aboutsummaryrefslogtreecommitdiff
path: root/sys/vm/uma_core.c
blob: 28b959d66b4a1e91f04ebebe32e8d7f168ce07eb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
 * Copyright (c) 2004-2006 Robert N. M. Watson
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * uma_core.c  Implementation of the Universal Memory allocator
 *
 * This allocator is intended to replace the multitude of similar object caches
 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
 * efficient.  A primary design goal is to return unused memory to the rest of
 * the system.  This will make the system as a whole more flexible due to the
 * ability to move memory to subsystems which most need it instead of leaving
 * pools of reserved memory unused.
 *
 * The basic ideas stem from similar slab/zone based allocators whose algorithms
 * are well known.
 *
 */

/*
 * TODO:
 *	- Improve memory usage for large allocations
 *	- Investigate cache size adjustments
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ddb.h"
#include "opt_param.h"
#include "opt_vm.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bitset.h>
#include <sys/domainset.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/types.h>
#include <sys/limits.h>
#include <sys/queue.h>
#include <sys/malloc.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/sysctl.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/random.h>
#include <sys/rwlock.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/sleepqueue.h>
#include <sys/smp.h>
#include <sys/smr.h>
#include <sys/taskqueue.h>
#include <sys/vmmeter.h>

#include <vm/vm.h>
#include <vm/vm_domainset.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_param.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>
#include <vm/uma_int.h>
#include <vm/uma_dbg.h>

#include <ddb/ddb.h>

#ifdef DEBUG_MEMGUARD
#include <vm/memguard.h>
#endif

#include <machine/md_var.h>

#ifdef INVARIANTS
#define	UMA_ALWAYS_CTORDTOR	1
#else
#define	UMA_ALWAYS_CTORDTOR	0
#endif

/*
 * This is the zone and keg from which all zones are spawned.
 */
static uma_zone_t kegs;
static uma_zone_t zones;

/*
 * These are the two zones from which all offpage uma_slab_ts are allocated.
 *
 * One zone is for slab headers that can represent a larger number of items,
 * making the slabs themselves more efficient, and the other zone is for
 * headers that are smaller and represent fewer items, making the headers more
 * efficient.
 */
#define	SLABZONE_SIZE(setsize)					\
    (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
#define	SLABZONE0_SETSIZE	(PAGE_SIZE / 16)
#define	SLABZONE1_SETSIZE	SLAB_MAX_SETSIZE
#define	SLABZONE0_SIZE	SLABZONE_SIZE(SLABZONE0_SETSIZE)
#define	SLABZONE1_SIZE	SLABZONE_SIZE(SLABZONE1_SETSIZE)
static uma_zone_t slabzones[2];

/*
 * The initial hash tables come out of this zone so they can be allocated
 * prior to malloc coming up.
 */
static uma_zone_t hashzone;

/* The boot-time adjusted value for cache line alignment. */
int uma_align_cache = 64 - 1;

static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");

/*
 * Are we allowed to allocate buckets?
 */
static int bucketdisable = 1;

/* Linked list of all kegs in the system */
static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);

/* Linked list of all cache-only zones in the system */
static LIST_HEAD(,uma_zone) uma_cachezones =
    LIST_HEAD_INITIALIZER(uma_cachezones);

/* This RW lock protects the keg list */
static struct rwlock_padalign __exclusive_cache_line uma_rwlock;

/*
 * First available virual address for boot time allocations.
 */
static vm_offset_t bootstart;
static vm_offset_t bootmem;

static struct sx uma_reclaim_lock;

/*
 * kmem soft limit, initialized by uma_set_limit().  Ensure that early
 * allocations don't trigger a wakeup of the reclaim thread.
 */
unsigned long uma_kmem_limit = LONG_MAX;
SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
    "UMA kernel memory soft limit");
unsigned long uma_kmem_total;
SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
    "UMA kernel memory usage");

/* Is the VM done starting up? */
static enum {
	BOOT_COLD,
	BOOT_KVA,
	BOOT_RUNNING,
	BOOT_SHUTDOWN,
} booted = BOOT_COLD;

/*
 * This is the handle used to schedule events that need to happen
 * outside of the allocation fast path.
 */
static struct callout uma_callout;
#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */

/*
 * This structure is passed as the zone ctor arg so that I don't have to create
 * a special allocation function just for zones.
 */
struct uma_zctor_args {
	const char *name;
	size_t size;
	uma_ctor ctor;
	uma_dtor dtor;
	uma_init uminit;
	uma_fini fini;
	uma_import import;
	uma_release release;
	void *arg;
	uma_keg_t keg;
	int align;
	uint32_t flags;
};

struct uma_kctor_args {
	uma_zone_t zone;
	size_t size;
	uma_init uminit;
	uma_fini fini;
	int align;
	uint32_t flags;
};

struct uma_bucket_zone {
	uma_zone_t	ubz_zone;
	char		*ubz_name;
	int		ubz_entries;	/* Number of items it can hold. */
	int		ubz_maxsize;	/* Maximum allocation size per-item. */
};

/*
 * Compute the actual number of bucket entries to pack them in power
 * of two sizes for more efficient space utilization.
 */
#define	BUCKET_SIZE(n)						\
    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))

#define	BUCKET_MAX	BUCKET_SIZE(256)
#define	BUCKET_MIN	BUCKET_SIZE(4)

struct uma_bucket_zone bucket_zones[] = {
	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
	{ NULL, NULL, 0}
};

/*
 * Flags and enumerations to be passed to internal functions.
 */
enum zfreeskip {
	SKIP_NONE =	0,
	SKIP_CNT =	0x00000001,
	SKIP_DTOR =	0x00010000,
	SKIP_FINI =	0x00020000,
};

/* Prototypes.. */

void	uma_startup1(vm_offset_t);
void	uma_startup2(void);

static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
static void page_free(void *, vm_size_t, uint8_t);
static void pcpu_page_free(void *, vm_size_t, uint8_t);
static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
static void cache_drain(uma_zone_t);
static void bucket_drain(uma_zone_t, uma_bucket_t);
static void bucket_cache_reclaim(uma_zone_t zone, bool);
static int keg_ctor(void *, int, void *, int);
static void keg_dtor(void *, int, void *);
static int zone_ctor(void *, int, void *, int);
static void zone_dtor(void *, int, void *);
static inline void item_dtor(uma_zone_t zone, void *item, int size,
    void *udata, enum zfreeskip skip);
static int zero_init(void *, int, int);
static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
static void zone_timeout(uma_zone_t zone, void *);
static int hash_alloc(struct uma_hash *, u_int);
static int hash_expand(struct uma_hash *, struct uma_hash *);
static void hash_free(struct uma_hash *hash);
static void uma_timeout(void *);
static void uma_startup3(void);
static void uma_shutdown(void);
static void *zone_alloc_item(uma_zone_t, void *, int, int);
static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
static void zone_free_limit(uma_zone_t zone, int count);
static void bucket_enable(void);
static void bucket_init(void);
static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
static void bucket_zone_drain(void);
static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
    uma_fini fini, int align, uint32_t flags);
static int zone_import(void *, void **, int, int, int);
static void zone_release(void *, void **, int);
static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int);

static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);

static uint64_t uma_zone_get_allocs(uma_zone_t zone);

#ifdef INVARIANTS
static uint64_t uma_keg_get_allocs(uma_keg_t zone);
static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);

static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);

static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0,
    "Memory allocation debugging");

static u_int dbg_divisor = 1;
SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
    CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
    "Debug & thrash every this item in memory allocator");

static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
    &uma_dbg_cnt, "memory items debugged");
SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
    &uma_skip_cnt, "memory items skipped, not debugged");
#endif

SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);

SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator");

SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");

SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");

static int zone_warnings = 1;
SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
    "Warn when UMA zones becomes full");

/*
 * Select the slab zone for an offpage slab with the given maximum item count.
 */
static inline uma_zone_t
slabzone(int ipers)
{

	return (slabzones[ipers > SLABZONE0_SETSIZE]);
}

/*
 * This routine checks to see whether or not it's safe to enable buckets.
 */
static void
bucket_enable(void)
{

	KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
	bucketdisable = vm_page_count_min();
}

/*
 * Initialize bucket_zones, the array of zones of buckets of various sizes.
 *
 * For each zone, calculate the memory required for each bucket, consisting
 * of the header and an array of pointers.
 */
static void
bucket_init(void)
{
	struct uma_bucket_zone *ubz;
	int size;

	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
		size += sizeof(void *) * ubz->ubz_entries;
		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
		    UMA_ZONE_FIRSTTOUCH);
	}
}

/*
 * Given a desired number of entries for a bucket, return the zone from which
 * to allocate the bucket.
 */
static struct uma_bucket_zone *
bucket_zone_lookup(int entries)
{
	struct uma_bucket_zone *ubz;

	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
		if (ubz->ubz_entries >= entries)
			return (ubz);
	ubz--;
	return (ubz);
}

static struct uma_bucket_zone *
bucket_zone_max(uma_zone_t zone, int nitems)
{
	struct uma_bucket_zone *ubz;
	int bpcpu;

	bpcpu = 2;
	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
		/* Count the cross-domain bucket. */
		bpcpu++;

	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
		if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems)
			break;
	if (ubz == &bucket_zones[0])
		ubz = NULL;
	else
		ubz--;
	return (ubz);
}

static int
bucket_select(int size)
{
	struct uma_bucket_zone *ubz;

	ubz = &bucket_zones[0];
	if (size > ubz->ubz_maxsize)
		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);

	for (; ubz->ubz_entries != 0; ubz++)
		if (ubz->ubz_maxsize < size)
			break;
	ubz--;
	return (ubz->ubz_entries);
}

static uma_bucket_t
bucket_alloc(uma_zone_t zone, void *udata, int flags)
{
	struct uma_bucket_zone *ubz;
	uma_bucket_t bucket;

	/*
	 * Don't allocate buckets early in boot.
	 */
	if (__predict_false(booted < BOOT_KVA))
		return (NULL);

	/*
	 * To limit bucket recursion we store the original zone flags
	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
	 * NOVM flag to persist even through deep recursions.  We also
	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
	 * a bucket for a bucket zone so we do not allow infinite bucket
	 * recursion.  This cookie will even persist to frees of unused
	 * buckets via the allocation path or bucket allocations in the
	 * free path.
	 */
	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
		udata = (void *)(uintptr_t)zone->uz_flags;
	else {
		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
			return (NULL);
		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
	}
	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
		flags |= M_NOVM;
	ubz = bucket_zone_lookup(zone->uz_bucket_size);
	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
		ubz++;
	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
	if (bucket) {
#ifdef INVARIANTS
		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
#endif
		bucket->ub_cnt = 0;
		bucket->ub_entries = ubz->ubz_entries;
		bucket->ub_seq = SMR_SEQ_INVALID;
		CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
		    zone->uz_name, zone, bucket);
	}

	return (bucket);
}

static void
bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
{
	struct uma_bucket_zone *ubz;

	KASSERT(bucket->ub_cnt == 0,
	    ("bucket_free: Freeing a non free bucket."));
	KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
	    ("bucket_free: Freeing an SMR bucket."));
	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
		udata = (void *)(uintptr_t)zone->uz_flags;
	ubz = bucket_zone_lookup(bucket->ub_entries);
	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
}

static void
bucket_zone_drain(void)
{
	struct uma_bucket_zone *ubz;

	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
		uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN);
}

/*
 * Attempt to satisfy an allocation by retrieving a full bucket from one of the
 * zone's caches.  If a bucket is found the zone is not locked on return.
 */
static uma_bucket_t
zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom)
{
	uma_bucket_t bucket;
	int i;
	bool dtor = false;

	ZONE_LOCK_ASSERT(zone);

	if ((bucket = TAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
		return (NULL);

	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
	    bucket->ub_seq != SMR_SEQ_INVALID) {
		if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
			return (NULL);
		bucket->ub_seq = SMR_SEQ_INVALID;
		dtor = (zone->uz_dtor != NULL) | UMA_ALWAYS_CTORDTOR;
	}
	MPASS(zdom->uzd_nitems >= bucket->ub_cnt);
	TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link);
	zdom->uzd_nitems -= bucket->ub_cnt;
	if (zdom->uzd_imin > zdom->uzd_nitems)
		zdom->uzd_imin = zdom->uzd_nitems;
	zone->uz_bkt_count -= bucket->ub_cnt;
	ZONE_UNLOCK(zone);
	if (dtor)
		for (i = 0; i < bucket->ub_cnt; i++)
			item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
			    NULL, SKIP_NONE);

	return (bucket);
}

/*
 * Insert a full bucket into the specified cache.  The "ws" parameter indicates
 * whether the bucket's contents should be counted as part of the zone's working
 * set.
 */
static void
zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket,
    const bool ws)
{

	ZONE_LOCK_ASSERT(zone);
	KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max,
	    ("%s: zone %p overflow", __func__, zone));

	if (ws && bucket->ub_seq == SMR_SEQ_INVALID)
		TAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
	else
		TAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
	zdom->uzd_nitems += bucket->ub_cnt;
	if (ws && zdom->uzd_imax < zdom->uzd_nitems)
		zdom->uzd_imax = zdom->uzd_nitems;
	zone->uz_bkt_count += bucket->ub_cnt;
}

/* Pops an item out of a per-cpu cache bucket. */
static inline void *
cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
{
	void *item;

	CRITICAL_ASSERT(curthread);

	bucket->ucb_cnt--;
	item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
#ifdef INVARIANTS
	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
	KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
#endif
	cache->uc_allocs++;

	return (item);
}

/* Pushes an item into a per-cpu cache bucket. */
static inline void
cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
{

	CRITICAL_ASSERT(curthread);
	KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
	    ("uma_zfree: Freeing to non free bucket index."));

	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
	bucket->ucb_cnt++;
	cache->uc_frees++;
}

/*
 * Unload a UMA bucket from a per-cpu cache.
 */
static inline uma_bucket_t
cache_bucket_unload(uma_cache_bucket_t bucket)
{
	uma_bucket_t b;

	b = bucket->ucb_bucket;
	if (b != NULL) {
		MPASS(b->ub_entries == bucket->ucb_entries);
		b->ub_cnt = bucket->ucb_cnt;
		bucket->ucb_bucket = NULL;
		bucket->ucb_entries = bucket->ucb_cnt = 0;
	}

	return (b);
}

static inline uma_bucket_t
cache_bucket_unload_alloc(uma_cache_t cache)
{

	return (cache_bucket_unload(&cache->uc_allocbucket));
}

static inline uma_bucket_t
cache_bucket_unload_free(uma_cache_t cache)
{

	return (cache_bucket_unload(&cache->uc_freebucket));
}

static inline uma_bucket_t
cache_bucket_unload_cross(uma_cache_t cache)
{

	return (cache_bucket_unload(&cache->uc_crossbucket));
}

/*
 * Load a bucket into a per-cpu cache bucket.
 */
static inline void
cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
{

	CRITICAL_ASSERT(curthread);
	MPASS(bucket->ucb_bucket == NULL);

	bucket->ucb_bucket = b;
	bucket->ucb_cnt = b->ub_cnt;
	bucket->ucb_entries = b->ub_entries;
}

static inline void
cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
{

	cache_bucket_load(&cache->uc_allocbucket, b);
}

static inline void
cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
{

	cache_bucket_load(&cache->uc_freebucket, b);
}

#ifdef NUMA
static inline void 
cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
{

	cache_bucket_load(&cache->uc_crossbucket, b);
}
#endif

/*
 * Copy and preserve ucb_spare.
 */
static inline void
cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
{

	b1->ucb_bucket = b2->ucb_bucket;
	b1->ucb_entries = b2->ucb_entries;
	b1->ucb_cnt = b2->ucb_cnt;
}

/*
 * Swap two cache buckets.
 */
static inline void
cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
{
	struct uma_cache_bucket b3;

	CRITICAL_ASSERT(curthread);

	cache_bucket_copy(&b3, b1);
	cache_bucket_copy(b1, b2);
	cache_bucket_copy(b2, &b3);
}

static void
zone_log_warning(uma_zone_t zone)
{
	static const struct timeval warninterval = { 300, 0 };

	if (!zone_warnings || zone->uz_warning == NULL)
		return;

	if (ratecheck(&zone->uz_ratecheck, &warninterval))
		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
}

static inline void
zone_maxaction(uma_zone_t zone)
{

	if (zone->uz_maxaction.ta_func != NULL)
		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
}

/*
 * Routine called by timeout which is used to fire off some time interval
 * based calculations.  (stats, hash size, etc.)
 *
 * Arguments:
 *	arg   Unused
 *
 * Returns:
 *	Nothing
 */
static void
uma_timeout(void *unused)
{
	bucket_enable();
	zone_foreach(zone_timeout, NULL);

	/* Reschedule this event */
	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
}

/*
 * Update the working set size estimate for the zone's bucket cache.
 * The constants chosen here are somewhat arbitrary.  With an update period of
 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the
 * last 100s.
 */
static void
zone_domain_update_wss(uma_zone_domain_t zdom)
{
	long wss;

	MPASS(zdom->uzd_imax >= zdom->uzd_imin);
	wss = zdom->uzd_imax - zdom->uzd_imin;
	zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems;
	zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5;
}

/*
 * Routine to perform timeout driven calculations.  This expands the
 * hashes and does per cpu statistics aggregation.
 *
 *  Returns nothing.
 */
static void
zone_timeout(uma_zone_t zone, void *unused)
{
	uma_keg_t keg;
	u_int slabs, pages;

	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
		goto update_wss;

	keg = zone->uz_keg;

	/*
	 * Hash zones are non-numa by definition so the first domain
	 * is the only one present.
	 */
	KEG_LOCK(keg, 0);
	pages = keg->uk_domain[0].ud_pages;

	/*
	 * Expand the keg hash table.
	 *
	 * This is done if the number of slabs is larger than the hash size.
	 * What I'm trying to do here is completely reduce collisions.  This
	 * may be a little aggressive.  Should I allow for two collisions max?
	 */
	if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
		struct uma_hash newhash;
		struct uma_hash oldhash;
		int ret;

		/*
		 * This is so involved because allocating and freeing
		 * while the keg lock is held will lead to deadlock.
		 * I have to do everything in stages and check for
		 * races.
		 */
		KEG_UNLOCK(keg, 0);
		ret = hash_alloc(&newhash, 1 << fls(slabs));
		KEG_LOCK(keg, 0);
		if (ret) {
			if (hash_expand(&keg->uk_hash, &newhash)) {
				oldhash = keg->uk_hash;
				keg->uk_hash = newhash;
			} else
				oldhash = newhash;

			KEG_UNLOCK(keg, 0);
			hash_free(&oldhash);
			goto update_wss;
		}
	}
	KEG_UNLOCK(keg, 0);

update_wss:
	ZONE_LOCK(zone);
	for (int i = 0; i < vm_ndomains; i++)
		zone_domain_update_wss(&zone->uz_domain[i]);
	ZONE_UNLOCK(zone);
}

/*
 * Allocate and zero fill the next sized hash table from the appropriate
 * backing store.
 *
 * Arguments:
 *	hash  A new hash structure with the old hash size in uh_hashsize
 *
 * Returns:
 *	1 on success and 0 on failure.
 */
static int
hash_alloc(struct uma_hash *hash, u_int size)
{
	size_t alloc;

	KASSERT(powerof2(size), ("hash size must be power of 2"));
	if (size > UMA_HASH_SIZE_INIT)  {
		hash->uh_hashsize = size;
		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
		hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
	} else {
		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
		    UMA_ANYDOMAIN, M_WAITOK);
		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
	}
	if (hash->uh_slab_hash) {
		bzero(hash->uh_slab_hash, alloc);
		hash->uh_hashmask = hash->uh_hashsize - 1;
		return (1);
	}

	return (0);
}

/*
 * Expands the hash table for HASH zones.  This is done from zone_timeout
 * to reduce collisions.  This must not be done in the regular allocation
 * path, otherwise, we can recurse on the vm while allocating pages.
 *
 * Arguments:
 *	oldhash  The hash you want to expand
 *	newhash  The hash structure for the new table
 *
 * Returns:
 *	Nothing
 *
 * Discussion:
 */
static int
hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
{
	uma_hash_slab_t slab;
	u_int hval;
	u_int idx;

	if (!newhash->uh_slab_hash)
		return (0);

	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
		return (0);

	/*
	 * I need to investigate hash algorithms for resizing without a
	 * full rehash.
	 */

	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
		while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
			slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
			LIST_REMOVE(slab, uhs_hlink);
			hval = UMA_HASH(newhash, slab->uhs_data);
			LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
			    slab, uhs_hlink);
		}

	return (1);
}

/*
 * Free the hash bucket to the appropriate backing store.
 *
 * Arguments:
 *	slab_hash  The hash bucket we're freeing
 *	hashsize   The number of entries in that hash bucket
 *
 * Returns:
 *	Nothing
 */
static void
hash_free(struct uma_hash *hash)
{
	if (hash->uh_slab_hash == NULL)
		return;
	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
	else
		free(hash->uh_slab_hash, M_UMAHASH);
}

/*
 * Frees all outstanding items in a bucket
 *
 * Arguments:
 *	zone   The zone to free to, must be unlocked.
 *	bucket The free/alloc bucket with items.
 *
 * Returns:
 *	Nothing
 */

static void
bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
{
	int i;

	if (bucket == NULL || bucket->ub_cnt == 0)
		return;

	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
	    bucket->ub_seq != SMR_SEQ_INVALID) {
		smr_wait(zone->uz_smr, bucket->ub_seq);
		for (i = 0; i < bucket->ub_cnt; i++)
			item_dtor(zone, bucket->ub_bucket[i],
			    zone->uz_size, NULL, SKIP_NONE);
		bucket->ub_seq = SMR_SEQ_INVALID;
	}
	if (zone->uz_fini)
		for (i = 0; i < bucket->ub_cnt; i++) 
			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
	if (zone->uz_max_items > 0)
		zone_free_limit(zone, bucket->ub_cnt);
#ifdef INVARIANTS
	bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
#endif
	bucket->ub_cnt = 0;
}

/*
 * Drains the per cpu caches for a zone.
 *
 * NOTE: This may only be called while the zone is being torn down, and not
 * during normal operation.  This is necessary in order that we do not have
 * to migrate CPUs to drain the per-CPU caches.
 *
 * Arguments:
 *	zone     The zone to drain, must be unlocked.
 *
 * Returns:
 *	Nothing
 */
static void
cache_drain(uma_zone_t zone)
{
	uma_cache_t cache;
	uma_bucket_t bucket;
	int cpu;

	/*
	 * XXX: It is safe to not lock the per-CPU caches, because we're
	 * tearing down the zone anyway.  I.e., there will be no further use
	 * of the caches at this point.
	 *
	 * XXX: It would good to be able to assert that the zone is being
	 * torn down to prevent improper use of cache_drain().
	 */
	CPU_FOREACH(cpu) {
		cache = &zone->uz_cpu[cpu];
		bucket = cache_bucket_unload_alloc(cache);
		if (bucket != NULL) {
			bucket_drain(zone, bucket);
			bucket_free(zone, bucket, NULL);
		}
		bucket = cache_bucket_unload_free(cache);
		if (bucket != NULL) {
			bucket_drain(zone, bucket);
			bucket_free(zone, bucket, NULL);
		}
		bucket = cache_bucket_unload_cross(cache);
		if (bucket != NULL) {
			bucket_drain(zone, bucket);
			bucket_free(zone, bucket, NULL);
		}
	}
	bucket_cache_reclaim(zone, true);
}

static void
cache_shrink(uma_zone_t zone, void *unused)
{

	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
		return;

	ZONE_LOCK(zone);
	zone->uz_bucket_size =
	    (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
	ZONE_UNLOCK(zone);
}

static void
cache_drain_safe_cpu(uma_zone_t zone, void *unused)
{
	uma_cache_t cache;
	uma_bucket_t b1, b2, b3;
	int domain;

	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
		return;

	b1 = b2 = b3 = NULL;
	ZONE_LOCK(zone);
	critical_enter();
	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
		domain = PCPU_GET(domain);
	else
		domain = 0;
	cache = &zone->uz_cpu[curcpu];
	b1 = cache_bucket_unload_alloc(cache);
	if (b1 != NULL && b1->ub_cnt != 0) {
		zone_put_bucket(zone, &zone->uz_domain[domain], b1, false);
		b1 = NULL;
	}

	/*
	 * Don't flush SMR zone buckets.  This leaves the zone without a
	 * bucket and forces every free to synchronize().
	 */
	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
		goto out;
	b2 = cache_bucket_unload_free(cache);
	if (b2 != NULL && b2->ub_cnt != 0) {
		zone_put_bucket(zone, &zone->uz_domain[domain], b2, false);
		b2 = NULL;
	}
	b3 = cache_bucket_unload_cross(cache);

out:
	critical_exit();
	ZONE_UNLOCK(zone);
	if (b1)
		bucket_free(zone, b1, NULL);
	if (b2)
		bucket_free(zone, b2, NULL);
	if (b3) {
		bucket_drain(zone, b3);
		bucket_free(zone, b3, NULL);
	}
}

/*
 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
 * This is an expensive call because it needs to bind to all CPUs
 * one by one and enter a critical section on each of them in order
 * to safely access their cache buckets.
 * Zone lock must not be held on call this function.
 */
static void
pcpu_cache_drain_safe(uma_zone_t zone)
{
	int cpu;

	/*
	 * Polite bucket sizes shrinking was not enough, shrink aggressively.
	 */
	if (zone)
		cache_shrink(zone, NULL);
	else
		zone_foreach(cache_shrink, NULL);

	CPU_FOREACH(cpu) {
		thread_lock(curthread);
		sched_bind(curthread, cpu);
		thread_unlock(curthread);

		if (zone)
			cache_drain_safe_cpu(zone, NULL);
		else
			zone_foreach(cache_drain_safe_cpu, NULL);
	}
	thread_lock(curthread);
	sched_unbind(curthread);
	thread_unlock(curthread);
}

/*
 * Reclaim cached buckets from a zone.  All buckets are reclaimed if the caller
 * requested a drain, otherwise the per-domain caches are trimmed to either
 * estimated working set size.
 */
static void
bucket_cache_reclaim(uma_zone_t zone, bool drain)
{
	uma_zone_domain_t zdom;
	uma_bucket_t bucket;
	long target, tofree;
	int i;

	for (i = 0; i < vm_ndomains; i++) {
		/*
		 * The cross bucket is partially filled and not part of
		 * the item count.  Reclaim it individually here.
		 */
		zdom = &zone->uz_domain[i];
		ZONE_CROSS_LOCK(zone);
		bucket = zdom->uzd_cross;
		zdom->uzd_cross = NULL;
		ZONE_CROSS_UNLOCK(zone);
		if (bucket != NULL) {
			bucket_drain(zone, bucket);
			bucket_free(zone, bucket, NULL);
		}

		/*
		 * Shrink the zone bucket size to ensure that the per-CPU caches
		 * don't grow too large.
		 */
		ZONE_LOCK(zone);
		if (i == 0 && zone->uz_bucket_size > zone->uz_bucket_size_min)
			zone->uz_bucket_size--;

		/*
		 * If we were asked to drain the zone, we are done only once
		 * this bucket cache is empty.  Otherwise, we reclaim items in
		 * excess of the zone's estimated working set size.  If the
		 * difference nitems - imin is larger than the WSS estimate,
		 * then the estimate will grow at the end of this interval and
		 * we ignore the historical average.
		 */
		target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems -
		    zdom->uzd_imin);
		while (zdom->uzd_nitems > target) {
			bucket = TAILQ_FIRST(&zdom->uzd_buckets);
			if (bucket == NULL)
				break;
			tofree = bucket->ub_cnt;
			TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link);
			zdom->uzd_nitems -= tofree;

			/*
			 * Shift the bounds of the current WSS interval to avoid
			 * perturbing the estimate.
			 */
			zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree);
			zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree);

			ZONE_UNLOCK(zone);
			bucket_drain(zone, bucket);
			bucket_free(zone, bucket, NULL);
			ZONE_LOCK(zone);
		}
		ZONE_UNLOCK(zone);
	}
}

static void
keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
{
	uint8_t *mem;
	int i;
	uint8_t flags;

	CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
	    keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);

	mem = slab_data(slab, keg);
	flags = slab->us_flags;
	i = start;
	if (keg->uk_fini != NULL) {
		for (i--; i > -1; i--)
#ifdef INVARIANTS
		/*
		 * trash_fini implies that dtor was trash_dtor. trash_fini
		 * would check that memory hasn't been modified since free,
		 * which executed trash_dtor.
		 * That's why we need to run uma_dbg_kskip() check here,
		 * albeit we don't make skip check for other init/fini
		 * invocations.
		 */
		if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
		    keg->uk_fini != trash_fini)
#endif
			keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
	}
	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
		zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
		    NULL, SKIP_NONE);
	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
	uma_total_dec(PAGE_SIZE * keg->uk_ppera);
}

/*
 * Frees pages from a keg back to the system.  This is done on demand from
 * the pageout daemon.
 *
 * Returns nothing.
 */
static void
keg_drain(uma_keg_t keg)
{
	struct slabhead freeslabs = { 0 };
	uma_domain_t dom;
	uma_slab_t slab, tmp;
	int i, n;

	/*
	 * We don't want to take pages from statically allocated kegs at this
	 * time
	 */
	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
		return;

	for (i = 0; i < vm_ndomains; i++) {
		CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
		    keg->uk_name, keg, i, dom->ud_free);
		n = 0;
		dom = &keg->uk_domain[i];
		KEG_LOCK(keg, i);
		LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) {
			if (keg->uk_flags & UMA_ZFLAG_HASH)
				UMA_HASH_REMOVE(&keg->uk_hash, slab);
			n++;
			LIST_REMOVE(slab, us_link);
			LIST_INSERT_HEAD(&freeslabs, slab, us_link);
		}
		dom->ud_pages -= n * keg->uk_ppera;
		dom->ud_free -= n * keg->uk_ipers;
		KEG_UNLOCK(keg, i);
	}

	while ((slab = LIST_FIRST(&freeslabs)) != NULL) {
		LIST_REMOVE(slab, us_link);
		keg_free_slab(keg, slab, keg->uk_ipers);
	}
}

static void
zone_reclaim(uma_zone_t zone, int waitok, bool drain)
{

	/*
	 * Set draining to interlock with zone_dtor() so we can release our
	 * locks as we go.  Only dtor() should do a WAITOK call since it
	 * is the only call that knows the structure will still be available
	 * when it wakes up.
	 */
	ZONE_LOCK(zone);
	while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) {
		if (waitok == M_NOWAIT)
			goto out;
		msleep(zone, &zone->uz_lock, PVM, "zonedrain", 1);
	}
	zone->uz_flags |= UMA_ZFLAG_RECLAIMING;
	ZONE_UNLOCK(zone);
	bucket_cache_reclaim(zone, drain);

	/*
	 * The DRAINING flag protects us from being freed while
	 * we're running.  Normally the uma_rwlock would protect us but we
	 * must be able to release and acquire the right lock for each keg.
	 */
	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
		keg_drain(zone->uz_keg);
	ZONE_LOCK(zone);
	zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING;
	wakeup(zone);
out:
	ZONE_UNLOCK(zone);
}

static void
zone_drain(uma_zone_t zone, void *unused)
{

	zone_reclaim(zone, M_NOWAIT, true);
}

static void
zone_trim(uma_zone_t zone, void *unused)
{

	zone_reclaim(zone, M_NOWAIT, false);
}

/*
 * Allocate a new slab for a keg and inserts it into the partial slab list.
 * The keg should be unlocked on entry.  If the allocation succeeds it will
 * be locked on return.
 *
 * Arguments:
 *	flags   Wait flags for the item initialization routine
 *	aflags  Wait flags for the slab allocation
 *
 * Returns:
 *	The slab that was allocated or NULL if there is no memory and the
 *	caller specified M_NOWAIT.
 */
static uma_slab_t
keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
    int aflags)
{
	uma_domain_t dom;
	uma_alloc allocf;
	uma_slab_t slab;
	unsigned long size;
	uint8_t *mem;
	uint8_t sflags;
	int i;

	KASSERT(domain >= 0 && domain < vm_ndomains,
	    ("keg_alloc_slab: domain %d out of range", domain));

	allocf = keg->uk_allocf;
	slab = NULL;
	mem = NULL;
	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
		uma_hash_slab_t hslab;
		hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
		    domain, aflags);
		if (hslab == NULL)
			goto fail;
		slab = &hslab->uhs_slab;
	}

	/*
	 * This reproduces the old vm_zone behavior of zero filling pages the
	 * first time they are added to a zone.
	 *
	 * Malloced items are zeroed in uma_zalloc.
	 */

	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
		aflags |= M_ZERO;
	else
		aflags &= ~M_ZERO;

	if (keg->uk_flags & UMA_ZONE_NODUMP)
		aflags |= M_NODUMP;

	/* zone is passed for legacy reasons. */
	size = keg->uk_ppera * PAGE_SIZE;
	mem = allocf(zone, size, domain, &sflags, aflags);
	if (mem == NULL) {
		if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
			zone_free_item(slabzone(keg->uk_ipers),
			    slab_tohashslab(slab), NULL, SKIP_NONE);
		goto fail;
	}
	uma_total_inc(size);

	/* For HASH zones all pages go to the same uma_domain. */
	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
		domain = 0;

	/* Point the slab into the allocated memory */
	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
		slab = (uma_slab_t )(mem + keg->uk_pgoff);
	else
		slab_tohashslab(slab)->uhs_data = mem;

	if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
		for (i = 0; i < keg->uk_ppera; i++)
			vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
			    zone, slab);

	slab->us_freecount = keg->uk_ipers;
	slab->us_flags = sflags;
	slab->us_domain = domain;

	BIT_FILL(keg->uk_ipers, &slab->us_free);
#ifdef INVARIANTS
	BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
#endif

	if (keg->uk_init != NULL) {
		for (i = 0; i < keg->uk_ipers; i++)
			if (keg->uk_init(slab_item(slab, keg, i),
			    keg->uk_size, flags) != 0)
				break;
		if (i != keg->uk_ipers) {
			keg_free_slab(keg, slab, i);
			goto fail;
		}
	}
	KEG_LOCK(keg, domain);

	CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
	    slab, keg->uk_name, keg);

	if (keg->uk_flags & UMA_ZFLAG_HASH)
		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);

	/*
	 * If we got a slab here it's safe to mark it partially used
	 * and return.  We assume that the caller is going to remove
	 * at least one item.
	 */
	dom = &keg->uk_domain[domain];
	LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
	dom->ud_pages += keg->uk_ppera;
	dom->ud_free += keg->uk_ipers;

	return (slab);

fail:
	return (NULL);
}

/*
 * This function is intended to be used early on in place of page_alloc() so
 * that we may use the boot time page cache to satisfy allocations before
 * the VM is ready.
 */
static void *
startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
    int wait)
{
	vm_paddr_t pa;
	vm_page_t m;
	void *mem;
	int pages;
	int i;

	pages = howmany(bytes, PAGE_SIZE);
	KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));

	*pflag = UMA_SLAB_BOOT;
	m = vm_page_alloc_contig_domain(NULL, 0, domain,
	    malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 
	    (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT);
	if (m == NULL)
		return (NULL);

	pa = VM_PAGE_TO_PHYS(m);
	for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
    defined(__riscv) || defined(__powerpc64__)
		if ((wait & M_NODUMP) == 0)
			dump_add_page(pa);
#endif
	}
	/* Allocate KVA and indirectly advance bootmem. */
	mem = (void *)pmap_map(&bootmem, m->phys_addr,
	    m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE);
        if ((wait & M_ZERO) != 0)
                bzero(mem, pages * PAGE_SIZE);

        return (mem);
}

static void
startup_free(void *mem, vm_size_t bytes)
{
	vm_offset_t va;
	vm_page_t m;

	va = (vm_offset_t)mem;
	m = PHYS_TO_VM_PAGE(pmap_kextract(va));
	pmap_remove(kernel_pmap, va, va + bytes);
	for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
    defined(__riscv) || defined(__powerpc64__)
		dump_drop_page(VM_PAGE_TO_PHYS(m));
#endif
		vm_page_unwire_noq(m);
		vm_page_free(m);
	}
}

/*
 * Allocates a number of pages from the system
 *
 * Arguments:
 *	bytes  The number of bytes requested
 *	wait  Shall we wait?
 *
 * Returns:
 *	A pointer to the alloced memory or possibly
 *	NULL if M_NOWAIT is set.
 */
static void *
page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
    int wait)
{
	void *p;	/* Returned page */

	*pflag = UMA_SLAB_KERNEL;
	p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);

	return (p);
}

static void *
pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
    int wait)
{
	struct pglist alloctail;
	vm_offset_t addr, zkva;
	int cpu, flags;
	vm_page_t p, p_next;
#ifdef NUMA
	struct pcpu *pc;
#endif

	MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);

	TAILQ_INIT(&alloctail);
	flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
	    malloc2vm_flags(wait);
	*pflag = UMA_SLAB_KERNEL;
	for (cpu = 0; cpu <= mp_maxid; cpu++) {
		if (CPU_ABSENT(cpu)) {
			p = vm_page_alloc(NULL, 0, flags);
		} else {
#ifndef NUMA
			p = vm_page_alloc(NULL, 0, flags);
#else
			pc = pcpu_find(cpu);
			if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
				p = NULL;
			else
				p = vm_page_alloc_domain(NULL, 0,
				    pc->pc_domain, flags);
			if (__predict_false(p == NULL))
				p = vm_page_alloc(NULL, 0, flags);
#endif
		}
		if (__predict_false(p == NULL))
			goto fail;
		TAILQ_INSERT_TAIL(&alloctail, p, listq);
	}
	if ((addr = kva_alloc(bytes)) == 0)
		goto fail;
	zkva = addr;
	TAILQ_FOREACH(p, &alloctail, listq) {
		pmap_qenter(zkva, &p, 1);
		zkva += PAGE_SIZE;
	}
	return ((void*)addr);
fail:
	TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
		vm_page_unwire_noq(p);
		vm_page_free(p);
	}
	return (NULL);
}

/*
 * Allocates a number of pages from within an object
 *
 * Arguments:
 *	bytes  The number of bytes requested
 *	wait   Shall we wait?
 *
 * Returns:
 *	A pointer to the alloced memory or possibly
 *	NULL if M_NOWAIT is set.
 */
static void *
noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
    int wait)
{
	TAILQ_HEAD(, vm_page) alloctail;
	u_long npages;
	vm_offset_t retkva, zkva;
	vm_page_t p, p_next;
	uma_keg_t keg;

	TAILQ_INIT(&alloctail);
	keg = zone->uz_keg;

	npages = howmany(bytes, PAGE_SIZE);
	while (npages > 0) {
		p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT |
		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
		    ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
		    VM_ALLOC_NOWAIT));
		if (p != NULL) {
			/*
			 * Since the page does not belong to an object, its
			 * listq is unused.
			 */
			TAILQ_INSERT_TAIL(&alloctail, p, listq);
			npages--;
			continue;
		}
		/*
		 * Page allocation failed, free intermediate pages and
		 * exit.
		 */
		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
			vm_page_unwire_noq(p);
			vm_page_free(p); 
		}
		return (NULL);
	}
	*flags = UMA_SLAB_PRIV;
	zkva = keg->uk_kva +
	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
	retkva = zkva;
	TAILQ_FOREACH(p, &alloctail, listq) {
		pmap_qenter(zkva, &p, 1);
		zkva += PAGE_SIZE;
	}

	return ((void *)retkva);
}

/*
 * Frees a number of pages to the system
 *
 * Arguments:
 *	mem   A pointer to the memory to be freed
 *	size  The size of the memory being freed
 *	flags The original p->us_flags field
 *
 * Returns:
 *	Nothing
 */
static void
page_free(void *mem, vm_size_t size, uint8_t flags)
{

	if ((flags & UMA_SLAB_BOOT) != 0) {
		startup_free(mem, size);
		return;
	}

	if ((flags & UMA_SLAB_KERNEL) == 0)
		panic("UMA: page_free used with invalid flags %x", flags);

	kmem_free((vm_offset_t)mem, size);
}

/*
 * Frees pcpu zone allocations
 *
 * Arguments:
 *	mem   A pointer to the memory to be freed
 *	size  The size of the memory being freed
 *	flags The original p->us_flags field
 *
 * Returns:
 *	Nothing
 */
static void
pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
{
	vm_offset_t sva, curva;
	vm_paddr_t paddr;
	vm_page_t m;

	MPASS(size == (mp_maxid+1)*PAGE_SIZE);
	sva = (vm_offset_t)mem;
	for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
		paddr = pmap_kextract(curva);
		m = PHYS_TO_VM_PAGE(paddr);
		vm_page_unwire_noq(m);
		vm_page_free(m);
	}
	pmap_qremove(sva, size >> PAGE_SHIFT);
	kva_free(sva, size);
}


/*
 * Zero fill initializer
 *
 * Arguments/Returns follow uma_init specifications
 */
static int
zero_init(void *mem, int size, int flags)
{
	bzero(mem, size);
	return (0);
}

#ifdef INVARIANTS
struct noslabbits *
slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
{

	return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
}
#endif

/*
 * Actual size of embedded struct slab (!OFFPAGE).
 */
size_t
slab_sizeof(int nitems)
{
	size_t s;

	s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
	return (roundup(s, UMA_ALIGN_PTR + 1));
}

/*
 * Size of memory for embedded slabs (!OFFPAGE).
 */
size_t
slab_space(int nitems)
{
	return (UMA_SLAB_SIZE - slab_sizeof(nitems));
}

#define	UMA_FIXPT_SHIFT	31
#define	UMA_FRAC_FIXPT(n, d)						\
	((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
#define	UMA_FIXPT_PCT(f)						\
	((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
#define	UMA_PCT_FIXPT(pct)	UMA_FRAC_FIXPT((pct), 100)
#define	UMA_MIN_EFF	UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)

/*
 * Compute the number of items that will fit in a slab.  If hdr is true, the
 * item count may be limited to provide space in the slab for an inline slab
 * header.  Otherwise, all slab space will be provided for item storage.
 */
static u_int
slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
{
	u_int ipers;
	u_int padpi;

	/* The padding between items is not needed after the last item. */
	padpi = rsize - size;

	if (hdr) {
		/*
		 * Start with the maximum item count and remove items until
		 * the slab header first alongside the allocatable memory.
		 */
		for (ipers = MIN(SLAB_MAX_SETSIZE,
		    (slabsize + padpi - slab_sizeof(1)) / rsize);
		    ipers > 0 &&
		    ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
		    ipers--)
			continue;
	} else {
		ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
	}

	return (ipers);
}

/*
 * Compute the number of items that will fit in a slab for a startup zone.
 */
int
slab_ipers(size_t size, int align)
{
	int rsize;

	rsize = roundup(size, align + 1); /* Assume no CACHESPREAD */
	return (slab_ipers_hdr(size, rsize, UMA_SLAB_SIZE, true));
}

/*
 * Determine the format of a uma keg.  This determines where the slab header
 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
 *
 * Arguments
 *	keg  The zone we should initialize
 *
 * Returns
 *	Nothing
 */
static void
keg_layout(uma_keg_t keg)
{
	u_int alignsize;
	u_int eff;
	u_int eff_offpage;
	u_int format;
	u_int ipers;
	u_int ipers_offpage;
	u_int pages;
	u_int rsize;
	u_int slabsize;

	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
	    (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
	     (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
	    ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
	     __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
	     PRINT_UMA_ZFLAGS));
	KASSERT((keg->uk_flags &
	    (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) == 0 ||
	    (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
	    ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
	     PRINT_UMA_ZFLAGS));

	alignsize = keg->uk_align + 1;
	format = 0;
	ipers = 0;

	/*
	 * Calculate the size of each allocation (rsize) according to
	 * alignment.  If the requested size is smaller than we have
	 * allocation bits for we round it up.
	 */
	rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
	rsize = roundup2(rsize, alignsize);

	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) {
		slabsize = UMA_PCPU_ALLOC_SIZE;
		pages = mp_maxid + 1;
	} else if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
		/*
		 * We want one item to start on every align boundary in a page.
		 * To do this we will span pages.  We will also extend the item
		 * by the size of align if it is an even multiple of align.
		 * Otherwise, it would fall on the same boundary every time.
		 */
		if ((rsize & alignsize) == 0)
			rsize += alignsize;
		slabsize = rsize * (PAGE_SIZE / alignsize);
		slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
		slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
		pages = howmany(slabsize, PAGE_SIZE);
		slabsize = ptoa(pages);
	} else {
		/*
		 * Choose a slab size of as many pages as it takes to represent
		 * a single item.  We will then try to fit as many additional
		 * items into the slab as possible.  At some point, we may want
		 * to increase the slab size for awkward item sizes in order to
		 * increase efficiency.
		 */
		pages = howmany(keg->uk_size, PAGE_SIZE);
		slabsize = ptoa(pages);
	}

	/* Evaluate an inline slab layout. */
	if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
		ipers = slab_ipers_hdr(keg->uk_size, rsize, slabsize, true);

	/* TODO: vm_page-embedded slab. */

	/*
	 * We can't do OFFPAGE if we're internal or if we've been
	 * asked to not go to the VM for buckets.  If we do this we
	 * may end up going to the VM  for slabs which we do not
	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
	 * of UMA_ZONE_VM, which clearly forbids it.
	 */
	if ((keg->uk_flags &
	    (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) != 0) {
		if (ipers == 0) {
			/* We need an extra page for the slab header. */
			pages++;
			slabsize = ptoa(pages);
			ipers = slab_ipers_hdr(keg->uk_size, rsize, slabsize,
			    true);
		}
		goto out;
	}

	/*
	 * See if using an OFFPAGE slab will improve our efficiency.
	 * Only do this if we are below our efficiency threshold.
	 *
	 * XXX We could try growing slabsize to limit max waste as well.
	 * Historically this was not done because the VM could not
	 * efficiently handle contiguous allocations.
	 */
	eff = UMA_FRAC_FIXPT(ipers * rsize, slabsize);
	ipers_offpage = slab_ipers_hdr(keg->uk_size, rsize, slabsize, false);
	eff_offpage = UMA_FRAC_FIXPT(ipers_offpage * rsize,
	    slabsize + slabzone(ipers_offpage)->uz_keg->uk_rsize);
	if (ipers == 0 || (eff < UMA_MIN_EFF && eff < eff_offpage)) {
		CTR5(KTR_UMA, "UMA decided we need offpage slab headers for "
		    "keg: %s(%p), minimum efficiency allowed = %u%%, "
		    "old efficiency = %u%%, offpage efficiency = %u%%",
		    keg->uk_name, keg, UMA_FIXPT_PCT(UMA_MIN_EFF),
		    UMA_FIXPT_PCT(eff), UMA_FIXPT_PCT(eff_offpage));
		format = UMA_ZFLAG_OFFPAGE;
		ipers = ipers_offpage;
	}

out:
	/*
	 * How do we find the slab header if it is offpage or if not all item
	 * start addresses are in the same page?  We could solve the latter
	 * case with vaddr alignment, but we don't.
	 */
	if ((format & UMA_ZFLAG_OFFPAGE) != 0 ||
	    (ipers - 1) * rsize >= PAGE_SIZE) {
		if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
			format |= UMA_ZFLAG_HASH;
		else
			format |= UMA_ZFLAG_VTOSLAB;
	}
	keg->uk_ipers = ipers;
	keg->uk_rsize = rsize;
	keg->uk_flags |= format;
	keg->uk_ppera = pages;
	CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
	    __func__, keg->uk_name, keg->uk_flags, rsize, ipers, pages);
	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
	    ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
	     keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, ipers,
	     pages));
}

/*
 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
 * the keg onto the global keg list.
 *
 * Arguments/Returns follow uma_ctor specifications
 *	udata  Actually uma_kctor_args
 */
static int
keg_ctor(void *mem, int size, void *udata, int flags)
{
	struct uma_kctor_args *arg = udata;
	uma_keg_t keg = mem;
	uma_zone_t zone;
	int i;

	bzero(keg, size);
	keg->uk_size = arg->size;
	keg->uk_init = arg->uminit;
	keg->uk_fini = arg->fini;
	keg->uk_align = arg->align;
	keg->uk_reserve = 0;
	keg->uk_flags = arg->flags;

	/*
	 * We use a global round-robin policy by default.  Zones with
	 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
	 * case the iterator is never run.
	 */
	keg->uk_dr.dr_policy = DOMAINSET_RR();
	keg->uk_dr.dr_iter = 0;

	/*
	 * The master zone is passed to us at keg-creation time.
	 */
	zone = arg->zone;
	keg->uk_name = zone->uz_name;

	if (arg->flags & UMA_ZONE_VM)
		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;

	if (arg->flags & UMA_ZONE_ZINIT)
		keg->uk_init = zero_init;

	if (arg->flags & UMA_ZONE_MALLOC)
		keg->uk_flags |= UMA_ZFLAG_VTOSLAB;

#ifndef SMP
	keg->uk_flags &= ~UMA_ZONE_PCPU;
#endif

	keg_layout(keg);

	/*
	 * Use a first-touch NUMA policy for all kegs that pmap_extract()
	 * will work on with the exception of critical VM structures
	 * necessary for paging.
	 *
	 * Zones may override the default by specifying either.
	 */
#ifdef NUMA
	if ((keg->uk_flags &
	    (UMA_ZFLAG_HASH | UMA_ZONE_VM | UMA_ZONE_ROUNDROBIN)) == 0)
		keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
	else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
		keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
#endif

	/*
	 * If we haven't booted yet we need allocations to go through the
	 * startup cache until the vm is ready.
	 */
#ifdef UMA_MD_SMALL_ALLOC
	if (keg->uk_ppera == 1)
		keg->uk_allocf = uma_small_alloc;
	else
#endif
	if (booted < BOOT_KVA)
		keg->uk_allocf = startup_alloc;
	else if (keg->uk_flags & UMA_ZONE_PCPU)
		keg->uk_allocf = pcpu_page_alloc;
	else
		keg->uk_allocf = page_alloc;
#ifdef UMA_MD_SMALL_ALLOC
	if (keg->uk_ppera == 1)
		keg->uk_freef = uma_small_free;
	else
#endif
	if (keg->uk_flags & UMA_ZONE_PCPU)
		keg->uk_freef = pcpu_page_free;
	else
		keg->uk_freef = page_free;

	/*
	 * Initialize keg's locks.
	 */
	for (i = 0; i < vm_ndomains; i++)
		KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));

	/*
	 * If we're putting the slab header in the actual page we need to
	 * figure out where in each page it goes.  See slab_sizeof
	 * definition.
	 */
	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
		size_t shsize;

		shsize = slab_sizeof(keg->uk_ipers);
		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
		/*
		 * The only way the following is possible is if with our
		 * UMA_ALIGN_PTR adjustments we are now bigger than
		 * UMA_SLAB_SIZE.  I haven't checked whether this is
		 * mathematically possible for all cases, so we make
		 * sure here anyway.
		 */
		KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
		    ("zone %s ipers %d rsize %d size %d slab won't fit",
		    zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
	}

	if (keg->uk_flags & UMA_ZFLAG_HASH)
		hash_alloc(&keg->uk_hash, 0);

	CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);

	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);

	rw_wlock(&uma_rwlock);
	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
	rw_wunlock(&uma_rwlock);
	return (0);
}

static void
zone_kva_available(uma_zone_t zone, void *unused)
{
	uma_keg_t keg;

	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
		return;
	KEG_GET(zone, keg);
	if (keg->uk_allocf == startup_alloc)
		keg->uk_allocf = page_alloc;
}

static void
zone_alloc_counters(uma_zone_t zone, void *unused)
{

	zone->uz_allocs = counter_u64_alloc(M_WAITOK);
	zone->uz_frees = counter_u64_alloc(M_WAITOK);
	zone->uz_fails = counter_u64_alloc(M_WAITOK);
}

static void
zone_alloc_sysctl(uma_zone_t zone, void *unused)
{
	uma_zone_domain_t zdom;
	uma_domain_t dom;
	uma_keg_t keg;
	struct sysctl_oid *oid, *domainoid;
	int domains, i, cnt;
	static const char *nokeg = "cache zone";
	char *c;

	/*
	 * Make a sysctl safe copy of the zone name by removing
	 * any special characters and handling dups by appending
	 * an index.
	 */
	if (zone->uz_namecnt != 0) {
		/* Count the number of decimal digits and '_' separator. */
		for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
			cnt /= 10;
		zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
		    M_UMA, M_WAITOK);
		sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
		    zone->uz_namecnt);
	} else
		zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
	for (c = zone->uz_ctlname; *c != '\0'; c++)
		if (strchr("./\\ -", *c) != NULL)
			*c = '_';

	/*
	 * Basic parameters at the root.
	 */
	zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
	    OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, "");
	oid = zone->uz_oid;
	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
	    zone, 0, sysctl_handle_uma_zone_flags, "A",
	    "Allocator configuration flags");
	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
	    "Desired per-cpu cache size");
	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
	    "Maximum allowed per-cpu cache size");

	/*
	 * keg if present.
	 */
	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
		domains = vm_ndomains;
	else
		domains = 1;
	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
	    "keg", CTLFLAG_RD, NULL, "");
	keg = zone->uz_keg;
	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "name", CTLFLAG_RD, keg->uk_name, "Keg name");
		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
		    "Real object size with alignment");
		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
		    "pages per-slab allocation");
		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
		    "items available per-slab");
		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "align", CTLFLAG_RD, &keg->uk_align, 0,
		    "item alignment mask");
		SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
		    keg, 0, sysctl_handle_uma_slab_efficiency, "I",
		    "Slab utilization (100 - internal fragmentation %)");
		domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
		    OID_AUTO, "domain", CTLFLAG_RD, NULL, "");
		for (i = 0; i < domains; i++) {
			dom = &keg->uk_domain[i];
			oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
			    OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD,
			    NULL, "");
			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
			    "pages", CTLFLAG_RD, &dom->ud_pages, 0,
			    "Total pages currently allocated from VM");
			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
			    "free", CTLFLAG_RD, &dom->ud_free, 0,
			    "items free in the slab layer");
		}
	} else
		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "name", CTLFLAG_RD, nokeg, "Keg name");

	/*
	 * Information about zone limits.
	 */
	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
	    "limit", CTLFLAG_RD, NULL, "");
	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
	    zone, 0, sysctl_handle_uma_zone_items, "QU",
	    "current number of allocated items if limit is set");
	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
	    "Maximum number of cached items");
	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
	    "Number of threads sleeping at limit");
	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
	    "Total zone limit sleeps");
	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "bucket_max", CTLFLAG_RD, &zone->uz_bkt_max, 0,
	    "Maximum number of items in the bucket cache");
	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "bucket_cnt", CTLFLAG_RD, &zone->uz_bkt_count, 0,
	    "Number of items in the bucket cache");

	/*
	 * Per-domain zone information.
	 */
	domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
	    OID_AUTO, "domain", CTLFLAG_RD, NULL, "");
	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
		domains = 1;
	for (i = 0; i < domains; i++) {
		zdom = &zone->uz_domain[i];
		oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
		    OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, "");
		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
		    "number of items in this domain");
		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "imax", CTLFLAG_RD, &zdom->uzd_imax,
		    "maximum item count in this period");
		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "imin", CTLFLAG_RD, &zdom->uzd_imin,
		    "minimum item count in this period");
		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
		    "wss", CTLFLAG_RD, &zdom->uzd_wss,
		    "Working set size");
	}

	/*
	 * General statistics.
	 */
	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
	    "stats", CTLFLAG_RD, NULL, "");
	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
	    zone, 1, sysctl_handle_uma_zone_cur, "I",
	    "Current number of allocated items");
	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
	    zone, 0, sysctl_handle_uma_zone_allocs, "QU",
	    "Total allocation calls");
	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
	    zone, 0, sysctl_handle_uma_zone_frees, "QU",
	    "Total free calls");
	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "fails", CTLFLAG_RD, &zone->uz_fails,
	    "Number of allocation failures");
	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
	    "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0,
	    "Free calls from the wrong domain");
}

struct uma_zone_count {
	const char	*name;
	int		count;
};

static void
zone_count(uma_zone_t zone, void *arg)
{
	struct uma_zone_count *cnt;

	cnt = arg;
	/*
	 * Some zones are rapidly created with identical names and
	 * destroyed out of order.  This can lead to gaps in the count.
	 * Use one greater than the maximum observed for this name.
	 */
	if (strcmp(zone->uz_name, cnt->name) == 0)
		cnt->count = MAX(cnt->count,
		    zone->uz_namecnt + 1);
}

static void
zone_update_caches(uma_zone_t zone)
{
	int i;

	for (i = 0; i <= mp_maxid; i++) {
		cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
		cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
	}
}

/*
 * Zone header ctor.  This initializes all fields, locks, etc.
 *
 * Arguments/Returns follow uma_ctor specifications
 *	udata  Actually uma_zctor_args
 */
static int
zone_ctor(void *mem, int size, void *udata, int flags)
{
	struct uma_zone_count cnt;
	struct uma_zctor_args *arg = udata;
	uma_zone_t zone = mem;
	uma_zone_t z;
	uma_keg_t keg;
	int i;

	bzero(zone, size);
	zone->uz_name = arg->name;
	zone->uz_ctor = arg->ctor;
	zone->uz_dtor = arg->dtor;
	zone->uz_init = NULL;
	zone->uz_fini = NULL;
	zone->uz_sleeps = 0;
	zone->uz_xdomain = 0;
	zone->uz_bucket_size = 0;
	zone->uz_bucket_size_min = 0;
	zone->uz_bucket_size_max = BUCKET_MAX;
	zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
	zone->uz_warning = NULL;
	/* The domain structures follow the cpu structures. */
	zone->uz_domain =
	    (struct uma_zone_domain *)&zone->uz_cpu[mp_maxid + 1];
	zone->uz_bkt_max = ULONG_MAX;
	timevalclear(&zone->uz_ratecheck);

	/* Count the number of duplicate names. */
	cnt.name = arg->name;
	cnt.count = 0;
	zone_foreach(zone_count, &cnt);
	zone->uz_namecnt = cnt.count;
	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
	ZONE_CROSS_LOCK_INIT(zone);

	for (i = 0; i < vm_ndomains; i++)
		TAILQ_INIT(&zone->uz_domain[i].uzd_buckets);

#ifdef INVARIANTS
	if (arg->uminit == trash_init && arg->fini == trash_fini)
		zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
#endif

	/*
	 * This is a pure cache zone, no kegs.
	 */
	if (arg->import) {
		KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
		    ("zone_ctor: Import specified for non-cache zone."));
		if (arg->flags & UMA_ZONE_VM)
			arg->flags |= UMA_ZFLAG_CACHEONLY;
		zone->uz_flags = arg->flags;
		zone->uz_size = arg->size;
		zone->uz_import = arg->import;
		zone->uz_release = arg->release;
		zone->uz_arg = arg->arg;
		rw_wlock(&uma_rwlock);
		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
		rw_wunlock(&uma_rwlock);
		goto out;
	}

	/*
	 * Use the regular zone/keg/slab allocator.
	 */
	zone->uz_import = zone_import;
	zone->uz_release = zone_release;
	zone->uz_arg = zone; 
	keg = arg->keg;

	if (arg->flags & UMA_ZONE_SECONDARY) {
		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
		zone->uz_init = arg->uminit;
		zone->uz_fini = arg->fini;
		zone->uz_flags |= UMA_ZONE_SECONDARY;
		rw_wlock(&uma_rwlock);
		ZONE_LOCK(zone);
		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
			if (LIST_NEXT(z, uz_link) == NULL) {
				LIST_INSERT_AFTER(z, zone, uz_link);
				break;
			}
		}
		ZONE_UNLOCK(zone);
		rw_wunlock(&uma_rwlock);
	} else if (keg == NULL) {
		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
		    arg->align, arg->flags)) == NULL)
			return (ENOMEM);
	} else {
		struct uma_kctor_args karg;
		int error;

		/* We should only be here from uma_startup() */
		karg.size = arg->size;
		karg.uminit = arg->uminit;
		karg.fini = arg->fini;
		karg.align = arg->align;
		karg.flags = (arg->flags & ~UMA_ZONE_SMR);
		karg.zone = zone;
		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
		    flags);
		if (error)
			return (error);
	}

	/* Inherit properties from the keg. */
	zone->uz_keg = keg;
	zone->uz_size = keg->uk_size;
	zone->uz_flags |= (keg->uk_flags &
	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));

out:
	if (__predict_true(booted >= BOOT_RUNNING)) {
		zone_alloc_counters(zone, NULL);
		zone_alloc_sysctl(zone, NULL);
	} else {
		zone->uz_allocs = EARLY_COUNTER;
		zone->uz_frees = EARLY_COUNTER;
		zone->uz_fails = EARLY_COUNTER;
	}

	/* Caller requests a private SMR context. */
	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
		zone->uz_smr = smr_create(zone->uz_name);

	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
	    ("Invalid zone flag combination"));
	if (arg->flags & UMA_ZFLAG_INTERNAL)
		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
		zone->uz_bucket_size = BUCKET_MAX;
	else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0)
		zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN;
	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
		zone->uz_bucket_size = 0;
	else
		zone->uz_bucket_size = bucket_select(zone->uz_size);
	zone->uz_bucket_size_min = zone->uz_bucket_size;
	if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
		zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
	zone_update_caches(zone);

	return (0);
}

/*
 * Keg header dtor.  This frees all data, destroys locks, frees the hash
 * table and removes the keg from the global list.
 *
 * Arguments/Returns follow uma_dtor specifications
 *	udata  unused
 */
static void
keg_dtor(void *arg, int size, void *udata)
{
	uma_keg_t keg;
	uint32_t free, pages;
	int i;

	keg = (uma_keg_t)arg;
	free = pages = 0;
	for (i = 0; i < vm_ndomains; i++) {
		free += keg->uk_domain[i].ud_free;
		pages += keg->uk_domain[i].ud_pages;
		KEG_LOCK_FINI(keg, i);
	}
	if (pages != 0)
		printf("Freed UMA keg (%s) was not empty (%u items). "
		    " Lost %u pages of memory.\n",
		    keg->uk_name ? keg->uk_name : "",
		    pages / keg->uk_ppera * keg->uk_ipers - free, pages);

	hash_free(&keg->uk_hash);
}

/*
 * Zone header dtor.
 *
 * Arguments/Returns follow uma_dtor specifications
 *	udata  unused
 */
static void
zone_dtor(void *arg, int size, void *udata)
{
	uma_zone_t zone;
	uma_keg_t keg;

	zone = (uma_zone_t)arg;

	sysctl_remove_oid(zone->uz_oid, 1, 1);

	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
		cache_drain(zone);

	rw_wlock(&uma_rwlock);
	LIST_REMOVE(zone, uz_link);
	rw_wunlock(&uma_rwlock);
	/*
	 * XXX there are some races here where
	 * the zone can be drained but zone lock
	 * released and then refilled before we
	 * remove it... we dont care for now
	 */
	zone_reclaim(zone, M_WAITOK, true);
	/*
	 * We only destroy kegs from non secondary/non cache zones.
	 */
	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
		keg = zone->uz_keg;
		rw_wlock(&uma_rwlock);
		LIST_REMOVE(keg, uk_link);
		rw_wunlock(&uma_rwlock);
		zone_free_item(kegs, keg, NULL, SKIP_NONE);
	}
	counter_u64_free(zone->uz_allocs);
	counter_u64_free(zone->uz_frees);
	counter_u64_free(zone->uz_fails);
	free(zone->uz_ctlname, M_UMA);
	ZONE_LOCK_FINI(zone);
	ZONE_CROSS_LOCK_FINI(zone);
}

static void
zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
{
	uma_keg_t keg;
	uma_zone_t zone;

	LIST_FOREACH(keg, &uma_kegs, uk_link) {
		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
			zfunc(zone, arg);
	}
	LIST_FOREACH(zone, &uma_cachezones, uz_link)
		zfunc(zone, arg);
}

/*
 * Traverses every zone in the system and calls a callback
 *
 * Arguments:
 *	zfunc  A pointer to a function which accepts a zone
 *		as an argument.
 *
 * Returns:
 *	Nothing
 */
static void
zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
{

	rw_rlock(&uma_rwlock);
	zone_foreach_unlocked(zfunc, arg);
	rw_runlock(&uma_rwlock);
}

/*
 * Initialize the kernel memory allocator.  This is done after pages can be
 * allocated but before general KVA is available.
 */
void
uma_startup1(vm_offset_t virtual_avail)
{
	struct uma_zctor_args args;
	size_t ksize, zsize, size;
	uma_keg_t masterkeg;
	uintptr_t m;
	uint8_t pflag;

	bootstart = bootmem = virtual_avail;

	rw_init(&uma_rwlock, "UMA lock");
	sx_init(&uma_reclaim_lock, "umareclaim");

	ksize = sizeof(struct uma_keg) +
	    (sizeof(struct uma_domain) * vm_ndomains);
	ksize = roundup(ksize, UMA_SUPER_ALIGN);
	zsize = sizeof(struct uma_zone) +
	    (sizeof(struct uma_cache) * (mp_maxid + 1)) +
	    (sizeof(struct uma_zone_domain) * vm_ndomains);
	zsize = roundup(zsize, UMA_SUPER_ALIGN);

	/* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
	size = (zsize * 2) + ksize;
	m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO);
	zones = (uma_zone_t)m;
	m += zsize;
	kegs = (uma_zone_t)m;
	m += zsize;
	masterkeg = (uma_keg_t)m;

	/* "manually" create the initial zone */
	memset(&args, 0, sizeof(args));
	args.name = "UMA Kegs";
	args.size = ksize;
	args.ctor = keg_ctor;
	args.dtor = keg_dtor;
	args.uminit = zero_init;
	args.fini = NULL;
	args.keg = masterkeg;
	args.align = UMA_SUPER_ALIGN - 1;
	args.flags = UMA_ZFLAG_INTERNAL;
	zone_ctor(kegs, zsize, &args, M_WAITOK);

	args.name = "UMA Zones";
	args.size = zsize;
	args.ctor = zone_ctor;
	args.dtor = zone_dtor;
	args.uminit = zero_init;
	args.fini = NULL;
	args.keg = NULL;
	args.align = UMA_SUPER_ALIGN - 1;
	args.flags = UMA_ZFLAG_INTERNAL;
	zone_ctor(zones, zsize, &args, M_WAITOK);

	/* Now make zones for slab headers */
	slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
	slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);

	hashzone = uma_zcreate("UMA Hash",
	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);

	bucket_init();
	smr_init();
}

#ifndef UMA_MD_SMALL_ALLOC
extern void vm_radix_reserve_kva(void);
#endif

/*
 * Advertise the availability of normal kva allocations and switch to
 * the default back-end allocator.  Marks the KVA we consumed on startup
 * as used in the map.
 */
void
uma_startup2(void)
{

	if (bootstart != bootmem) {
		vm_map_lock(kernel_map);
		(void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
		    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
		vm_map_unlock(kernel_map);
	}

#ifndef UMA_MD_SMALL_ALLOC
	/* Set up radix zone to use noobj_alloc. */
	vm_radix_reserve_kva();
#endif

	booted = BOOT_KVA;
	zone_foreach_unlocked(zone_kva_available, NULL);
	bucket_enable();
}

/*
 * Finish our initialization steps.
 */
static void
uma_startup3(void)
{

#ifdef INVARIANTS
	TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
	uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
	uma_skip_cnt = counter_u64_alloc(M_WAITOK);
#endif
	zone_foreach_unlocked(zone_alloc_counters, NULL);
	zone_foreach_unlocked(zone_alloc_sysctl, NULL);
	callout_init(&uma_callout, 1);
	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
	booted = BOOT_RUNNING;

	EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
	    EVENTHANDLER_PRI_FIRST);
}

static void
uma_shutdown(void)
{

	booted = BOOT_SHUTDOWN;
}

static uma_keg_t
uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
		int align, uint32_t flags)
{
	struct uma_kctor_args args;

	args.size = size;
	args.uminit = uminit;
	args.fini = fini;
	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
	args.flags = flags;
	args.zone = zone;
	return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
}

/* Public functions */
/* See uma.h */
void
uma_set_align(int align)
{

	if (align != UMA_ALIGN_CACHE)
		uma_align_cache = align;
}

/* See uma.h */
uma_zone_t
uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
		uma_init uminit, uma_fini fini, int align, uint32_t flags)

{
	struct uma_zctor_args args;
	uma_zone_t res;

	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
	    align, name));

	/* This stuff is essential for the zone ctor */
	memset(&args, 0, sizeof(args));
	args.name = name;
	args.size = size;
	args.ctor = ctor;
	args.dtor = dtor;
	args.uminit = uminit;
	args.fini = fini;
#ifdef  INVARIANTS
	/*
	 * Inject procedures which check for memory use after free if we are
	 * allowed to scramble the memory while it is not allocated.  This
	 * requires that: UMA is actually able to access the memory, no init
	 * or fini procedures, no dependency on the initial value of the
	 * memory, and no (legitimate) use of the memory after free.  Note,
	 * the ctor and dtor do not need to be empty.
	 */
	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
	    UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
		args.uminit = trash_init;
		args.fini = trash_fini;
	}
#endif
	args.align = align;
	args.flags = flags;
	args.keg = NULL;

	sx_slock(&uma_reclaim_lock);
	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
	sx_sunlock(&uma_reclaim_lock);

	return (res);
}

/* See uma.h */
uma_zone_t
uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
		    uma_init zinit, uma_fini zfini, uma_zone_t master)
{
	struct uma_zctor_args args;
	uma_keg_t keg;
	uma_zone_t res;

	keg = master->uz_keg;
	memset(&args, 0, sizeof(args));
	args.name = name;
	args.size = keg->uk_size;
	args.ctor = ctor;
	args.dtor = dtor;
	args.uminit = zinit;
	args.fini = zfini;
	args.align = keg->uk_align;
	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
	args.keg = keg;

	sx_slock(&uma_reclaim_lock);
	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
	sx_sunlock(&uma_reclaim_lock);

	return (res);
}

/* See uma.h */
uma_zone_t
uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
		    uma_init zinit, uma_fini zfini, uma_import zimport,
		    uma_release zrelease, void *arg, int flags)
{
	struct uma_zctor_args args;

	memset(&args, 0, sizeof(args));
	args.name = name;
	args.size = size;
	args.ctor = ctor;
	args.dtor = dtor;
	args.uminit = zinit;
	args.fini = zfini;
	args.import = zimport;
	args.release = zrelease;
	args.arg = arg;
	args.align = 0;
	args.flags = flags | UMA_ZFLAG_CACHE;

	return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
}

/* See uma.h */
void
uma_zdestroy(uma_zone_t zone)
{

	/*
	 * Large slabs are expensive to reclaim, so don't bother doing
	 * unnecessary work if we're shutting down.
	 */
	if (booted == BOOT_SHUTDOWN &&
	    zone->uz_fini == NULL && zone->uz_release == zone_release)
		return;
	sx_slock(&uma_reclaim_lock);
	zone_free_item(zones, zone, NULL, SKIP_NONE);
	sx_sunlock(&uma_reclaim_lock);
}

void
uma_zwait(uma_zone_t zone)
{
	void *item;

	item = uma_zalloc_arg(zone, NULL, M_WAITOK);
	uma_zfree(zone, item);
}

void *
uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
{
	void *item;
#ifdef SMP
	int i;

	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
#endif
	item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
	if (item != NULL && (flags & M_ZERO)) {
#ifdef SMP
		for (i = 0; i <= mp_maxid; i++)
			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
#else
		bzero(item, zone->uz_size);
#endif
	}
	return (item);
}

/*
 * A stub while both regular and pcpu cases are identical.
 */
void
uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata)
{

#ifdef SMP
	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
#endif
	uma_zfree_arg(zone, item, udata);
}

static inline void *
item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
    void *item)
{
#ifdef INVARIANTS
	bool skipdbg;

	skipdbg = uma_dbg_zskip(zone, item);
	if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
	    zone->uz_ctor != trash_ctor)
		trash_ctor(item, size, udata, flags);
#endif
	/* Check flags before loading ctor pointer. */
	if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
	    __predict_false(zone->uz_ctor != NULL) &&
	    zone->uz_ctor(item, size, udata, flags) != 0) {
		counter_u64_add(zone->uz_fails, 1);
		zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
		return (NULL);
	}
#ifdef INVARIANTS
	if (!skipdbg)
		uma_dbg_alloc(zone, NULL, item);
#endif
	if (flags & M_ZERO)
		bzero(item, size);

	return (item);
}

static inline void
item_dtor(uma_zone_t zone, void *item, int size, void *udata,
    enum zfreeskip skip)
{
#ifdef INVARIANTS
	bool skipdbg;

	skipdbg = uma_dbg_zskip(zone, item);
	if (skip == SKIP_NONE && !skipdbg) {
		if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
			uma_dbg_free(zone, udata, item);
		else
			uma_dbg_free(zone, NULL, item);
	}
#endif
	if (__predict_true(skip < SKIP_DTOR)) {
		if (zone->uz_dtor != NULL)
			zone->uz_dtor(item, size, udata);
#ifdef INVARIANTS
		if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
		    zone->uz_dtor != trash_dtor)
			trash_dtor(item, size, udata);
#endif
	}
}

#if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
#define	UMA_ZALLOC_DEBUG
static int
uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
{
	int error;

	error = 0;
#ifdef WITNESS
	if (flags & M_WAITOK) {
		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
		    "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
	}
#endif

#ifdef INVARIANTS
	KASSERT((flags & M_EXEC) == 0,
	    ("uma_zalloc_debug: called with M_EXEC"));
	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
	    ("uma_zalloc_debug: called within spinlock or critical section"));
	KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
	    ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
#endif

#ifdef DEBUG_MEMGUARD
	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) {
		void *item;
		item = memguard_alloc(zone->uz_size, flags);
		if (item != NULL) {
			error = EJUSTRETURN;
			if (zone->uz_init != NULL &&
			    zone->uz_init(item, zone->uz_size, flags) != 0) {
				*itemp = NULL;
				return (error);
			}
			if (zone->uz_ctor != NULL &&
			    zone->uz_ctor(item, zone->uz_size, udata,
			    flags) != 0) {
				counter_u64_add(zone->uz_fails, 1);
			    	zone->uz_fini(item, zone->uz_size);
				*itemp = NULL;
				return (error);
			}
			*itemp = item;
			return (error);
		}
		/* This is unfortunate but should not be fatal. */
	}
#endif
	return (error);
}

static int
uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
{
	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
	    ("uma_zfree_debug: called with spinlock or critical section held"));

#ifdef DEBUG_MEMGUARD
	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) {
		if (zone->uz_dtor != NULL)
			zone->uz_dtor(item, zone->uz_size, udata);
		if (zone->uz_fini != NULL)
			zone->uz_fini(item, zone->uz_size);
		memguard_free(item);
		return (EJUSTRETURN);
	}
#endif
	return (0);
}
#endif

static __noinline void *
uma_zalloc_single(uma_zone_t zone, void *udata, int flags)
{
	int domain;

	/*
	 * We can not get a bucket so try to return a single item.
	 */
	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
		domain = PCPU_GET(domain);
	else
		domain = UMA_ANYDOMAIN;
	return (zone_alloc_item(zone, udata, domain, flags));
}

/* See uma.h */
void *
uma_zalloc_smr(uma_zone_t zone, int flags)
{
	uma_cache_bucket_t bucket;
	uma_cache_t cache;
	void *item;
	int size, uz_flags;

#ifdef UMA_ZALLOC_DEBUG
	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
	    ("uma_zalloc_arg: called with non-SMR zone.\n"));
	if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
		return (item);
#endif

	critical_enter();
	do {
		cache = &zone->uz_cpu[curcpu];
		bucket = &cache->uc_allocbucket;
		size = cache_uz_size(cache);
		uz_flags = cache_uz_flags(cache);
		if (__predict_true(bucket->ucb_cnt != 0)) {
			item = cache_bucket_pop(cache, bucket);
			critical_exit();
			return (item_ctor(zone, uz_flags, size, NULL, flags,
			    item));
		}
	} while (cache_alloc(zone, cache, NULL, flags));
	critical_exit();

	return (uma_zalloc_single(zone, NULL, flags));
}

/* See uma.h */
void *
uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
{
	uma_cache_bucket_t bucket;
	uma_cache_t cache;
	void *item;
	int size, uz_flags;

	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);

	/* This is the fast path allocation */
	CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
	    zone, flags);

#ifdef UMA_ZALLOC_DEBUG
	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
	    ("uma_zalloc_arg: called with SMR zone.\n"));
	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
		return (item);
#endif

	/*
	 * If possible, allocate from the per-CPU cache.  There are two
	 * requirements for safe access to the per-CPU cache: (1) the thread
	 * accessing the cache must not be preempted or yield during access,
	 * and (2) the thread must not migrate CPUs without switching which
	 * cache it accesses.  We rely on a critical section to prevent
	 * preemption and migration.  We release the critical section in
	 * order to acquire the zone mutex if we are unable to allocate from
	 * the current cache; when we re-acquire the critical section, we
	 * must detect and handle migration if it has occurred.
	 */
	critical_enter();
	do {
		cache = &zone->uz_cpu[curcpu];
		bucket = &cache->uc_allocbucket;
		size = cache_uz_size(cache);
		uz_flags = cache_uz_flags(cache);
		if (__predict_true(bucket->ucb_cnt != 0)) {
			item = cache_bucket_pop(cache, bucket);
			critical_exit();
			return (item_ctor(zone, uz_flags, size, udata, flags,
			    item));
		}
	} while (cache_alloc(zone, cache, udata, flags));
	critical_exit();

	return (uma_zalloc_single(zone, udata, flags));
}

/*
 * Replenish an alloc bucket and possibly restore an old one.  Called in
 * a critical section.  Returns in a critical section.
 *
 * A false return value indicates an allocation failure.
 * A true return value indicates success and the caller should retry.
 */
static __noinline bool
cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
{
	uma_zone_domain_t zdom;
	uma_bucket_t bucket;
	int domain;
	bool lockfail;

	CRITICAL_ASSERT(curthread);

	/*
	 * If we have run out of items in our alloc bucket see
	 * if we can switch with the free bucket.
	 *
	 * SMR Zones can't re-use the free bucket until the sequence has
	 * expired.
	 */
	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 &&
	    cache->uc_freebucket.ucb_cnt != 0) {
		cache_bucket_swap(&cache->uc_freebucket,
		    &cache->uc_allocbucket);
		return (true);
	}

	/*
	 * Discard any empty allocation bucket while we hold no locks.
	 */
	bucket = cache_bucket_unload_alloc(cache);
	critical_exit();
	if (bucket != NULL)
		bucket_free(zone, bucket, udata);

	/* Short-circuit for zones without buckets and low memory. */
	if (zone->uz_bucket_size == 0 || bucketdisable) {
		critical_enter();
		return (false);
	}

	/*
	 * Attempt to retrieve the item from the per-CPU cache has failed, so
	 * we must go back to the zone.  This requires the zone lock, so we
	 * must drop the critical section, then re-acquire it when we go back
	 * to the cache.  Since the critical section is released, we may be
	 * preempted or migrate.  As such, make sure not to maintain any
	 * thread-local state specific to the cache from prior to releasing
	 * the critical section.
	 */
	lockfail = 0;
	if (ZONE_TRYLOCK(zone) == 0) {
		/* Record contention to size the buckets. */
		ZONE_LOCK(zone);
		lockfail = 1;
	}

	/* See if we lost the race to fill the cache. */
	critical_enter();
	cache = &zone->uz_cpu[curcpu];
	if (cache->uc_allocbucket.ucb_bucket != NULL) {
		ZONE_UNLOCK(zone);
		return (true);
	}

	/*
	 * Check the zone's cache of buckets.
	 */
	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) {
		domain = PCPU_GET(domain);
		zdom = &zone->uz_domain[domain];
	} else {
		domain = UMA_ANYDOMAIN;
		zdom = &zone->uz_domain[0];
	}

	if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) {
		KASSERT(bucket->ub_cnt != 0,
		    ("uma_zalloc_arg: Returning an empty bucket."));
		cache_bucket_load_alloc(cache, bucket);
		return (true);
	}
	/* We are no longer associated with this CPU. */
	critical_exit();

	/*
	 * We bump the uz count when the cache size is insufficient to
	 * handle the working set.
	 */
	if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
		zone->uz_bucket_size++;
	ZONE_UNLOCK(zone);

	/*
	 * Fill a bucket and attempt to use it as the alloc bucket.
	 */
	bucket = zone_alloc_bucket(zone, udata, domain, flags);
	CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
	    zone->uz_name, zone, bucket);
	if (bucket == NULL) {
		critical_enter();
		return (false);
	}

	/*
	 * See if we lost the race or were migrated.  Cache the
	 * initialized bucket to make this less likely or claim
	 * the memory directly.
	 */
	ZONE_LOCK(zone);
	critical_enter();
	cache = &zone->uz_cpu[curcpu];
	if (cache->uc_allocbucket.ucb_bucket == NULL &&
	    ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0 ||
	    domain == PCPU_GET(domain))) {
		cache_bucket_load_alloc(cache, bucket);
		zdom->uzd_imax += bucket->ub_cnt;
	} else if (zone->uz_bkt_count >= zone->uz_bkt_max) {
		critical_exit();
		ZONE_UNLOCK(zone);
		bucket_drain(zone, bucket);
		bucket_free(zone, bucket, udata);
		critical_enter();
		return (true);
	} else
		zone_put_bucket(zone, zdom, bucket, false);
	ZONE_UNLOCK(zone);
	return (true);
}

void *
uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
{

	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);

	/* This is the fast path allocation */
	CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
	    zone->uz_name, zone, domain, flags);

	if (flags & M_WAITOK) {
		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
		    "uma_zalloc_domain: zone \"%s\"", zone->uz_name);
	}
	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
	    ("uma_zalloc_domain: called with spinlock or critical section held"));

	return (zone_alloc_item(zone, udata, domain, flags));
}

/*
 * Find a slab with some space.  Prefer slabs that are partially used over those
 * that are totally full.  This helps to reduce fragmentation.
 *
 * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
 * only 'domain'.
 */
static uma_slab_t
keg_first_slab(uma_keg_t keg, int domain, bool rr)
{
	uma_domain_t dom;
	uma_slab_t slab;
	int start;

	KASSERT(domain >= 0 && domain < vm_ndomains,
	    ("keg_first_slab: domain %d out of range", domain));
	KEG_LOCK_ASSERT(keg, domain);

	slab = NULL;
	start = domain;
	do {
		dom = &keg->uk_domain[domain];
		if (!LIST_EMPTY(&dom->ud_part_slab))
			return (LIST_FIRST(&dom->ud_part_slab));
		if (!LIST_EMPTY(&dom->ud_free_slab)) {
			slab = LIST_FIRST(&dom->ud_free_slab);
			LIST_REMOVE(slab, us_link);
			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
			return (slab);
		}
		if (rr)
			domain = (domain + 1) % vm_ndomains;
	} while (domain != start);

	return (NULL);
}

/*
 * Fetch an existing slab from a free or partial list.  Returns with the
 * keg domain lock held if a slab was found or unlocked if not.
 */
static uma_slab_t
keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
{
	uma_slab_t slab;
	uint32_t reserve;

	/* HASH has a single free list. */
	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
		domain = 0;

	KEG_LOCK(keg, domain);
	reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
	if (keg->uk_domain[domain].ud_free <= reserve ||
	    (slab = keg_first_slab(keg, domain, rr)) == NULL) {
		KEG_UNLOCK(keg, domain);
		return (NULL);
	}
	return (slab);
}

static uma_slab_t
keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
{
	struct vm_domainset_iter di;
	uma_slab_t slab;
	int aflags, domain;
	bool rr;

restart:
	/*
	 * Use the keg's policy if upper layers haven't already specified a
	 * domain (as happens with first-touch zones).
	 *
	 * To avoid races we run the iterator with the keg lock held, but that
	 * means that we cannot allow the vm_domainset layer to sleep.  Thus,
	 * clear M_WAITOK and handle low memory conditions locally.
	 */
	rr = rdomain == UMA_ANYDOMAIN;
	if (rr) {
		aflags = (flags & ~M_WAITOK) | M_NOWAIT;
		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
		    &aflags);
	} else {
		aflags = flags;
		domain = rdomain;
	}

	for (;;) {
		slab = keg_fetch_free_slab(keg, domain, rr, flags);
		if (slab != NULL)
			return (slab);

		/*
		 * M_NOVM means don't ask at all!
		 */
		if (flags & M_NOVM)
			break;

		slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
		if (slab != NULL)
			return (slab);
		if (!rr && (flags & M_WAITOK) == 0)
			break;
		if (rr && vm_domainset_iter_policy(&di, &domain) != 0) {
			if ((flags & M_WAITOK) != 0) {
				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask);
				goto restart;
			}
			break;
		}
	}

	/*
	 * We might not have been able to get a slab but another cpu
	 * could have while we were unlocked.  Check again before we
	 * fail.
	 */
	if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
		return (slab);

	return (NULL);
}

static void *
slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
{
	uma_domain_t dom;
	void *item;
	int freei;

	KEG_LOCK_ASSERT(keg, slab->us_domain);

	dom = &keg->uk_domain[slab->us_domain];
	freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
	BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
	item = slab_item(slab, keg, freei);
	slab->us_freecount--;
	dom->ud_free--;

	/* Move this slab to the full list */
	if (slab->us_freecount == 0) {
		LIST_REMOVE(slab, us_link);
		LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
	}

	return (item);
}

static int
zone_import(void *arg, void **bucket, int max, int domain, int flags)
{
	uma_domain_t dom;
	uma_zone_t zone;
	uma_slab_t slab;
	uma_keg_t keg;
#ifdef NUMA
	int stripe;
#endif
	int i;

	zone = arg;
	slab = NULL;
	keg = zone->uz_keg;
	/* Try to keep the buckets totally full */
	for (i = 0; i < max; ) {
		if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
			break;
#ifdef NUMA
		stripe = howmany(max, vm_ndomains);
#endif
		dom = &keg->uk_domain[slab->us_domain];
		while (slab->us_freecount && i < max) { 
			bucket[i++] = slab_alloc_item(keg, slab);
			if (dom->ud_free <= keg->uk_reserve)
				break;
#ifdef NUMA
			/*
			 * If the zone is striped we pick a new slab for every
			 * N allocations.  Eliminating this conditional will
			 * instead pick a new domain for each bucket rather
			 * than stripe within each bucket.  The current option
			 * produces more fragmentation and requires more cpu
			 * time but yields better distribution.
			 */
			if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
			    vm_ndomains > 1 && --stripe == 0)
				break;
#endif
		}
		KEG_UNLOCK(keg, slab->us_domain);
		/* Don't block if we allocated any successfully. */
		flags &= ~M_WAITOK;
		flags |= M_NOWAIT;
	}

	return i;
}

static int
zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
{
	uint64_t old, new, total, max;

	/*
	 * The hard case.  We're going to sleep because there were existing
	 * sleepers or because we ran out of items.  This routine enforces
	 * fairness by keeping fifo order.
	 *
	 * First release our ill gotten gains and make some noise.
	 */
	for (;;) {
		zone_free_limit(zone, count);
		zone_log_warning(zone);
		zone_maxaction(zone);
		if (flags & M_NOWAIT)
			return (0);

		/*
		 * We need to allocate an item or set ourself as a sleeper
		 * while the sleepq lock is held to avoid wakeup races.  This
		 * is essentially a home rolled semaphore.
		 */
		sleepq_lock(&zone->uz_max_items);
		old = zone->uz_items;
		do {
			MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
			/* Cache the max since we will evaluate twice. */
			max = zone->uz_max_items;
			if (UZ_ITEMS_SLEEPERS(old) != 0 ||
			    UZ_ITEMS_COUNT(old) >= max)
				new = old + UZ_ITEMS_SLEEPER;
			else
				new = old + MIN(count, max - old);
		} while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);

		/* We may have successfully allocated under the sleepq lock. */
		if (UZ_ITEMS_SLEEPERS(new) == 0) {
			sleepq_release(&zone->uz_max_items);
			return (new - old);
		}

		/*
		 * This is in a different cacheline from uz_items so that we
		 * don't constantly invalidate the fastpath cacheline when we
		 * adjust item counts.  This could be limited to toggling on
		 * transitions.
		 */
		atomic_add_32(&zone->uz_sleepers, 1);
		atomic_add_64(&zone->uz_sleeps, 1);

		/*
		 * We have added ourselves as a sleeper.  The sleepq lock
		 * protects us from wakeup races.  Sleep now and then retry.
		 */
		sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
		sleepq_wait(&zone->uz_max_items, PVM);

		/*
		 * After wakeup, remove ourselves as a sleeper and try
		 * again.  We no longer have the sleepq lock for protection.
		 *
		 * Subract ourselves as a sleeper while attempting to add
		 * our count.
		 */
		atomic_subtract_32(&zone->uz_sleepers, 1);
		old = atomic_fetchadd_64(&zone->uz_items,
		    -(UZ_ITEMS_SLEEPER - count));
		/* We're no longer a sleeper. */
		old -= UZ_ITEMS_SLEEPER;

		/*
		 * If we're still at the limit, restart.  Notably do not
		 * block on other sleepers.  Cache the max value to protect
		 * against changes via sysctl.
		 */
		total = UZ_ITEMS_COUNT(old);
		max = zone->uz_max_items;
		if (total >= max)
			continue;
		/* Truncate if necessary, otherwise wake other sleepers. */
		if (total + count > max) {
			zone_free_limit(zone, total + count - max);
			count = max - total;
		} else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
			wakeup_one(&zone->uz_max_items);

		return (count);
	}
}

/*
 * Allocate 'count' items from our max_items limit.  Returns the number
 * available.  If M_NOWAIT is not specified it will sleep until at least
 * one item can be allocated.
 */
static int
zone_alloc_limit(uma_zone_t zone, int count, int flags)
{
	uint64_t old;
	uint64_t max;

	max = zone->uz_max_items;
	MPASS(max > 0);

	/*
	 * We expect normal allocations to succeed with a simple
	 * fetchadd.
	 */
	old = atomic_fetchadd_64(&zone->uz_items, count);
	if (__predict_true(old + count <= max))
		return (count);

	/*
	 * If we had some items and no sleepers just return the
	 * truncated value.  We have to release the excess space
	 * though because that may wake sleepers who weren't woken
	 * because we were temporarily over the limit.
	 */
	if (old < max) {
		zone_free_limit(zone, (old + count) - max);
		return (max - old);
	}
	return (zone_alloc_limit_hard(zone, count, flags));
}

/*
 * Free a number of items back to the limit.
 */
static void
zone_free_limit(uma_zone_t zone, int count)
{
	uint64_t old;

	MPASS(count > 0);

	/*
	 * In the common case we either have no sleepers or
	 * are still over the limit and can just return.
	 */
	old = atomic_fetchadd_64(&zone->uz_items, -count);
	if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
	   UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
		return;

	/*
	 * Moderate the rate of wakeups.  Sleepers will continue
	 * to generate wakeups if necessary.
	 */
	wakeup_one(&zone->uz_max_items);
}

static uma_bucket_t
zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
{
	uma_bucket_t bucket;
	int maxbucket, cnt;

	CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
	    zone, domain);

	/* Avoid allocs targeting empty domains. */
	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
		domain = UMA_ANYDOMAIN;

	if (zone->uz_max_items > 0)
		maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
		    M_NOWAIT);
	else
		maxbucket = zone->uz_bucket_size;
	if (maxbucket == 0)
		return (false);

	/* Don't wait for buckets, preserve caller's NOVM setting. */
	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
	if (bucket == NULL) {
		cnt = 0;
		goto out;
	}

	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
	    MIN(maxbucket, bucket->ub_entries), domain, flags);

	/*
	 * Initialize the memory if necessary.
	 */
	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
		int i;

		for (i = 0; i < bucket->ub_cnt; i++)
			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
			    flags) != 0)
				break;
		/*
		 * If we couldn't initialize the whole bucket, put the
		 * rest back onto the freelist.
		 */
		if (i != bucket->ub_cnt) {
			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
			    bucket->ub_cnt - i);
#ifdef INVARIANTS
			bzero(&bucket->ub_bucket[i],
			    sizeof(void *) * (bucket->ub_cnt - i));
#endif
			bucket->ub_cnt = i;
		}
	}

	cnt = bucket->ub_cnt;
	if (bucket->ub_cnt == 0) {
		bucket_free(zone, bucket, udata);
		counter_u64_add(zone->uz_fails, 1);
		bucket = NULL;
	}
out:
	if (zone->uz_max_items > 0 && cnt < maxbucket)
		zone_free_limit(zone, maxbucket - cnt);

	return (bucket);
}

/*
 * Allocates a single item from a zone.
 *
 * Arguments
 *	zone   The zone to alloc for.
 *	udata  The data to be passed to the constructor.
 *	domain The domain to allocate from or UMA_ANYDOMAIN.
 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
 *
 * Returns
 *	NULL if there is no memory and M_NOWAIT is set
 *	An item if successful
 */

static void *
zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
{
	void *item;

	if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0)
		return (NULL);

	/* Avoid allocs targeting empty domains. */
	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
		domain = UMA_ANYDOMAIN;

	if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
		goto fail_cnt;

	/*
	 * We have to call both the zone's init (not the keg's init)
	 * and the zone's ctor.  This is because the item is going from
	 * a keg slab directly to the user, and the user is expecting it
	 * to be both zone-init'd as well as zone-ctor'd.
	 */
	if (zone->uz_init != NULL) {
		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
			zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
			goto fail_cnt;
		}
	}
	item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
	    item);
	if (item == NULL)
		goto fail;

	counter_u64_add(zone->uz_allocs, 1);
	CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
	    zone->uz_name, zone);

	return (item);

fail_cnt:
	counter_u64_add(zone->uz_fails, 1);
fail:
	if (zone->uz_max_items > 0)
		zone_free_limit(zone, 1);
	CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
	    zone->uz_name, zone);

	return (NULL);
}

/* See uma.h */
void
uma_zfree_smr(uma_zone_t zone, void *item)
{
	uma_cache_t cache;
	uma_cache_bucket_t bucket;
	int domain, itemdomain, uz_flags;

#ifdef UMA_ZALLOC_DEBUG
	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
	    ("uma_zfree_smr: called with non-SMR zone.\n"));
	KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
	if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
		return;
#endif
	cache = &zone->uz_cpu[curcpu];
	uz_flags = cache_uz_flags(cache);
	domain = itemdomain = 0;
#ifdef NUMA
	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
		itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item));
#endif
	critical_enter();
	do {
		cache = &zone->uz_cpu[curcpu];
		/* SMR Zones must free to the free bucket. */
		bucket = &cache->uc_freebucket;
#ifdef NUMA
		domain = PCPU_GET(domain);
		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
		    domain != itemdomain) {
			bucket = &cache->uc_crossbucket;
		}
#endif
		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
			cache_bucket_push(cache, bucket, item);
			critical_exit();
			return;
		}
	} while (cache_free(zone, cache, NULL, item, itemdomain));
	critical_exit();

	/*
	 * If nothing else caught this, we'll just do an internal free.
	 */
	zone_free_item(zone, item, NULL, SKIP_NONE);
}

/* See uma.h */
void
uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
{
	uma_cache_t cache;
	uma_cache_bucket_t bucket;
	int domain, itemdomain, uz_flags;

	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);

	CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone);

#ifdef UMA_ZALLOC_DEBUG
	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
	    ("uma_zfree_arg: called with SMR zone.\n"));
	if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
		return;
#endif
        /* uma_zfree(..., NULL) does nothing, to match free(9). */
        if (item == NULL)
                return;

	/*
	 * We are accessing the per-cpu cache without a critical section to
	 * fetch size and flags.  This is acceptable, if we are preempted we
	 * will simply read another cpu's line.
	 */
	cache = &zone->uz_cpu[curcpu];
	uz_flags = cache_uz_flags(cache);
	if (UMA_ALWAYS_CTORDTOR ||
	    __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
		item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);

	/*
	 * The race here is acceptable.  If we miss it we'll just have to wait
	 * a little longer for the limits to be reset.
	 */
	if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
		if (zone->uz_sleepers > 0)
			goto zfree_item;
	}

	/*
	 * If possible, free to the per-CPU cache.  There are two
	 * requirements for safe access to the per-CPU cache: (1) the thread
	 * accessing the cache must not be preempted or yield during access,
	 * and (2) the thread must not migrate CPUs without switching which
	 * cache it accesses.  We rely on a critical section to prevent
	 * preemption and migration.  We release the critical section in
	 * order to acquire the zone mutex if we are unable to free to the
	 * current cache; when we re-acquire the critical section, we must
	 * detect and handle migration if it has occurred.
	 */
	domain = itemdomain = 0;
#ifdef NUMA
	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
		itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item));
#endif
	critical_enter();
	do {
		cache = &zone->uz_cpu[curcpu];
		/*
		 * Try to free into the allocbucket first to give LIFO
		 * ordering for cache-hot datastructures.  Spill over
		 * into the freebucket if necessary.  Alloc will swap
		 * them if one runs dry.
		 */
		bucket = &cache->uc_allocbucket;
#ifdef NUMA
		domain = PCPU_GET(domain);
		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
		    domain != itemdomain) {
			bucket = &cache->uc_crossbucket;
		} else
#endif
		if (bucket->ucb_cnt >= bucket->ucb_entries)
			bucket = &cache->uc_freebucket;
		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
			cache_bucket_push(cache, bucket, item);
			critical_exit();
			return;
		}
	} while (cache_free(zone, cache, udata, item, itemdomain));
	critical_exit();

	/*
	 * If nothing else caught this, we'll just do an internal free.
	 */
zfree_item:
	zone_free_item(zone, item, udata, SKIP_DTOR);
}

#ifdef NUMA
/*
 * sort crossdomain free buckets to domain correct buckets and cache
 * them.
 */
static void
zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
{
	struct uma_bucketlist fullbuckets;
	uma_zone_domain_t zdom;
	uma_bucket_t b;
	void *item;
	int domain;

	CTR3(KTR_UMA,
	    "uma_zfree: zone %s(%p) draining cross bucket %p",
	    zone->uz_name, zone, bucket);

	TAILQ_INIT(&fullbuckets);

	/*
	 * To avoid having ndomain * ndomain buckets for sorting we have a
	 * lock on the current crossfree bucket.  A full matrix with
	 * per-domain locking could be used if necessary.
	 */
	ZONE_CROSS_LOCK(zone);
	while (bucket->ub_cnt > 0) {
		item = bucket->ub_bucket[bucket->ub_cnt - 1];
		domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item));
		zdom = &zone->uz_domain[domain];
		if (zdom->uzd_cross == NULL) {
			zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT);
			if (zdom->uzd_cross == NULL)
				break;
		}
		zdom->uzd_cross->ub_bucket[zdom->uzd_cross->ub_cnt++] = item;
		if (zdom->uzd_cross->ub_cnt == zdom->uzd_cross->ub_entries) {
			TAILQ_INSERT_HEAD(&fullbuckets, zdom->uzd_cross,
			    ub_link);
			zdom->uzd_cross = NULL;
		}
		bucket->ub_cnt--;
	}
	ZONE_CROSS_UNLOCK(zone);
	if (!TAILQ_EMPTY(&fullbuckets)) {
		ZONE_LOCK(zone);
		while ((b = TAILQ_FIRST(&fullbuckets)) != NULL) {
			if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
				bucket->ub_seq = smr_current(zone->uz_smr);
			TAILQ_REMOVE(&fullbuckets, b, ub_link);
			if (zone->uz_bkt_count >= zone->uz_bkt_max) {
				ZONE_UNLOCK(zone);
				bucket_drain(zone, b);
				bucket_free(zone, b, udata);
				ZONE_LOCK(zone);
			} else {
				domain = _vm_phys_domain(
				    pmap_kextract(
				    (vm_offset_t)b->ub_bucket[0]));
				zdom = &zone->uz_domain[domain];
				zone_put_bucket(zone, zdom, b, true);
			}
		}
		ZONE_UNLOCK(zone);
	}
	if (bucket->ub_cnt != 0)
		bucket_drain(zone, bucket);
	bucket->ub_seq = SMR_SEQ_INVALID;
	bucket_free(zone, bucket, udata);
}
#endif

static void
zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
    int domain, int itemdomain)
{
	uma_zone_domain_t zdom;

#ifdef NUMA
	/*
	 * Buckets coming from the wrong domain will be entirely for the
	 * only other domain on two domain systems.  In this case we can
	 * simply cache them.  Otherwise we need to sort them back to
	 * correct domains.
	 */
	if (domain != itemdomain && vm_ndomains > 2) {
		zone_free_cross(zone, bucket, udata);
		return;
	}
#endif

	/*
	 * Attempt to save the bucket in the zone's domain bucket cache.
	 *
	 * We bump the uz count when the cache size is insufficient to
	 * handle the working set.
	 */
	if (ZONE_TRYLOCK(zone) == 0) {
		/* Record contention to size the buckets. */
		ZONE_LOCK(zone);
		if (zone->uz_bucket_size < zone->uz_bucket_size_max)
			zone->uz_bucket_size++;
	}

	CTR3(KTR_UMA,
	    "uma_zfree: zone %s(%p) putting bucket %p on free list",
	    zone->uz_name, zone, bucket);
	/* ub_cnt is pointing to the last free item */
	KASSERT(bucket->ub_cnt == bucket->ub_entries,
	    ("uma_zfree: Attempting to insert partial  bucket onto the full list.\n"));
	if (zone->uz_bkt_count >= zone->uz_bkt_max) {
		ZONE_UNLOCK(zone);
		bucket_drain(zone, bucket);
		bucket_free(zone, bucket, udata);
	} else {
		zdom = &zone->uz_domain[itemdomain];
		zone_put_bucket(zone, zdom, bucket, true);
		ZONE_UNLOCK(zone);
	}
}

/*
 * Populate a free or cross bucket for the current cpu cache.  Free any
 * existing full bucket either to the zone cache or back to the slab layer.
 *
 * Enters and returns in a critical section.  false return indicates that
 * we can not satisfy this free in the cache layer.  true indicates that
 * the caller should retry.
 */
static __noinline bool
cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item,
    int itemdomain)
{
	uma_cache_bucket_t cbucket;
	uma_bucket_t newbucket, bucket;
	int domain;

	CRITICAL_ASSERT(curthread);

	if (zone->uz_bucket_size == 0)
		return false;

	cache = &zone->uz_cpu[curcpu];
	newbucket = NULL;

	/*
	 * FIRSTTOUCH domains need to free to the correct zdom.  When
	 * enabled this is the zdom of the item.   The bucket is the
	 * cross bucket if the current domain and itemdomain do not match.
	 */
	cbucket = &cache->uc_freebucket;
#ifdef NUMA
	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) {
		domain = PCPU_GET(domain);
		if (domain != itemdomain) {
			cbucket = &cache->uc_crossbucket;
			if (cbucket->ucb_cnt != 0)
				atomic_add_64(&zone->uz_xdomain,
				    cbucket->ucb_cnt);
		}
	} else
#endif
		itemdomain = domain = 0;
	bucket = cache_bucket_unload(cbucket);

	/* We are no longer associated with this CPU. */
	critical_exit();

	/*
	 * Don't let SMR zones operate without a free bucket.  Force
	 * a synchronize and re-use this one.  We will only degrade
	 * to a synchronize every bucket_size items rather than every
	 * item if we fail to allocate a bucket.
	 */
	if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
		if (bucket != NULL)
			bucket->ub_seq = smr_advance(zone->uz_smr);
		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
		if (newbucket == NULL && bucket != NULL) {
			bucket_drain(zone, bucket);
			newbucket = bucket;
			bucket = NULL;
		}
	} else if (!bucketdisable)
		newbucket = bucket_alloc(zone, udata, M_NOWAIT);

	if (bucket != NULL)
		zone_free_bucket(zone, bucket, udata, domain, itemdomain);

	critical_enter();
	if ((bucket = newbucket) == NULL)
		return (false);
	cache = &zone->uz_cpu[curcpu];
#ifdef NUMA
	/*
	 * Check to see if we should be populating the cross bucket.  If it
	 * is already populated we will fall through and attempt to populate
	 * the free bucket.
	 */
	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) {
		domain = PCPU_GET(domain);
		if (domain != itemdomain &&
		    cache->uc_crossbucket.ucb_bucket == NULL) {
			cache_bucket_load_cross(cache, bucket);
			return (true);
		}
	}
#endif
	/*
	 * We may have lost the race to fill the bucket or switched CPUs.
	 */
	if (cache->uc_freebucket.ucb_bucket != NULL) {
		critical_exit();
		bucket_free(zone, bucket, udata);
		critical_enter();
	} else
		cache_bucket_load_free(cache, bucket);

	return (true);
}

void
uma_zfree_domain(uma_zone_t zone, void *item, void *udata)
{

	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);

	CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone);

	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
	    ("uma_zfree_domain: called with spinlock or critical section held"));

        /* uma_zfree(..., NULL) does nothing, to match free(9). */
        if (item == NULL)
                return;
	zone_free_item(zone, item, udata, SKIP_NONE);
}

static void
slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
{
	uma_keg_t keg;
	uma_domain_t dom;
	int freei;

	keg = zone->uz_keg;
	KEG_LOCK_ASSERT(keg, slab->us_domain);

	/* Do we need to remove from any lists? */
	dom = &keg->uk_domain[slab->us_domain];
	if (slab->us_freecount+1 == keg->uk_ipers) {
		LIST_REMOVE(slab, us_link);
		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
	} else if (slab->us_freecount == 0) {
		LIST_REMOVE(slab, us_link);
		LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
	}

	/* Slab management. */
	freei = slab_item_index(slab, keg, item);
	BIT_SET(keg->uk_ipers, freei, &slab->us_free);
	slab->us_freecount++;

	/* Keg statistics. */
	dom->ud_free++;
}

static void
zone_release(void *arg, void **bucket, int cnt)
{
	struct mtx *lock;
	uma_zone_t zone;
	uma_slab_t slab;
	uma_keg_t keg;
	uint8_t *mem;
	void *item;
	int i;

	zone = arg;
	keg = zone->uz_keg;
	lock = NULL;
	if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
		lock = KEG_LOCK(keg, 0);
	for (i = 0; i < cnt; i++) {
		item = bucket[i];
		if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
			slab = vtoslab((vm_offset_t)item);
		} else {
			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
			if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
				slab = hash_sfind(&keg->uk_hash, mem);
			else
				slab = (uma_slab_t)(mem + keg->uk_pgoff);
		}
		if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
			if (lock != NULL)
				mtx_unlock(lock);
			lock = KEG_LOCK(keg, slab->us_domain);
		}
		slab_free_item(zone, slab, item);
	}
	if (lock != NULL)
		mtx_unlock(lock);
}

/*
 * Frees a single item to any zone.
 *
 * Arguments:
 *	zone   The zone to free to
 *	item   The item we're freeing
 *	udata  User supplied data for the dtor
 *	skip   Skip dtors and finis
 */
static void
zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
{

	/*
	 * If a free is sent directly to an SMR zone we have to
	 * synchronize immediately because the item can instantly
	 * be reallocated. This should only happen in degenerate
	 * cases when no memory is available for per-cpu caches.
	 */
	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
		smr_synchronize(zone->uz_smr);

	item_dtor(zone, item, zone->uz_size, udata, skip);

	if (skip < SKIP_FINI && zone->uz_fini)
		zone->uz_fini(item, zone->uz_size);

	zone->uz_release(zone->uz_arg, &item, 1);

	if (skip & SKIP_CNT)
		return;

	counter_u64_add(zone->uz_frees, 1);

	if (zone->uz_max_items > 0)
		zone_free_limit(zone, 1);
}

/* See uma.h */
int
uma_zone_set_max(uma_zone_t zone, int nitems)
{
	struct uma_bucket_zone *ubz;
	int count;

	/*
	 * XXX This can misbehave if the zone has any allocations with
	 * no limit and a limit is imposed.  There is currently no
	 * way to clear a limit.
	 */
	ZONE_LOCK(zone);
	ubz = bucket_zone_max(zone, nitems);
	count = ubz != NULL ? ubz->ubz_entries : 0;
	zone->uz_bucket_size_max = zone->uz_bucket_size = count;
	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
	zone->uz_max_items = nitems;
	zone->uz_flags |= UMA_ZFLAG_LIMIT;
	zone_update_caches(zone);
	/* We may need to wake waiters. */
	wakeup(&zone->uz_max_items);
	ZONE_UNLOCK(zone);

	return (nitems);
}

/* See uma.h */
void
uma_zone_set_maxcache(uma_zone_t zone, int nitems)
{
	struct uma_bucket_zone *ubz;
	int bpcpu;

	ZONE_LOCK(zone);
	ubz = bucket_zone_max(zone, nitems);
	if (ubz != NULL) {
		bpcpu = 2;
		if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
			/* Count the cross-domain bucket. */
			bpcpu++;
		nitems -= ubz->ubz_entries * bpcpu * mp_ncpus;
		zone->uz_bucket_size_max = ubz->ubz_entries;
	} else {
		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
	}
	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
	zone->uz_bkt_max = nitems;
	ZONE_UNLOCK(zone);
}

/* See uma.h */
int
uma_zone_get_max(uma_zone_t zone)
{
	int nitems;

	nitems = atomic_load_64(&zone->uz_max_items);

	return (nitems);
}

/* See uma.h */
void
uma_zone_set_warning(uma_zone_t zone, const char *warning)
{

	ZONE_ASSERT_COLD(zone);
	zone->uz_warning = warning;
}

/* See uma.h */
void
uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
{

	ZONE_ASSERT_COLD(zone);
	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
}

/* See uma.h */
int
uma_zone_get_cur(uma_zone_t zone)
{
	int64_t nitems;
	u_int i;

	nitems = 0;
	if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
		nitems = counter_u64_fetch(zone->uz_allocs) -
		    counter_u64_fetch(zone->uz_frees);
	CPU_FOREACH(i)
		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
		    atomic_load_64(&zone->uz_cpu[i].uc_frees);

	return (nitems < 0 ? 0 : nitems);
}

static uint64_t
uma_zone_get_allocs(uma_zone_t zone)
{
	uint64_t nitems;
	u_int i;

	nitems = 0;
	if (zone->uz_allocs != EARLY_COUNTER)
		nitems = counter_u64_fetch(zone->uz_allocs);
	CPU_FOREACH(i)
		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);

	return (nitems);
}

static uint64_t
uma_zone_get_frees(uma_zone_t zone)
{
	uint64_t nitems;
	u_int i;

	nitems = 0;
	if (zone->uz_frees != EARLY_COUNTER)
		nitems = counter_u64_fetch(zone->uz_frees);
	CPU_FOREACH(i)
		nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);

	return (nitems);
}

#ifdef INVARIANTS
/* Used only for KEG_ASSERT_COLD(). */
static uint64_t
uma_keg_get_allocs(uma_keg_t keg)
{
	uma_zone_t z;
	uint64_t nitems;

	nitems = 0;
	LIST_FOREACH(z, &keg->uk_zones, uz_link)
		nitems += uma_zone_get_allocs(z);

	return (nitems);
}
#endif

/* See uma.h */
void
uma_zone_set_init(uma_zone_t zone, uma_init uminit)
{
	uma_keg_t keg;

	KEG_GET(zone, keg);
	KEG_ASSERT_COLD(keg);
	keg->uk_init = uminit;
}

/* See uma.h */
void
uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
{
	uma_keg_t keg;

	KEG_GET(zone, keg);
	KEG_ASSERT_COLD(keg);
	keg->uk_fini = fini;
}

/* See uma.h */
void
uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
{

	ZONE_ASSERT_COLD(zone);
	zone->uz_init = zinit;
}

/* See uma.h */
void
uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
{

	ZONE_ASSERT_COLD(zone);
	zone->uz_fini = zfini;
}

/* See uma.h */
void
uma_zone_set_freef(uma_zone_t zone, uma_free freef)
{
	uma_keg_t keg;

	KEG_GET(zone, keg);
	KEG_ASSERT_COLD(keg);
	keg->uk_freef = freef;
}

/* See uma.h */
void
uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
{
	uma_keg_t keg;

	KEG_GET(zone, keg);
	KEG_ASSERT_COLD(keg);
	keg->uk_allocf = allocf;
}

/* See uma.h */
void
uma_zone_set_smr(uma_zone_t zone, smr_t smr)
{

	ZONE_ASSERT_COLD(zone);

	zone->uz_flags |= UMA_ZONE_SMR;
	zone->uz_smr = smr;
	zone_update_caches(zone);
}

smr_t
uma_zone_get_smr(uma_zone_t zone)
{

	return (zone->uz_smr);
}

/* See uma.h */
void
uma_zone_reserve(uma_zone_t zone, int items)
{
	uma_keg_t keg;

	KEG_GET(zone, keg);
	KEG_ASSERT_COLD(keg);
	keg->uk_reserve = items;
}

/* See uma.h */
int
uma_zone_reserve_kva(uma_zone_t zone, int count)
{
	uma_keg_t keg;
	vm_offset_t kva;
	u_int pages;

	KEG_GET(zone, keg);
	KEG_ASSERT_COLD(keg);
	ZONE_ASSERT_COLD(zone);

	pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;

#ifdef UMA_MD_SMALL_ALLOC
	if (keg->uk_ppera > 1) {
#else
	if (1) {
#endif
		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
		if (kva == 0)
			return (0);
	} else
		kva = 0;

	ZONE_LOCK(zone);
	MPASS(keg->uk_kva == 0);
	keg->uk_kva = kva;
	keg->uk_offset = 0;
	zone->uz_max_items = pages * keg->uk_ipers;
#ifdef UMA_MD_SMALL_ALLOC
	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
#else
	keg->uk_allocf = noobj_alloc;
#endif
	keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
	zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
	zone_update_caches(zone);
	ZONE_UNLOCK(zone);

	return (1);
}

/* See uma.h */
void
uma_prealloc(uma_zone_t zone, int items)
{
	struct vm_domainset_iter di;
	uma_domain_t dom;
	uma_slab_t slab;
	uma_keg_t keg;
	int aflags, domain, slabs;

	KEG_GET(zone, keg);
	slabs = howmany(items, keg->uk_ipers);
	while (slabs-- > 0) {
		aflags = M_NOWAIT;
		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
		    &aflags);
		for (;;) {
			slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
			    aflags);
			if (slab != NULL) {
				dom = &keg->uk_domain[slab->us_domain];
				LIST_REMOVE(slab, us_link);
				LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
				    us_link);
				KEG_UNLOCK(keg, slab->us_domain);
				break;
			}
			if (vm_domainset_iter_policy(&di, &domain) != 0)
				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask);
		}
	}
}

/* See uma.h */
void
uma_reclaim(int req)
{

	CTR0(KTR_UMA, "UMA: vm asked us to release pages!");
	sx_xlock(&uma_reclaim_lock);
	bucket_enable();

	switch (req) {
	case UMA_RECLAIM_TRIM:
		zone_foreach(zone_trim, NULL);
		break;
	case UMA_RECLAIM_DRAIN:
	case UMA_RECLAIM_DRAIN_CPU:
		zone_foreach(zone_drain, NULL);
		if (req == UMA_RECLAIM_DRAIN_CPU) {
			pcpu_cache_drain_safe(NULL);
			zone_foreach(zone_drain, NULL);
		}
		break;
	default:
		panic("unhandled reclamation request %d", req);
	}

	/*
	 * Some slabs may have been freed but this zone will be visited early
	 * we visit again so that we can free pages that are empty once other
	 * zones are drained.  We have to do the same for buckets.
	 */
	zone_drain(slabzones[0], NULL);
	zone_drain(slabzones[1], NULL);
	bucket_zone_drain();
	sx_xunlock(&uma_reclaim_lock);
}

static volatile int uma_reclaim_needed;

void
uma_reclaim_wakeup(void)
{

	if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
		wakeup(uma_reclaim);
}

void
uma_reclaim_worker(void *arg __unused)
{

	for (;;) {
		sx_xlock(&uma_reclaim_lock);
		while (atomic_load_int(&uma_reclaim_needed) == 0)
			sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
			    hz);
		sx_xunlock(&uma_reclaim_lock);
		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
		uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
		atomic_store_int(&uma_reclaim_needed, 0);
		/* Don't fire more than once per-second. */
		pause("umarclslp", hz);
	}
}

/* See uma.h */
void
uma_zone_reclaim(uma_zone_t zone, int req)
{

	switch (req) {
	case UMA_RECLAIM_TRIM:
		zone_trim(zone, NULL);
		break;
	case UMA_RECLAIM_DRAIN:
		zone_drain(zone, NULL);
		break;
	case UMA_RECLAIM_DRAIN_CPU:
		pcpu_cache_drain_safe(zone);
		zone_drain(zone, NULL);
		break;
	default:
		panic("unhandled reclamation request %d", req);
	}
}

/* See uma.h */
int
uma_zone_exhausted(uma_zone_t zone)
{

	return (atomic_load_32(&zone->uz_sleepers) > 0);
}

unsigned long
uma_limit(void)
{

	return (uma_kmem_limit);
}

void
uma_set_limit(unsigned long limit)
{

	uma_kmem_limit = limit;
}

unsigned long
uma_size(void)
{

	return (atomic_load_long(&uma_kmem_total));
}

long
uma_avail(void)
{

	return (uma_kmem_limit - uma_size());
}

#ifdef DDB
/*
 * Generate statistics across both the zone and its per-cpu cache's.  Return
 * desired statistics if the pointer is non-NULL for that statistic.
 *
 * Note: does not update the zone statistics, as it can't safely clear the
 * per-CPU cache statistic.
 *
 */
static void
uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
    uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
{
	uma_cache_t cache;
	uint64_t allocs, frees, sleeps, xdomain;
	int cachefree, cpu;

	allocs = frees = sleeps = xdomain = 0;
	cachefree = 0;
	CPU_FOREACH(cpu) {
		cache = &z->uz_cpu[cpu];
		cachefree += cache->uc_allocbucket.ucb_cnt;
		cachefree += cache->uc_freebucket.ucb_cnt;
		xdomain += cache->uc_crossbucket.ucb_cnt;
		cachefree += cache->uc_crossbucket.ucb_cnt;
		allocs += cache->uc_allocs;
		frees += cache->uc_frees;
	}
	allocs += counter_u64_fetch(z->uz_allocs);
	frees += counter_u64_fetch(z->uz_frees);
	sleeps += z->uz_sleeps;
	xdomain += z->uz_xdomain;
	if (cachefreep != NULL)
		*cachefreep = cachefree;
	if (allocsp != NULL)
		*allocsp = allocs;
	if (freesp != NULL)
		*freesp = frees;
	if (sleepsp != NULL)
		*sleepsp = sleeps;
	if (xdomainp != NULL)
		*xdomainp = xdomain;
}
#endif /* DDB */

static int
sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
{
	uma_keg_t kz;
	uma_zone_t z;
	int count;

	count = 0;
	rw_rlock(&uma_rwlock);
	LIST_FOREACH(kz, &uma_kegs, uk_link) {
		LIST_FOREACH(z, &kz->uk_zones, uz_link)
			count++;
	}
	LIST_FOREACH(z, &uma_cachezones, uz_link)
		count++;

	rw_runlock(&uma_rwlock);
	return (sysctl_handle_int(oidp, &count, 0, req));
}

static void
uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
    struct uma_percpu_stat *ups, bool internal)
{
	uma_zone_domain_t zdom;
	uma_cache_t cache;
	int i;


	for (i = 0; i < vm_ndomains; i++) {
		zdom = &z->uz_domain[i];
		uth->uth_zone_free += zdom->uzd_nitems;
	}
	uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
	uth->uth_frees = counter_u64_fetch(z->uz_frees);
	uth->uth_fails = counter_u64_fetch(z->uz_fails);
	uth->uth_sleeps = z->uz_sleeps;
	uth->uth_xdomain = z->uz_xdomain;

	/*
	 * While it is not normally safe to access the cache bucket pointers
	 * while not on the CPU that owns the cache, we only allow the pointers
	 * to be exchanged without the zone lock held, not invalidated, so
	 * accept the possible race associated with bucket exchange during
	 * monitoring.  Use atomic_load_ptr() to ensure that the bucket pointers
	 * are loaded only once.
	 */
	for (i = 0; i < mp_maxid + 1; i++) {
		bzero(&ups[i], sizeof(*ups));
		if (internal || CPU_ABSENT(i))
			continue;
		cache = &z->uz_cpu[i];
		ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
		ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
		ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
		ups[i].ups_allocs = cache->uc_allocs;
		ups[i].ups_frees = cache->uc_frees;
	}
}

static int
sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
{
	struct uma_stream_header ush;
	struct uma_type_header uth;
	struct uma_percpu_stat *ups;
	struct sbuf sbuf;
	uma_keg_t kz;
	uma_zone_t z;
	uint64_t items;
	uint32_t kfree, pages;
	int count, error, i;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);

	count = 0;
	rw_rlock(&uma_rwlock);
	LIST_FOREACH(kz, &uma_kegs, uk_link) {
		LIST_FOREACH(z, &kz->uk_zones, uz_link)
			count++;
	}

	LIST_FOREACH(z, &uma_cachezones, uz_link)
		count++;

	/*
	 * Insert stream header.
	 */
	bzero(&ush, sizeof(ush));
	ush.ush_version = UMA_STREAM_VERSION;
	ush.ush_maxcpus = (mp_maxid + 1);
	ush.ush_count = count;
	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));

	LIST_FOREACH(kz, &uma_kegs, uk_link) {
		kfree = pages = 0;
		for (i = 0; i < vm_ndomains; i++) {
			kfree += kz->uk_domain[i].ud_free;
			pages += kz->uk_domain[i].ud_pages;
		}
		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
			bzero(&uth, sizeof(uth));
			ZONE_LOCK(z);
			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
			uth.uth_align = kz->uk_align;
			uth.uth_size = kz->uk_size;
			uth.uth_rsize = kz->uk_rsize;
			if (z->uz_max_items > 0) {
				items = UZ_ITEMS_COUNT(z->uz_items);
				uth.uth_pages = (items / kz->uk_ipers) *
					kz->uk_ppera;
			} else
				uth.uth_pages = pages;
			uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
			    kz->uk_ppera;
			uth.uth_limit = z->uz_max_items;
			uth.uth_keg_free = kfree;

			/*
			 * A zone is secondary is it is not the first entry
			 * on the keg's zone list.
			 */
			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
			    (LIST_FIRST(&kz->uk_zones) != z))
				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
			uma_vm_zone_stats(&uth, z, &sbuf, ups,
			    kz->uk_flags & UMA_ZFLAG_INTERNAL);
			ZONE_UNLOCK(z);
			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
			for (i = 0; i < mp_maxid + 1; i++)
				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
		}
	}
	LIST_FOREACH(z, &uma_cachezones, uz_link) {
		bzero(&uth, sizeof(uth));
		ZONE_LOCK(z);
		strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
		uth.uth_size = z->uz_size;
		uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
		ZONE_UNLOCK(z);
		(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
		for (i = 0; i < mp_maxid + 1; i++)
			(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
	}

	rw_runlock(&uma_rwlock);
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	free(ups, M_TEMP);
	return (error);
}

int
sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
{
	uma_zone_t zone = *(uma_zone_t *)arg1;
	int error, max;

	max = uma_zone_get_max(zone);
	error = sysctl_handle_int(oidp, &max, 0, req);
	if (error || !req->newptr)
		return (error);

	uma_zone_set_max(zone, max);

	return (0);
}

int
sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
{
	uma_zone_t zone;
	int cur;

	/*
	 * Some callers want to add sysctls for global zones that
	 * may not yet exist so they pass a pointer to a pointer.
	 */
	if (arg2 == 0)
		zone = *(uma_zone_t *)arg1;
	else
		zone = arg1;
	cur = uma_zone_get_cur(zone);
	return (sysctl_handle_int(oidp, &cur, 0, req));
}

static int
sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
{
	uma_zone_t zone = arg1;
	uint64_t cur;

	cur = uma_zone_get_allocs(zone);
	return (sysctl_handle_64(oidp, &cur, 0, req));
}

static int
sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
{
	uma_zone_t zone = arg1;
	uint64_t cur;

	cur = uma_zone_get_frees(zone);
	return (sysctl_handle_64(oidp, &cur, 0, req));
}

static int
sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	uma_zone_t zone = arg1;
	int error;

	sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
	if (zone->uz_flags != 0)
		sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
	else
		sbuf_printf(&sbuf, "0");
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);

	return (error);
}

static int
sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
{
	uma_keg_t keg = arg1;
	int avail, effpct, total;

	total = keg->uk_ppera * PAGE_SIZE;
	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
		total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
	/*
	 * We consider the client's requested size and alignment here, not the
	 * real size determination uk_rsize, because we also adjust the real
	 * size for internal implementation reasons (max bitset size).
	 */
	avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
		avail *= mp_maxid + 1;
	effpct = 100 * avail / total;
	return (sysctl_handle_int(oidp, &effpct, 0, req));
}

static int
sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
{
	uma_zone_t zone = arg1;
	uint64_t cur;

	cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
	return (sysctl_handle_64(oidp, &cur, 0, req));
}

#ifdef INVARIANTS
static uma_slab_t
uma_dbg_getslab(uma_zone_t zone, void *item)
{
	uma_slab_t slab;
	uma_keg_t keg;
	uint8_t *mem;

	/*
	 * It is safe to return the slab here even though the
	 * zone is unlocked because the item's allocation state
	 * essentially holds a reference.
	 */
	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
		return (NULL);
	if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
		return (vtoslab((vm_offset_t)mem));
	keg = zone->uz_keg;
	if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
		return ((uma_slab_t)(mem + keg->uk_pgoff));
	KEG_LOCK(keg, 0);
	slab = hash_sfind(&keg->uk_hash, mem);
	KEG_UNLOCK(keg, 0);

	return (slab);
}

static bool
uma_dbg_zskip(uma_zone_t zone, void *mem)
{

	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
		return (true);

	return (uma_dbg_kskip(zone->uz_keg, mem));
}

static bool
uma_dbg_kskip(uma_keg_t keg, void *mem)
{
	uintptr_t idx;

	if (dbg_divisor == 0)
		return (true);

	if (dbg_divisor == 1)
		return (false);

	idx = (uintptr_t)mem >> PAGE_SHIFT;
	if (keg->uk_ipers > 1) {
		idx *= keg->uk_ipers;
		idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
	}

	if ((idx / dbg_divisor) * dbg_divisor != idx) {
		counter_u64_add(uma_skip_cnt, 1);
		return (true);
	}
	counter_u64_add(uma_dbg_cnt, 1);

	return (false);
}

/*
 * Set up the slab's freei data such that uma_dbg_free can function.
 *
 */
static void
uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
{
	uma_keg_t keg;
	int freei;

	if (slab == NULL) {
		slab = uma_dbg_getslab(zone, item);
		if (slab == NULL) 
			panic("uma: item %p did not belong to zone %s\n",
			    item, zone->uz_name);
	}
	keg = zone->uz_keg;
	freei = slab_item_index(slab, keg, item);

	if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)))
		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
		    item, zone, zone->uz_name, slab, freei);
	BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg));
}

/*
 * Verifies freed addresses.  Checks for alignment, valid slab membership
 * and duplicate frees.
 *
 */
static void
uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
{
	uma_keg_t keg;
	int freei;

	if (slab == NULL) {
		slab = uma_dbg_getslab(zone, item);
		if (slab == NULL) 
			panic("uma: Freed item %p did not belong to zone %s\n",
			    item, zone->uz_name);
	}
	keg = zone->uz_keg;
	freei = slab_item_index(slab, keg, item);

	if (freei >= keg->uk_ipers)
		panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
		    item, zone, zone->uz_name, slab, freei);

	if (slab_item(slab, keg, freei) != item)
		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
		    item, zone, zone->uz_name, slab, freei);

	if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)))
		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
		    item, zone, zone->uz_name, slab, freei);

	BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg));
}
#endif /* INVARIANTS */

#ifdef DDB
static int64_t
get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
    uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
{
	uint64_t frees;
	int i;

	if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
		*allocs = counter_u64_fetch(z->uz_allocs);
		frees = counter_u64_fetch(z->uz_frees);
		*sleeps = z->uz_sleeps;
		*cachefree = 0;
		*xdomain = 0;
	} else
		uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
		    xdomain);
	for (i = 0; i < vm_ndomains; i++) {
		*cachefree += z->uz_domain[i].uzd_nitems;
		if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
		    (LIST_FIRST(&kz->uk_zones) != z)))
			*cachefree += kz->uk_domain[i].ud_free;
	}
	*used = *allocs - frees;
	return (((int64_t)*used + *cachefree) * kz->uk_size);
}

DB_SHOW_COMMAND(uma, db_show_uma)
{
	const char *fmt_hdr, *fmt_entry;
	uma_keg_t kz;
	uma_zone_t z;
	uint64_t allocs, used, sleeps, xdomain;
	long cachefree;
	/* variables for sorting */
	uma_keg_t cur_keg;
	uma_zone_t cur_zone, last_zone;
	int64_t cur_size, last_size, size;
	int ties;

	/* /i option produces machine-parseable CSV output */
	if (modif[0] == 'i') {
		fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
		fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
	} else {
		fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
		fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
	}

	db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
	    "Sleeps", "Bucket", "Total Mem", "XFree");

	/* Sort the zones with largest size first. */
	last_zone = NULL;
	last_size = INT64_MAX;
	for (;;) {
		cur_zone = NULL;
		cur_size = -1;
		ties = 0;
		LIST_FOREACH(kz, &uma_kegs, uk_link) {
			LIST_FOREACH(z, &kz->uk_zones, uz_link) {
				/*
				 * In the case of size ties, print out zones
				 * in the order they are encountered.  That is,
				 * when we encounter the most recently output
				 * zone, we have already printed all preceding
				 * ties, and we must print all following ties.
				 */
				if (z == last_zone) {
					ties = 1;
					continue;
				}
				size = get_uma_stats(kz, z, &allocs, &used,
				    &sleeps, &cachefree, &xdomain);
				if (size > cur_size && size < last_size + ties)
				{
					cur_size = size;
					cur_zone = z;
					cur_keg = kz;
				}
			}
		}
		if (cur_zone == NULL)
			break;

		size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
		    &sleeps, &cachefree, &xdomain);
		db_printf(fmt_entry, cur_zone->uz_name,
		    (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
		    (uintmax_t)allocs, (uintmax_t)sleeps,
		    (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
		    xdomain);

		if (db_pager_quit)
			return;
		last_zone = cur_zone;
		last_size = cur_size;
	}
}

DB_SHOW_COMMAND(umacache, db_show_umacache)
{
	uma_zone_t z;
	uint64_t allocs, frees;
	long cachefree;
	int i;

	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
	    "Requests", "Bucket");
	LIST_FOREACH(z, &uma_cachezones, uz_link) {
		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
		for (i = 0; i < vm_ndomains; i++)
			cachefree += z->uz_domain[i].uzd_nitems;
		db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
		    z->uz_name, (uintmax_t)z->uz_size,
		    (intmax_t)(allocs - frees), cachefree,
		    (uintmax_t)allocs, z->uz_bucket_size);
		if (db_pager_quit)
			return;
	}
}
#endif	/* DDB */