aboutsummaryrefslogtreecommitdiff
path: root/sys/vm/vm_kern.c
blob: e8e24c3ca8a358c6f65790fb1e2c7e0296744e2b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
/*-
 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
 *
 * Copyright (c) 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
 *
 *
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 *	Kernel memory management.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_vm.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>		/* for ticks and hz */
#include <sys/domainset.h>
#include <sys/eventhandler.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/rwlock.h>
#include <sys/sysctl.h>
#include <sys/vmem.h>
#include <sys/vmmeter.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_domainset.h>
#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pagequeue.h>
#include <vm/vm_phys.h>
#include <vm/vm_radix.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>

struct vm_map kernel_map_store;
struct vm_map exec_map_store;
struct vm_map pipe_map_store;

const void *zero_region;
CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);

/* NB: Used by kernel debuggers. */
const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;

u_int exec_map_entry_size;
u_int exec_map_entries;

SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
    SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");

SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
#if defined(__arm__)
    &vm_max_kernel_address, 0,
#else
    SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
#endif
    "Max kernel address");

#if VM_NRESERVLEVEL > 0
#define	KVA_QUANTUM_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
#else
/* On non-superpage architectures we want large import sizes. */
#define	KVA_QUANTUM_SHIFT	(8 + PAGE_SHIFT)
#endif
#define	KVA_QUANTUM		(1 << KVA_QUANTUM_SHIFT)
#define	KVA_NUMA_IMPORT_QUANTUM	(KVA_QUANTUM * 128)

extern void     uma_startup2(void);

/*
 *	kva_alloc:
 *
 *	Allocate a virtual address range with no underlying object and
 *	no initial mapping to physical memory.  Any mapping from this
 *	range to physical memory must be explicitly created prior to
 *	its use, typically with pmap_qenter().  Any attempt to create
 *	a mapping on demand through vm_fault() will result in a panic. 
 */
vm_offset_t
kva_alloc(vm_size_t size)
{
	vm_offset_t addr;

	size = round_page(size);
	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
		return (0);

	return (addr);
}

/*
 *	kva_free:
 *
 *	Release a region of kernel virtual memory allocated
 *	with kva_alloc, and return the physical pages
 *	associated with that region.
 *
 *	This routine may not block on kernel maps.
 */
void
kva_free(vm_offset_t addr, vm_size_t size)
{

	size = round_page(size);
	vmem_free(kernel_arena, addr, size);
}

static vm_page_t
kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
    int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
    u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
{
	vm_page_t m;
	int tries;
	bool wait, reclaim;

	VM_OBJECT_ASSERT_WLOCKED(object);

	/* Disallow an invalid combination of flags. */
	MPASS((pflags & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM));

	wait = (pflags & VM_ALLOC_WAITOK) != 0;
	reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
	pflags |= VM_ALLOC_NOWAIT;
	for (tries = wait ? 3 : 1;; tries--) {
		m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
		    npages, low, high, alignment, boundary, memattr);
		if (m != NULL || tries == 0 || !reclaim)
			break;

		VM_OBJECT_WUNLOCK(object);
		if (!vm_page_reclaim_contig_domain(domain, pflags, npages,
		    low, high, alignment, boundary) && wait)
			vm_wait_domain(domain);
		VM_OBJECT_WLOCK(object);
	}
	return (m);
}

/*
 *	Allocates a region from the kernel address map and physical pages
 *	within the specified address range to the kernel object.  Creates a
 *	wired mapping from this region to these pages, and returns the
 *	region's starting virtual address.  The allocated pages are not
 *	necessarily physically contiguous.  If M_ZERO is specified through the
 *	given flags, then the pages are zeroed before they are mapped.
 */
static vm_offset_t
kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
    vm_paddr_t high, vm_memattr_t memattr)
{
	vmem_t *vmem;
	vm_object_t object;
	vm_offset_t addr, i, offset;
	vm_page_t m;
	int pflags;
	vm_prot_t prot;

	object = kernel_object;
	size = round_page(size);
	vmem = vm_dom[domain].vmd_kernel_arena;
	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
		return (0);
	offset = addr - VM_MIN_KERNEL_ADDRESS;
	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
	VM_OBJECT_WLOCK(object);
	for (i = 0; i < size; i += PAGE_SIZE) {
		m = kmem_alloc_contig_pages(object, atop(offset + i),
		    domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
		if (m == NULL) {
			VM_OBJECT_WUNLOCK(object);
			kmem_unback(object, addr, i);
			vmem_free(vmem, addr, size);
			return (0);
		}
		KASSERT(vm_page_domain(m) == domain,
		    ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
		    vm_page_domain(m), domain));
		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
			pmap_zero_page(m);
		vm_page_valid(m);
		pmap_enter(kernel_pmap, addr + i, m, prot,
		    prot | PMAP_ENTER_WIRED, 0);
	}
	VM_OBJECT_WUNLOCK(object);
	return (addr);
}

vm_offset_t
kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
    vm_memattr_t memattr)
{

	return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
	    high, memattr));
}

vm_offset_t
kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
    vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
{
	struct vm_domainset_iter di;
	vm_offset_t addr;
	int domain;

	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
	do {
		addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
		    memattr);
		if (addr != 0)
			break;
	} while (vm_domainset_iter_policy(&di, &domain) == 0);

	return (addr);
}

/*
 *	Allocates a region from the kernel address map and physically
 *	contiguous pages within the specified address range to the kernel
 *	object.  Creates a wired mapping from this region to these pages, and
 *	returns the region's starting virtual address.  If M_ZERO is specified
 *	through the given flags, then the pages are zeroed before they are
 *	mapped.
 */
static vm_offset_t
kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
    vm_memattr_t memattr)
{
	vmem_t *vmem;
	vm_object_t object;
	vm_offset_t addr, offset, tmp;
	vm_page_t end_m, m;
	u_long npages;
	int pflags;

	object = kernel_object;
	size = round_page(size);
	vmem = vm_dom[domain].vmd_kernel_arena;
	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
		return (0);
	offset = addr - VM_MIN_KERNEL_ADDRESS;
	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
	npages = atop(size);
	VM_OBJECT_WLOCK(object);
	m = kmem_alloc_contig_pages(object, atop(offset), domain,
	    pflags, npages, low, high, alignment, boundary, memattr);
	if (m == NULL) {
		VM_OBJECT_WUNLOCK(object);
		vmem_free(vmem, addr, size);
		return (0);
	}
	KASSERT(vm_page_domain(m) == domain,
	    ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
	    vm_page_domain(m), domain));
	end_m = m + npages;
	tmp = addr;
	for (; m < end_m; m++) {
		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
			pmap_zero_page(m);
		vm_page_valid(m);
		pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
		    VM_PROT_RW | PMAP_ENTER_WIRED, 0);
		tmp += PAGE_SIZE;
	}
	VM_OBJECT_WUNLOCK(object);
	return (addr);
}

vm_offset_t
kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
    u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
{

	return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
	    high, alignment, boundary, memattr));
}

vm_offset_t
kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
    vm_memattr_t memattr)
{
	struct vm_domainset_iter di;
	vm_offset_t addr;
	int domain;

	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
	do {
		addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
		    alignment, boundary, memattr);
		if (addr != 0)
			break;
	} while (vm_domainset_iter_policy(&di, &domain) == 0);

	return (addr);
}

/*
 *	kmem_subinit:
 *
 *	Initializes a map to manage a subrange
 *	of the kernel virtual address space.
 *
 *	Arguments are as follows:
 *
 *	parent		Map to take range from
 *	min, max	Returned endpoints of map
 *	size		Size of range to find
 *	superpage_align	Request that min is superpage aligned
 */
void
kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
    vm_size_t size, bool superpage_align)
{
	int ret;

	size = round_page(size);

	*min = vm_map_min(parent);
	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
	    MAP_ACC_NO_CHARGE);
	if (ret != KERN_SUCCESS)
		panic("kmem_subinit: bad status return of %d", ret);
	*max = *min + size;
	vm_map_init(map, vm_map_pmap(parent), *min, *max);
	if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
		panic("kmem_subinit: unable to change range to submap");
}

/*
 *	kmem_malloc_domain:
 *
 *	Allocate wired-down pages in the kernel's address space.
 */
static vm_offset_t
kmem_malloc_domain(int domain, vm_size_t size, int flags)
{
	vmem_t *arena;
	vm_offset_t addr;
	int rv;

	if (__predict_true((flags & M_EXEC) == 0))
		arena = vm_dom[domain].vmd_kernel_arena;
	else
		arena = vm_dom[domain].vmd_kernel_rwx_arena;
	size = round_page(size);
	if (vmem_alloc(arena, size, flags | M_BESTFIT, &addr))
		return (0);

	rv = kmem_back_domain(domain, kernel_object, addr, size, flags);
	if (rv != KERN_SUCCESS) {
		vmem_free(arena, addr, size);
		return (0);
	}
	return (addr);
}

vm_offset_t
kmem_malloc(vm_size_t size, int flags)
{

	return (kmem_malloc_domainset(DOMAINSET_RR(), size, flags));
}

vm_offset_t
kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
{
	struct vm_domainset_iter di;
	vm_offset_t addr;
	int domain;

	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
	do {
		addr = kmem_malloc_domain(domain, size, flags);
		if (addr != 0)
			break;
	} while (vm_domainset_iter_policy(&di, &domain) == 0);

	return (addr);
}

/*
 *	kmem_back_domain:
 *
 *	Allocate physical pages from the specified domain for the specified
 *	virtual address range.
 */
int
kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
    vm_size_t size, int flags)
{
	vm_offset_t offset, i;
	vm_page_t m, mpred;
	vm_prot_t prot;
	int pflags;

	KASSERT(object == kernel_object,
	    ("kmem_back_domain: only supports kernel object."));

	offset = addr - VM_MIN_KERNEL_ADDRESS;
	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
	if (flags & M_WAITOK)
		pflags |= VM_ALLOC_WAITFAIL;
	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;

	i = 0;
	VM_OBJECT_WLOCK(object);
retry:
	mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
	for (; i < size; i += PAGE_SIZE, mpred = m) {
		m = vm_page_alloc_domain_after(object, atop(offset + i),
		    domain, pflags, mpred);

		/*
		 * Ran out of space, free everything up and return. Don't need
		 * to lock page queues here as we know that the pages we got
		 * aren't on any queues.
		 */
		if (m == NULL) {
			if ((flags & M_NOWAIT) == 0)
				goto retry;
			VM_OBJECT_WUNLOCK(object);
			kmem_unback(object, addr, i);
			return (KERN_NO_SPACE);
		}
		KASSERT(vm_page_domain(m) == domain,
		    ("kmem_back_domain: Domain mismatch %d != %d",
		    vm_page_domain(m), domain));
		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
			pmap_zero_page(m);
		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
		    ("kmem_malloc: page %p is managed", m));
		vm_page_valid(m);
		pmap_enter(kernel_pmap, addr + i, m, prot,
		    prot | PMAP_ENTER_WIRED, 0);
		if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
			m->oflags |= VPO_KMEM_EXEC;
	}
	VM_OBJECT_WUNLOCK(object);

	return (KERN_SUCCESS);
}

/*
 *	kmem_back:
 *
 *	Allocate physical pages for the specified virtual address range.
 */
int
kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
{
	vm_offset_t end, next, start;
	int domain, rv;

	KASSERT(object == kernel_object,
	    ("kmem_back: only supports kernel object."));

	for (start = addr, end = addr + size; addr < end; addr = next) {
		/*
		 * We must ensure that pages backing a given large virtual page
		 * all come from the same physical domain.
		 */
		if (vm_ndomains > 1) {
			domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
			while (VM_DOMAIN_EMPTY(domain))
				domain++;
			next = roundup2(addr + 1, KVA_QUANTUM);
			if (next > end || next < start)
				next = end;
		} else {
			domain = 0;
			next = end;
		}
		rv = kmem_back_domain(domain, object, addr, next - addr, flags);
		if (rv != KERN_SUCCESS) {
			kmem_unback(object, start, addr - start);
			break;
		}
	}
	return (rv);
}

/*
 *	kmem_unback:
 *
 *	Unmap and free the physical pages underlying the specified virtual
 *	address range.
 *
 *	A physical page must exist within the specified object at each index
 *	that is being unmapped.
 */
static struct vmem *
_kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
{
	struct vmem *arena;
	vm_page_t m, next;
	vm_offset_t end, offset;
	int domain;

	KASSERT(object == kernel_object,
	    ("kmem_unback: only supports kernel object."));

	if (size == 0)
		return (NULL);
	pmap_remove(kernel_pmap, addr, addr + size);
	offset = addr - VM_MIN_KERNEL_ADDRESS;
	end = offset + size;
	VM_OBJECT_WLOCK(object);
	m = vm_page_lookup(object, atop(offset)); 
	domain = vm_page_domain(m);
	if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
		arena = vm_dom[domain].vmd_kernel_arena;
	else
		arena = vm_dom[domain].vmd_kernel_rwx_arena;
	for (; offset < end; offset += PAGE_SIZE, m = next) {
		next = vm_page_next(m);
		vm_page_xbusy_claim(m);
		vm_page_unwire_noq(m);
		vm_page_free(m);
	}
	VM_OBJECT_WUNLOCK(object);

	return (arena);
}

void
kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
{

	(void)_kmem_unback(object, addr, size);
}

/*
 *	kmem_free:
 *
 *	Free memory allocated with kmem_malloc.  The size must match the
 *	original allocation.
 */
void
kmem_free(vm_offset_t addr, vm_size_t size)
{
	struct vmem *arena;

	size = round_page(size);
	arena = _kmem_unback(kernel_object, addr, size);
	if (arena != NULL)
		vmem_free(arena, addr, size);
}

/*
 *	kmap_alloc_wait:
 *
 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
 *	has no room, the caller sleeps waiting for more memory in the submap.
 *
 *	This routine may block.
 */
vm_offset_t
kmap_alloc_wait(vm_map_t map, vm_size_t size)
{
	vm_offset_t addr;

	size = round_page(size);
	if (!swap_reserve(size))
		return (0);

	for (;;) {
		/*
		 * To make this work for more than one map, use the map's lock
		 * to lock out sleepers/wakers.
		 */
		vm_map_lock(map);
		addr = vm_map_findspace(map, vm_map_min(map), size);
		if (addr + size <= vm_map_max(map))
			break;
		/* no space now; see if we can ever get space */
		if (vm_map_max(map) - vm_map_min(map) < size) {
			vm_map_unlock(map);
			swap_release(size);
			return (0);
		}
		map->needs_wakeup = TRUE;
		vm_map_unlock_and_wait(map, 0);
	}
	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
	    MAP_ACC_CHARGED);
	vm_map_unlock(map);
	return (addr);
}

/*
 *	kmap_free_wakeup:
 *
 *	Returns memory to a submap of the kernel, and wakes up any processes
 *	waiting for memory in that map.
 */
void
kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
{

	vm_map_lock(map);
	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
	if (map->needs_wakeup) {
		map->needs_wakeup = FALSE;
		vm_map_wakeup(map);
	}
	vm_map_unlock(map);
}

void
kmem_init_zero_region(void)
{
	vm_offset_t addr, i;
	vm_page_t m;

	/*
	 * Map a single physical page of zeros to a larger virtual range.
	 * This requires less looping in places that want large amounts of
	 * zeros, while not using much more physical resources.
	 */
	addr = kva_alloc(ZERO_REGION_SIZE);
	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
	if ((m->flags & PG_ZERO) == 0)
		pmap_zero_page(m);
	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
		pmap_qenter(addr + i, &m, 1);
	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);

	zero_region = (const void *)addr;
}

/*
 * Import KVA from the kernel map into the kernel arena.
 */
static int
kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
{
	vm_offset_t addr;
	int result;

	KASSERT((size % KVA_QUANTUM) == 0,
	    ("kva_import: Size %jd is not a multiple of %d",
	    (intmax_t)size, (int)KVA_QUANTUM));
	addr = vm_map_min(kernel_map);
	result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
	    VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
	if (result != KERN_SUCCESS)
                return (ENOMEM);

	*addrp = addr;

	return (0);
}

/*
 * Import KVA from a parent arena into a per-domain arena.  Imports must be
 * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
 */
static int
kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
{

	KASSERT((size % KVA_QUANTUM) == 0,
	    ("kva_import_domain: Size %jd is not a multiple of %d",
	    (intmax_t)size, (int)KVA_QUANTUM));
	return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
	    VMEM_ADDR_MAX, flags, addrp));
}

/*
 * 	kmem_init:
 *
 *	Create the kernel map; insert a mapping covering kernel text, 
 *	data, bss, and all space allocated thus far (`boostrap' data).  The 
 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 
 *	`start' as allocated, and the range between `start' and `end' as free.
 *	Create the kernel vmem arena and its per-domain children.
 */
void
kmem_init(vm_offset_t start, vm_offset_t end)
{
	vm_size_t quantum;
	int domain;

	vm_map_init(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
	kernel_map->system_map = 1;
	vm_map_lock(kernel_map);
	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
	(void)vm_map_insert(kernel_map, NULL, 0,
#ifdef __amd64__
	    KERNBASE,
#else		     
	    VM_MIN_KERNEL_ADDRESS,
#endif
	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
	/* ... and ending with the completion of the above `insert' */

#ifdef __amd64__
	/*
	 * Mark KVA used for the page array as allocated.  Other platforms
	 * that handle vm_page_array allocation can simply adjust virtual_avail
	 * instead.
	 */
	(void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
	    (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
	    sizeof(struct vm_page)),
	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
#endif
	vm_map_unlock(kernel_map);

	/*
	 * Use a large import quantum on NUMA systems.  This helps minimize
	 * interleaving of superpages, reducing internal fragmentation within
	 * the per-domain arenas.
	 */
	if (vm_ndomains > 1 && PMAP_HAS_DMAP)
		quantum = KVA_NUMA_IMPORT_QUANTUM;
	else
		quantum = KVA_QUANTUM;

	/*
	 * Initialize the kernel_arena.  This can grow on demand.
	 */
	vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
	vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);

	for (domain = 0; domain < vm_ndomains; domain++) {
		/*
		 * Initialize the per-domain arenas.  These are used to color
		 * the KVA space in a way that ensures that virtual large pages
		 * are backed by memory from the same physical domain,
		 * maximizing the potential for superpage promotion.
		 */
		vm_dom[domain].vmd_kernel_arena = vmem_create(
		    "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
		vmem_set_import(vm_dom[domain].vmd_kernel_arena,
		    kva_import_domain, NULL, kernel_arena, quantum);

		/*
		 * In architectures with superpages, maintain separate arenas
		 * for allocations with permissions that differ from the
		 * "standard" read/write permissions used for kernel memory,
		 * so as not to inhibit superpage promotion.
		 *
		 * Use the base import quantum since this arena is rarely used.
		 */
#if VM_NRESERVLEVEL > 0
		vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
		    "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
		vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
		    kva_import_domain, (vmem_release_t *)vmem_xfree,
		    kernel_arena, KVA_QUANTUM);
#else
		vm_dom[domain].vmd_kernel_rwx_arena =
		    vm_dom[domain].vmd_kernel_arena;
#endif
	}

	/*
	 * This must be the very first call so that the virtual address
	 * space used for early allocations is properly marked used in
	 * the map.
	 */
	uma_startup2();
}

/*
 *	kmem_bootstrap_free:
 *
 *	Free pages backing preloaded data (e.g., kernel modules) to the
 *	system.  Currently only supported on platforms that create a
 *	vm_phys segment for preloaded data.
 */
void
kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
{
#if defined(__i386__) || defined(__amd64__)
	struct vm_domain *vmd;
	vm_offset_t end, va;
	vm_paddr_t pa;
	vm_page_t m;

	end = trunc_page(start + size);
	start = round_page(start);

#ifdef __amd64__
	/*
	 * Preloaded files do not have execute permissions by default on amd64.
	 * Restore the default permissions to ensure that the direct map alias
	 * is updated.
	 */
	pmap_change_prot(start, end - start, VM_PROT_RW);
#endif
	for (va = start; va < end; va += PAGE_SIZE) {
		pa = pmap_kextract(va);
		m = PHYS_TO_VM_PAGE(pa);

		vmd = vm_pagequeue_domain(m);
		vm_domain_free_lock(vmd);
		vm_phys_free_pages(m, 0);
		vm_domain_free_unlock(vmd);

		vm_domain_freecnt_inc(vmd, 1);
		vm_cnt.v_page_count++;
	}
	pmap_remove(kernel_pmap, start, end);
	(void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
#endif
}

/*
 * Allow userspace to directly trigger the VM drain routine for testing
 * purposes.
 */
static int
debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
{
	int error, i;

	i = 0;
	error = sysctl_handle_int(oidp, &i, 0, req);
	if (error)
		return (error);
	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
		return (EINVAL);
	if (i != 0)
		EVENTHANDLER_INVOKE(vm_lowmem, i);
	return (0);
}

SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
    debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags");