if (error == 0)						\
			error = ENOENT;					\
	}
#define WCHK(lhs, op, rhs, fmt)						\
	if (lhs op rhs) {						\
		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
		    #fmt ")%s\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,\
		    #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs, wmsg);\
		if (error == 0)						\
			error = warnerr;				\
		if (warnerr == 0)					\
			lhs = rhs;					\
	}
#define FCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt)			\
	if (lhs1 op1 rhs1 && lhs2 op2 rhs2) {				\
		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
		    #fmt ") && %s (" #fmt ") %s %s (" #fmt ")\n",	\
		    fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1,	\
		    (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2,	\
		    (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2);	\
		if (error < 0)						\
			return (ENOENT);				\
		if (error == 0)						\
			error = ENOENT;					\
	}

static int
validate_sblock(struct fs *fs, int flags)
{
	uint64_t i, sectorsize;
	uint64_t maxfilesize, sizepb;
	int error, prtmsg, warnerr;
	char *wmsg;

	error = 0;
	sectorsize = dbtob(1);
	prtmsg = ((flags & UFS_NOMSG) == 0);
	warnerr = (flags & UFS_NOWARNFAIL) == UFS_NOWARNFAIL ? 0 : ENOENT;
	wmsg = warnerr ? "" : " (Ignored)";
	/*
	 * Check for endian mismatch between machine and filesystem.
	 */
	if (((fs->fs_magic != FS_UFS2_MAGIC) &&
	    (bswap32(fs->fs_magic) == FS_UFS2_MAGIC)) ||
	    ((fs->fs_magic != FS_UFS1_MAGIC) &&
	    (bswap32(fs->fs_magic) == FS_UFS1_MAGIC))) {
		MPRINT("UFS superblock failed due to endian mismatch "
		    "between machine and filesystem\n");
		return(EILSEQ);
	}
	/*
	 * If just validating for recovery, then do just the minimal
	 * checks needed for the superblock fields needed to find
	 * alternate superblocks.
	 */
	if ((flags & UFS_FSRONLY) == UFS_FSRONLY &&
	    (fs->fs_magic == FS_UFS1_MAGIC || fs->fs_magic == FS_UFS2_MAGIC)) {
		error = -1; /* fail on first error */
		if (fs->fs_magic == FS_UFS2_MAGIC) {
			FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
			FCHK(fs->fs_sblockloc, <, 0, %jd);
			FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
		}
		FCHK(fs->fs_frag, <, 1, %jd);
		FCHK(fs->fs_frag, >, MAXFRAG, %jd);
		FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
		FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
		FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE),
		    %jd);
		FCHK(fs->fs_fsize, <, sectorsize, %jd);
		FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
		FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
		FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
		FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
		FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
		FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
		FCHK(fs->fs_ncg, <, 1, %jd);
		FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
		FCHK(fs->fs_old_cgoffset, <, 0, %jd);
		FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
		FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg,
		    %jd);
		FCHK(fs->fs_sblkno, !=, roundup(
		    howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
		    fs->fs_frag), %jd);
		FCHK(CGSIZE(fs), >, fs->fs_bsize, %jd);
		/* Only need to validate these if reading in csum data */
		if ((flags & UFS_NOCSUM) != 0)
			return (error);
		FCHK((uint64_t)fs->fs_ipg * fs->fs_ncg, >,
		    (((int64_t)(1)) << 32) - INOPB(fs), %jd);
		FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
		FCHK(fs->fs_cstotal.cs_nifree, >,
		    (uint64_t)fs->fs_ipg * fs->fs_ncg, %jd);
		FCHK(fs->fs_cstotal.cs_ndir, >,
		    ((uint64_t)fs->fs_ipg * fs->fs_ncg) -
		    fs->fs_cstotal.cs_nifree, %jd);
		FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
		FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg,
		    %jd);
		FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
		FCHK(fs->fs_csaddr, <, 0, %jd);
		FCHK(fs->fs_cssize, !=,
		    fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
		FCHK(fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize), >,
		    fs->fs_size, %jd);
		FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)),
		    %jd);
		FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize,
		    fs->fs_fsize)), >, dtog(fs, fs->fs_csaddr), %jd);
		return (error);
	}
	if (fs->fs_magic == FS_UFS2_MAGIC) {
		if ((flags & UFS_ALTSBLK) == 0)
			FCHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS2,
			    fs->fs_sblockactualloc, !=, 0, %jd);
		FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
		FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
			sizeof(ufs2_daddr_t)), %jd);
		FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs2_daddr_t),
		    %jd);
		FCHK(fs->fs_inopb, !=,
		    fs->fs_bsize / sizeof(struct ufs2_dinode), %jd);
	} else if (fs->fs_magic == FS_UFS1_MAGIC) {
		if ((flags & UFS_ALTSBLK) == 0)
			FCHK(fs->fs_sblockactualloc, >, SBLOCK_UFS1, %jd);
		FCHK(fs->fs_sblockloc, <, 0, %jd);
		FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
		FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs1_daddr_t),
		    %jd);
		FCHK(fs->fs_inopb, !=,
		    fs->fs_bsize / sizeof(struct ufs1_dinode), %jd);
		FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
			sizeof(ufs1_daddr_t)), %jd);
		WCHK(fs->fs_old_inodefmt, !=, FS_44INODEFMT, %jd);
		WCHK(fs->fs_old_rotdelay, !=, 0, %jd);
		WCHK(fs->fs_old_rps, !=, 60, %jd);
		WCHK(fs->fs_old_nspf, !=, fs->fs_fsize / sectorsize, %jd);
		WCHK(fs->fs_old_interleave, !=, 1, %jd);
		WCHK(fs->fs_old_trackskew, !=, 0, %jd);
		WCHK(fs->fs_old_cpc, !=, 0, %jd);
		WCHK(fs->fs_old_postblformat, !=, 1, %jd);
		FCHK(fs->fs_old_nrpos, !=, 1, %jd);
		WCHK(fs->fs_old_nsect, !=, fs->fs_old_spc, %jd);
		WCHK(fs->fs_old_npsect, !=, fs->fs_old_spc, %jd);
	} else {
		/* Bad magic number, so assume not a superblock */
		return (ENOENT);
	}
	FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
	FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
	FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE), %jd);
	FCHK(powerof2(fs->fs_bsize), ==, 0, %jd);
	FCHK(fs->fs_frag, <, 1, %jd);
	FCHK(fs->fs_frag, >, MAXFRAG, %jd);
	FCHK(fs->fs_frag, !=, numfrags(fs, fs->fs_bsize), %jd);
	FCHK(fs->fs_fsize, <, sectorsize, %jd);
	FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
	FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
	FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
	FCHK(fs->fs_ncg, <, 1, %jd);
	FCHK(fs->fs_ipg, <, fs->fs_inopb, %jd);
	FCHK((uint64_t)fs->fs_ipg * fs->fs_ncg, >,
	    (((int64_t)(1)) << 32) - INOPB(fs), %jd);
	FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
	FCHK(fs->fs_cstotal.cs_nifree, >, (uint64_t)fs->fs_ipg * fs->fs_ncg,
	    %jd);
	FCHK(fs->fs_cstotal.cs_ndir, <, 0, %jd);
	FCHK(fs->fs_cstotal.cs_ndir, >,
	    ((uint64_t)fs->fs_ipg * fs->fs_ncg) - fs->fs_cstotal.cs_nifree,
	    %jd);
	FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
	FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
	/* fix for misconfigured filesystems */
	if (fs->fs_maxbsize == 0)
		fs->fs_maxbsize = fs->fs_bsize;
	FCHK(fs->fs_maxbsize, <, fs->fs_bsize, %jd);
	FCHK(powerof2(fs->fs_maxbsize), ==, 0, %jd);
	FCHK(fs->fs_maxbsize, >, FS_MAXCONTIG * fs->fs_bsize, %jd);
	FCHK(fs->fs_bmask, !=, ~(fs->fs_bsize - 1), %#jx);
	FCHK(fs->fs_fmask, !=, ~(fs->fs_fsize - 1), %#jx);
	FCHK(fs->fs_qbmask, !=, ~fs->fs_bmask, %#jx);
	FCHK(fs->fs_qfmask, !=, ~fs->fs_fmask, %#jx);
	FCHK(fs->fs_bshift, !=, ILOG2(fs->fs_bsize), %jd);
	FCHK(fs->fs_fshift, !=, ILOG2(fs->fs_fsize), %jd);
	FCHK(fs->fs_fragshift, !=, ILOG2(fs->fs_frag), %jd);
	FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
	FCHK(fs->fs_old_cgoffset, <, 0, %jd);
	FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
	FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg, %jd);
	FCHK(CGSIZE(fs), >, fs->fs_bsize, %jd);
	/*
	 * If anything has failed up to this point, it is usafe to proceed
	 * as checks below may divide by zero or make other fatal calculations.
	 * So if we have any errors at this point, give up.
	 */
	if (error)
		return (error);
	FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
	FCHK(fs->fs_ipg % fs->fs_inopb, !=, 0, %jd);
	FCHK(fs->fs_sblkno, !=, roundup(
	    howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
	    fs->fs_frag), %jd);
	FCHK(fs->fs_cblkno, !=, fs->fs_sblkno +
	    roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag), %jd);
	FCHK(fs->fs_iblkno, !=, fs->fs_cblkno + fs->fs_frag, %jd);
	FCHK(fs->fs_dblkno, !=, fs->fs_iblkno + fs->fs_ipg / INOPF(fs), %jd);
	FCHK(fs->fs_cgsize, >, fs->fs_bsize, %jd);
	FCHK(fs->fs_cgsize, <, fs->fs_fsize, %jd);
	FCHK(fs->fs_cgsize % fs->fs_fsize, !=, 0, %jd);
	/*
	 * This test is valid, however older versions of growfs failed
	 * to correctly update fs_dsize so will fail this test. Thus we
	 * exclude it from the requirements.
	 */
#ifdef notdef
	WCHK(fs->fs_dsize, !=, fs->fs_size - fs->fs_sblkno -
		fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) -
		howmany(fs->fs_cssize, fs->fs_fsize), %jd);
#endif
	WCHK(fs->fs_metaspace, <, 0, %jd);
	WCHK(fs->fs_metaspace, >, fs->fs_fpg / 2, %jd);
	WCHK(fs->fs_minfree, >, 99, %jd%%);
	maxfilesize = fs->fs_bsize * UFS_NDADDR - 1;
	for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) {
		sizepb *= NINDIR(fs);
		maxfilesize += sizepb;
	}
	WCHK(fs->fs_maxfilesize, !=, maxfilesize, %jd);
	/*
	 * These values have a tight interaction with each other that
	 * makes it hard to tightly bound them. So we can only check
	 * that they are within a broader possible range.
	 *
	 * The size cannot always be accurately determined, but ensure
	 * that it is consistent with the number of cylinder groups (fs_ncg)
	 * and the number of fragments per cylinder group (fs_fpg). Ensure
	 * that the summary information size is correct and that it starts
	 * and ends in the data area of the same cylinder group.
	 */
	FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
	FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg, %jd);
	FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
	/*
	 * If we are not requested to read in the csum data stop here
	 * as the correctness of the remaining values is only important
	 * to bound the space needed to be allocated to hold the csum data.
	 */
	if ((flags & UFS_NOCSUM) != 0)
		return (error);
	FCHK(fs->fs_csaddr, <, 0, %jd);
	FCHK(fs->fs_cssize, !=,
	    fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
	FCHK(fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize), >,
	    fs->fs_size, %jd);
	FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)), %jd);
	FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize)), >,
	    dtog(fs, fs->fs_csaddr), %jd);
	/*
	 * With file system clustering it is possible to allocate
	 * many contiguous blocks. The kernel variable maxphys defines
	 * the maximum transfer size permitted by the controller and/or
	 * buffering. The fs_maxcontig parameter controls the maximum
	 * number of blocks that the filesystem will read or write
	 * in a single transfer. It is calculated when the filesystem
	 * is created as maxphys / fs_bsize. The loader uses a maxphys
	 * of 128K even when running on a system that supports larger
	 * values. If the filesystem was built on a system that supports
	 * a larger maxphys (1M is typical) it will have configured
	 * fs_maxcontig for that larger system. So we bound the upper
	 * allowable limit for fs_maxconfig to be able to at least 
	 * work with a 1M maxphys on the smallest block size filesystem:
	 * 1M / 4096 == 256. There is no harm in allowing the mounting of
	 * filesystems that make larger than maxphys I/O requests because
	 * those (mostly 32-bit machines) can (very slowly) handle I/O
	 * requests that exceed maxphys.
	 */
	WCHK(fs->fs_maxcontig, <, 0, %jd);
	WCHK(fs->fs_maxcontig, >, MAX(256, maxphys / fs->fs_bsize), %jd);
	FCHK2(fs->fs_maxcontig, ==, 0, fs->fs_contigsumsize, !=, 0, %jd);
	FCHK2(fs->fs_maxcontig, >, 1, fs->fs_contigsumsize, !=,
	    MIN(fs->fs_maxcontig, FS_MAXCONTIG), %jd);
	return (error);
}

/*
 * Make an extensive search to find a superblock. If the superblock
 * in the standard place cannot be used, try looking for one of the
 * backup superblocks.
 *
 * Flags are made up of the following or'ed together options:
 *
 * UFS_NOMSG indicates that superblock inconsistency error messages
 *    should not be printed.
 *
 * UFS_NOCSUM causes only the superblock itself to be returned, but does
 *    not read in any auxillary data structures like the cylinder group
 *    summary information.
 */
int
ffs_sbsearch(void *devfd, struct fs **fsp, int reqflags,
    struct malloc_type *filltype,
    int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
	struct fsrecovery *fsr;
	struct fs *protofs;
	void *fsrbuf;
	char *cp;
	long nocsum, flags, msg, cg;
	off_t sblk, secsize;
	int error;

	msg = (reqflags & UFS_NOMSG) == 0;
	nocsum = reqflags & UFS_NOCSUM;
	/*
	 * Try normal superblock read and return it if it works.
	 *
	 * Suppress messages if it fails until we find out if
	 * failure can be avoided.
	 */
	flags = UFS_NOMSG | nocsum;
	error = ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc);
	/*
	 * If successful or endian error, no need to try further.
	 */
	if (error == 0 || error == EILSEQ) {
		if (msg && error == EILSEQ)
			printf("UFS superblock failed due to endian mismatch "
			    "between machine and filesystem\n");
		return (error);
	}
	/*
	 * First try: ignoring hash failures.
	 */
	flags |= UFS_NOHASHFAIL;
	if (msg)
		flags &= ~UFS_NOMSG;
	if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) == 0)
		return (0);
	/*
	 * Next up is to check if fields of the superblock that are
	 * needed to find backup superblocks are usable.
	 */
	if (msg)
		printf("Attempted recovery for standard superblock: failed\n");
	flags = UFS_FSRONLY | UFS_NOHASHFAIL | UFS_NOCSUM | UFS_NOMSG;
	if (ffs_sbget(devfd, &protofs, UFS_STDSB, flags, filltype,
	    readfunc) == 0) {
		if (msg)
			printf("Attempt extraction of recovery data from "
			    "standard superblock.\n");
	} else {
		/*
		 * Final desperation is to see if alternate superblock
		 * parameters have been saved in the boot area.
		 */
		if (msg)
			printf("Attempted extraction of recovery data from "
			    "standard superblock: failed\nAttempt to find "
			    "boot zone recovery data.\n");
		/*
		 * Look to see if recovery information has been saved.
		 * If so we can generate a prototype superblock based
		 * on that information.
		 *
		 * We need fragments-per-group, number of cylinder groups,
		 * location of the superblock within the cylinder group, and
		 * the conversion from filesystem fragments to disk blocks.
		 *
		 * When building a UFS2 filesystem, newfs(8) stores these
		 * details at the end of the boot block area at the start
		 * of the filesystem partition. If they have been overwritten
		 * by a boot block, we fail.  But usually they are there
		 * and we can use them.
		 *
		 * We could ask the underlying device for its sector size,
		 * but some devices lie. So we just try a plausible range.
		 */
		error = ENOENT;
		fsrbuf = NULL;
		for (secsize = dbtob(1); secsize <= SBLOCKSIZE; secsize *= 2)
			if ((error = (*readfunc)(devfd, (SBLOCK_UFS2 - secsize),
			    &fsrbuf, secsize)) == 0)
				break;
		if (error != 0)
			goto trynowarn;
		cp = fsrbuf; /* type change to keep compiler happy */
		fsr = (struct fsrecovery *)&cp[secsize - sizeof *fsr];
		if (fsr->fsr_magic != FS_UFS2_MAGIC ||
		    (protofs = UFS_MALLOC(SBLOCKSIZE, filltype, M_NOWAIT))
		    == NULL) {
			UFS_FREE(fsrbuf, filltype);
			goto trynowarn;
		}
		memset(protofs, 0, sizeof(struct fs));
		protofs->fs_fpg = fsr->fsr_fpg;
		protofs->fs_fsbtodb = fsr->fsr_fsbtodb;
		protofs->fs_sblkno = fsr->fsr_sblkno;
		protofs->fs_magic = fsr->fsr_magic;
		protofs->fs_ncg = fsr->fsr_ncg;
		UFS_FREE(fsrbuf, filltype);
	}
	/*
	 * Scan looking for alternative superblocks.
	 */
	flags = nocsum;
	if (!msg)
		flags |= UFS_NOMSG;
	for (cg = 0; cg < protofs->fs_ncg; cg++) {
		sblk = fsbtodb(protofs, cgsblock(protofs, cg));
		if (msg)
			printf("Try cg %ld at sblock loc %jd\n", cg,
			    (intmax_t)sblk);
		if (ffs_sbget(devfd, fsp, dbtob(sblk), flags, filltype,
		    readfunc) == 0) {
			if (msg)
				printf("Succeeded with alternate superblock "
				    "at %jd\n", (intmax_t)sblk);
			UFS_FREE(protofs, filltype);
			return (0);
		}
	}
	UFS_FREE(protofs, filltype);
	/*
	 * Our alternate superblock strategies failed. Our last ditch effort
	 * is to see if the standard superblock has only non-critical errors.
	 */
trynowarn:
	flags = UFS_NOWARNFAIL | UFS_NOMSG | nocsum;
	if (msg) {
		printf("Finding an alternate superblock failed.\nCheck for "
		    "only non-critical errors in standard superblock\n");
		flags &= ~UFS_NOMSG;
	}
	if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) != 0) {
		if (msg)
			printf("Failed, superblock has critical errors\n");
		return (ENOENT);
	}
	if (msg)
		printf("Success, using standard superblock with "
		    "non-critical errors.\n");
	return (0);
}

/*
 * Write a superblock to the devfd device from the memory pointed to by fs.
 * Write out the superblock summary information if it is present.
 *
 * If the write is successful, zero is returned. Otherwise one of the
 * following error values is returned:
 *     EIO: failed to write superblock.
 *     EIO: failed to write superblock summary information.
 */
int
ffs_sbput(void *devfd, struct fs *fs, off_t loc,
    int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
{
	int i, error, blks, size;
	uint8_t *space;

	/*
	 * If there is summary information, write it first, so if there
	 * is an error, the superblock will not be marked as clean.
	 */
	if (fs->fs_si != NULL && fs->fs_csp != NULL) {
		blks = howmany(fs->fs_cssize, fs->fs_fsize);
		space = (uint8_t *)fs->fs_csp;
		for (i = 0; i < blks; i += fs->fs_frag) {
			size = fs->fs_bsize;
			if (i + fs->fs_frag > blks)
				size = (blks - i) * fs->fs_fsize;
			if ((error = (*writefunc)(devfd,
			     dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
			     space, size)) != 0)
				return (error);
			space += size;
		}
	}
	fs->fs_fmod = 0;
#ifndef _KERNEL
	{
		struct fs_summary_info *fs_si;

		fs->fs_time = time(NULL);
		/* Clear the pointers for the duration of writing. */
		fs_si = fs->fs_si;
		fs->fs_si = NULL;
		fs->fs_ckhash = ffs_calc_sbhash(fs);
		error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
		fs->fs_si = fs_si;
	}
#else /* _KERNEL */
	fs->fs_time = time_second;
	fs->fs_ckhash = ffs_calc_sbhash(fs);
	error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
#endif /* _KERNEL */
	return (error);
}

/*
 * Calculate the check-hash for a superblock.
 */
uint32_t
ffs_calc_sbhash(struct fs *fs)
{
	uint32_t ckhash, save_ckhash;

	/*
	 * A filesystem that was using a superblock ckhash may be moved
	 * to an older kernel that does not support ckhashes. The
	 * older kernel will clear the FS_METACKHASH flag indicating
	 * that it does not update hashes. When the disk is moved back
	 * to a kernel capable of ckhashes it disables them on mount:
	 *
	 *	if ((fs->fs_flags & FS_METACKHASH) == 0)
	 *		fs->fs_metackhash = 0;
	 *
	 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an
	 * old stale value in the fs->fs_ckhash field. Thus the need to
	 * just accept what is there.
	 */
	if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0)
		return (fs->fs_ckhash);

	save_ckhash = fs->fs_ckhash;
	fs->fs_ckhash = 0;
	/*
	 * If newly read from disk, the caller is responsible for
	 * verifying that fs->fs_sbsize <= SBLOCKSIZE.
	 */
	ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize);
	fs->fs_ckhash = save_ckhash;
	return (ckhash);
}

/*
 * Update the frsum fields to reflect addition or deletion
 * of some frags.
 */
void
ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
{
	int inblk;
	int field, subfield;
	int siz, pos;

	inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
	fragmap <<= 1;
	for (siz = 1; siz < fs->fs_frag; siz++) {
		if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
			continue;
		field = around[siz];
		subfield = inside[siz];
		for (pos = siz; pos <= fs->fs_frag; pos++) {
			if ((fragmap & field) == subfield) {
				fraglist[siz] += cnt;
				pos += siz;
				field <<= siz;
				subfield <<= siz;
			}
			field <<= 1;
			subfield <<= 1;
		}
	}
}

/*
 * block operations
 *
 * check if a block is available
 */
int
ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
{
	unsigned char mask;

	switch ((int)fs->fs_frag) {
	case 8:
		return (cp[h] == 0xff);
	case 4:
		mask = 0x0f << ((h & 0x1) << 2);
		return ((cp[h >> 1] & mask) == mask);
	case 2:
		mask = 0x03 << ((h & 0x3) << 1);
		return ((cp[h >> 2] & mask) == mask);
	case 1:
		mask = 0x01 << (h & 0x7);
		return ((cp[h >> 3] & mask) == mask);
	default:
#ifdef _KERNEL
		panic("ffs_isblock");
#endif
		break;
	}
	return (0);
}

/*
 * check if a block is free
 */
int
ffs_isfreeblock(struct fs *fs, uint8_t *cp, ufs1_daddr_t h)
{

	switch ((int)fs->fs_frag) {
	case 8:
		return (cp[h] == 0);
	case 4:
		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
	case 2:
		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
	case 1:
		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
	default:
#ifdef _KERNEL
		panic("ffs_isfreeblock");
#endif
		break;
	}
	return (0);
}

/*
 * take a block out of the map
 */
void
ffs_clrblock(struct fs *fs, uint8_t *cp, ufs1_daddr_t h)
{

	switch ((int)fs->fs_frag) {
	case 8:
		cp[h] = 0;
		return;
	case 4:
		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
		return;
	case 2:
		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
		return;
	case 1:
		cp[h >> 3] &= ~(0x01 << (h & 0x7));
		return;
	default:
#ifdef _KERNEL
		panic("ffs_clrblock");
#endif
		break;
	}
}

/*
 * put a block into the map
 */
void
ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
{

	switch ((int)fs->fs_frag) {
	case 8:
		cp[h] = 0xff;
		return;
	case 4:
		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
		return;
	case 2:
		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
		return;
	case 1:
		cp[h >> 3] |= (0x01 << (h & 0x7));
		return;
	default:
#ifdef _KERNEL
		panic("ffs_setblock");
#endif
		break;
	}
}

/*
 * Update the cluster map because of an allocation or free.
 *
 * Cnt == 1 means free; cnt == -1 means allocating.
 */
void
ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
{
	int32_t *sump;
	int32_t *lp;
	uint8_t *freemapp, *mapp;
	int i, start, end, forw, back, map;
	uint64_t bit;

	if (fs->fs_contigsumsize <= 0)
		return;
	freemapp = cg_clustersfree(cgp);
	sump = cg_clustersum(cgp);
	/*
	 * Allocate or clear the actual block.
	 */
	if (cnt > 0)
		setbit(freemapp, blkno);
	else
		clrbit(freemapp, blkno);
	/*
	 * Find the size of the cluster going forward.
	 */
	start = blkno + 1;
	end = start + fs->fs_contigsumsize;
	if (end >= cgp->cg_nclusterblks)
		end = cgp->cg_nclusterblks;
	mapp = &freemapp[start / NBBY];
	map = *mapp++;
	bit = 1U << (start % NBBY);
	for (i = start; i < end; i++) {
		if ((map & bit) == 0)
			break;
		if ((i & (NBBY - 1)) != (NBBY - 1)) {
			bit <<= 1;
		} else {
			map = *mapp++;
			bit = 1;
		}
	}
	forw = i - start;
	/*
	 * Find the size of the cluster going backward.
	 */
	start = blkno - 1;
	end = start - fs->fs_contigsumsize;
	if (end < 0)
		end = -1;
	mapp = &freemapp[start / NBBY];
	map = *mapp--;
	bit = 1U << (start % NBBY);
	for (i = start; i > end; i--) {
		if ((map & bit) == 0)
			break;
		if ((i & (NBBY - 1)) != 0) {
			bit >>= 1;
		} else {
			map = *mapp--;
			bit = 1U << (NBBY - 1);
		}
	}
	back = start - i;
	/*
	 * Account for old cluster and the possibly new forward and
	 * back clusters.
	 */
	i = back + forw + 1;
	if (i > fs->fs_contigsumsize)
		i = fs->fs_contigsumsize;
	sump[i] += cnt;
	if (back > 0)
		sump[back] -= cnt;
	if (forw > 0)
		sump[forw] -= cnt;
	/*
	 * Update cluster summary information.
	 */
	lp = &sump[fs->fs_contigsumsize];
	for (i = fs->fs_contigsumsize; i > 0; i--)
		if (*lp-- > 0)
			break;
	fs->fs_maxcluster[cgp->cg_cgx] = i;
}