aboutsummaryrefslogtreecommitdiff
path: root/sys/vm/vm_pageout.c
blob: e49966102a9c3623a10e077ed4ec6e9f29dd700d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
/*-
 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
 *
 * Copyright (c) 1991 Regents of the University of California.
 * All rights reserved.
 * Copyright (c) 1994 John S. Dyson
 * All rights reserved.
 * Copyright (c) 1994 David Greenman
 * All rights reserved.
 * Copyright (c) 2005 Yahoo! Technologies Norway AS
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
 *
 *
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 *	The proverbial page-out daemon.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_vm.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/blockcount.h>
#include <sys/eventhandler.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/mount.h>
#include <sys/racct.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/smp.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>
#include <sys/rwlock.h>
#include <sys/sx.h>
#include <sys/sysctl.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>
#include <vm/swap_pager.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>

/*
 * System initialization
 */

/* the kernel process "vm_pageout"*/
static void vm_pageout(void);
static void vm_pageout_init(void);
static int vm_pageout_clean(vm_page_t m, int *numpagedout);
static int vm_pageout_cluster(vm_page_t m);
static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
    int starting_page_shortage);

SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
    NULL);

struct proc *pageproc;

static struct kproc_desc page_kp = {
	"pagedaemon",
	vm_pageout,
	&pageproc
};
SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
    &page_kp);

SDT_PROVIDER_DEFINE(vm);
SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);

/* Pagedaemon activity rates, in subdivisions of one second. */
#define	VM_LAUNDER_RATE		10
#define	VM_INACT_SCAN_RATE	10

static int vm_pageout_oom_seq = 12;

static int vm_pageout_update_period;
static int disable_swap_pageouts;
static int lowmem_period = 10;
static int swapdev_enabled;

static int vm_panic_on_oom = 0;

SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
	"Panic on the given number of out-of-memory errors instead of killing the largest process");

SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
	CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
	"Maximum active LRU update period");

static int pageout_cpus_per_thread = 16;
SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
    &pageout_cpus_per_thread, 0,
    "Number of CPUs per pagedaemon worker thread");
  
SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
	"Low memory callback period");

SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
	CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");

static int pageout_lock_miss;
SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");

SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
	CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
	"back-to-back calls to oom detector to start OOM");

static int act_scan_laundry_weight = 3;
SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
    &act_scan_laundry_weight, 0,
    "weight given to clean vs. dirty pages in active queue scans");

static u_int vm_background_launder_rate = 4096;
SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
    &vm_background_launder_rate, 0,
    "background laundering rate, in kilobytes per second");

static u_int vm_background_launder_max = 20 * 1024;
SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
    &vm_background_launder_max, 0, "background laundering cap, in kilobytes");

int vm_pageout_page_count = 32;

u_long vm_page_max_user_wired;
SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
    &vm_page_max_user_wired, 0,
    "system-wide limit to user-wired page count");

static u_int isqrt(u_int num);
static int vm_pageout_launder(struct vm_domain *vmd, int launder,
    bool in_shortfall);
static void vm_pageout_laundry_worker(void *arg);

struct scan_state {
	struct vm_batchqueue bq;
	struct vm_pagequeue *pq;
	vm_page_t	marker;
	int		maxscan;
	int		scanned;
};

static void
vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
    vm_page_t marker, vm_page_t after, int maxscan)
{

	vm_pagequeue_assert_locked(pq);
	KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
	    ("marker %p already enqueued", marker));

	if (after == NULL)
		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
	else
		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
	vm_page_aflag_set(marker, PGA_ENQUEUED);

	vm_batchqueue_init(&ss->bq);
	ss->pq = pq;
	ss->marker = marker;
	ss->maxscan = maxscan;
	ss->scanned = 0;
	vm_pagequeue_unlock(pq);
}

static void
vm_pageout_end_scan(struct scan_state *ss)
{
	struct vm_pagequeue *pq;

	pq = ss->pq;
	vm_pagequeue_assert_locked(pq);
	KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
	    ("marker %p not enqueued", ss->marker));

	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
	pq->pq_pdpages += ss->scanned;
}

/*
 * Add a small number of queued pages to a batch queue for later processing
 * without the corresponding queue lock held.  The caller must have enqueued a
 * marker page at the desired start point for the scan.  Pages will be
 * physically dequeued if the caller so requests.  Otherwise, the returned
 * batch may contain marker pages, and it is up to the caller to handle them.
 *
 * When processing the batch queue, vm_pageout_defer() must be used to
 * determine whether the page has been logically dequeued since the batch was
 * collected.
 */
static __always_inline void
vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
{
	struct vm_pagequeue *pq;
	vm_page_t m, marker, n;

	marker = ss->marker;
	pq = ss->pq;

	KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
	    ("marker %p not enqueued", ss->marker));

	vm_pagequeue_lock(pq);
	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
	    m = n, ss->scanned++) {
		n = TAILQ_NEXT(m, plinks.q);
		if ((m->flags & PG_MARKER) == 0) {
			KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
			    ("page %p not enqueued", m));
			KASSERT((m->flags & PG_FICTITIOUS) == 0,
			    ("Fictitious page %p cannot be in page queue", m));
			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
			    ("Unmanaged page %p cannot be in page queue", m));
		} else if (dequeue)
			continue;

		(void)vm_batchqueue_insert(&ss->bq, m);
		if (dequeue) {
			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
			vm_page_aflag_clear(m, PGA_ENQUEUED);
		}
	}
	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
	if (__predict_true(m != NULL))
		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
	else
		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
	if (dequeue)
		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
	vm_pagequeue_unlock(pq);
}

/*
 * Return the next page to be scanned, or NULL if the scan is complete.
 */
static __always_inline vm_page_t
vm_pageout_next(struct scan_state *ss, const bool dequeue)
{

	if (ss->bq.bq_cnt == 0)
		vm_pageout_collect_batch(ss, dequeue);
	return (vm_batchqueue_pop(&ss->bq));
}

/*
 * Determine whether processing of a page should be deferred and ensure that any
 * outstanding queue operations are processed.
 */
static __always_inline bool
vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
{
	vm_page_astate_t as;

	as = vm_page_astate_load(m);
	if (__predict_false(as.queue != queue ||
	    ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
		return (true);
	if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
		vm_page_pqbatch_submit(m, queue);
		return (true);
	}
	return (false);
}

/*
 * Scan for pages at adjacent offsets within the given page's object that are
 * eligible for laundering, form a cluster of these pages and the given page,
 * and launder that cluster.
 */
static int
vm_pageout_cluster(vm_page_t m)
{
	vm_object_t object;
	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
	vm_pindex_t pindex;
	int ib, is, page_base, pageout_count;

	object = m->object;
	VM_OBJECT_ASSERT_WLOCKED(object);
	pindex = m->pindex;

	vm_page_assert_xbusied(m);

	mc[vm_pageout_page_count] = pb = ps = m;
	pageout_count = 1;
	page_base = vm_pageout_page_count;
	ib = 1;
	is = 1;

	/*
	 * We can cluster only if the page is not clean, busy, or held, and
	 * the page is in the laundry queue.
	 *
	 * During heavy mmap/modification loads the pageout
	 * daemon can really fragment the underlying file
	 * due to flushing pages out of order and not trying to
	 * align the clusters (which leaves sporadic out-of-order
	 * holes).  To solve this problem we do the reverse scan
	 * first and attempt to align our cluster, then do a 
	 * forward scan if room remains.
	 */
more:
	while (ib != 0 && pageout_count < vm_pageout_page_count) {
		if (ib > pindex) {
			ib = 0;
			break;
		}
		if ((p = vm_page_prev(pb)) == NULL ||
		    vm_page_tryxbusy(p) == 0) {
			ib = 0;
			break;
		}
		if (vm_page_wired(p)) {
			ib = 0;
			vm_page_xunbusy(p);
			break;
		}
		vm_page_test_dirty(p);
		if (p->dirty == 0) {
			ib = 0;
			vm_page_xunbusy(p);
			break;
		}
		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
			vm_page_xunbusy(p);
			ib = 0;
			break;
		}
		mc[--page_base] = pb = p;
		++pageout_count;
		++ib;

		/*
		 * We are at an alignment boundary.  Stop here, and switch
		 * directions.  Do not clear ib.
		 */
		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
			break;
	}
	while (pageout_count < vm_pageout_page_count && 
	    pindex + is < object->size) {
		if ((p = vm_page_next(ps)) == NULL ||
		    vm_page_tryxbusy(p) == 0)
			break;
		if (vm_page_wired(p)) {
			vm_page_xunbusy(p);
			break;
		}
		vm_page_test_dirty(p);
		if (p->dirty == 0) {
			vm_page_xunbusy(p);
			break;
		}
		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
			vm_page_xunbusy(p);
			break;
		}
		mc[page_base + pageout_count] = ps = p;
		++pageout_count;
		++is;
	}

	/*
	 * If we exhausted our forward scan, continue with the reverse scan
	 * when possible, even past an alignment boundary.  This catches
	 * boundary conditions.
	 */
	if (ib != 0 && pageout_count < vm_pageout_page_count)
		goto more;

	return (vm_pageout_flush(&mc[page_base], pageout_count,
	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
}

/*
 * vm_pageout_flush() - launder the given pages
 *
 *	The given pages are laundered.  Note that we setup for the start of
 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
 *	reference count all in here rather then in the parent.  If we want
 *	the parent to do more sophisticated things we may have to change
 *	the ordering.
 *
 *	Returned runlen is the count of pages between mreq and first
 *	page after mreq with status VM_PAGER_AGAIN.
 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
 *	for any page in runlen set.
 */
int
vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
    boolean_t *eio)
{
	vm_object_t object = mc[0]->object;
	int pageout_status[count];
	int numpagedout = 0;
	int i, runlen;

	VM_OBJECT_ASSERT_WLOCKED(object);

	/*
	 * Initiate I/O.  Mark the pages shared busy and verify that they're
	 * valid and read-only.
	 *
	 * We do not have to fixup the clean/dirty bits here... we can
	 * allow the pager to do it after the I/O completes.
	 *
	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
	 * edge case with file fragments.
	 */
	for (i = 0; i < count; i++) {
		KASSERT(vm_page_all_valid(mc[i]),
		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
			mc[i], i, count));
		KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
		    ("vm_pageout_flush: writeable page %p", mc[i]));
		vm_page_busy_downgrade(mc[i]);
	}
	vm_object_pip_add(object, count);

	vm_pager_put_pages(object, mc, count, flags, pageout_status);

	runlen = count - mreq;
	if (eio != NULL)
		*eio = FALSE;
	for (i = 0; i < count; i++) {
		vm_page_t mt = mc[i];

		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
		    !pmap_page_is_write_mapped(mt),
		    ("vm_pageout_flush: page %p is not write protected", mt));
		switch (pageout_status[i]) {
		case VM_PAGER_OK:
			/*
			 * The page may have moved since laundering started, in
			 * which case it should be left alone.
			 */
			if (vm_page_in_laundry(mt))
				vm_page_deactivate_noreuse(mt);
			/* FALLTHROUGH */
		case VM_PAGER_PEND:
			numpagedout++;
			break;
		case VM_PAGER_BAD:
			/*
			 * The page is outside the object's range.  We pretend
			 * that the page out worked and clean the page, so the
			 * changes will be lost if the page is reclaimed by
			 * the page daemon.
			 */
			vm_page_undirty(mt);
			if (vm_page_in_laundry(mt))
				vm_page_deactivate_noreuse(mt);
			break;
		case VM_PAGER_ERROR:
		case VM_PAGER_FAIL:
			/*
			 * If the page couldn't be paged out to swap because the
			 * pager wasn't able to find space, place the page in
			 * the PQ_UNSWAPPABLE holding queue.  This is an
			 * optimization that prevents the page daemon from
			 * wasting CPU cycles on pages that cannot be reclaimed
			 * becase no swap device is configured.
			 *
			 * Otherwise, reactivate the page so that it doesn't
			 * clog the laundry and inactive queues.  (We will try
			 * paging it out again later.)
			 */
			if (object->type == OBJT_SWAP &&
			    pageout_status[i] == VM_PAGER_FAIL) {
				vm_page_unswappable(mt);
				numpagedout++;
			} else
				vm_page_activate(mt);
			if (eio != NULL && i >= mreq && i - mreq < runlen)
				*eio = TRUE;
			break;
		case VM_PAGER_AGAIN:
			if (i >= mreq && i - mreq < runlen)
				runlen = i - mreq;
			break;
		}

		/*
		 * If the operation is still going, leave the page busy to
		 * block all other accesses. Also, leave the paging in
		 * progress indicator set so that we don't attempt an object
		 * collapse.
		 */
		if (pageout_status[i] != VM_PAGER_PEND) {
			vm_object_pip_wakeup(object);
			vm_page_sunbusy(mt);
		}
	}
	if (prunlen != NULL)
		*prunlen = runlen;
	return (numpagedout);
}

static void
vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
{

	atomic_store_rel_int(&swapdev_enabled, 1);
}

static void
vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
{

	if (swap_pager_nswapdev() == 1)
		atomic_store_rel_int(&swapdev_enabled, 0);
}

/*
 * Attempt to acquire all of the necessary locks to launder a page and
 * then call through the clustering layer to PUTPAGES.  Wait a short
 * time for a vnode lock.
 *
 * Requires the page and object lock on entry, releases both before return.
 * Returns 0 on success and an errno otherwise.
 */
static int
vm_pageout_clean(vm_page_t m, int *numpagedout)
{
	struct vnode *vp;
	struct mount *mp;
	vm_object_t object;
	vm_pindex_t pindex;
	int error, lockmode;

	object = m->object;
	VM_OBJECT_ASSERT_WLOCKED(object);
	error = 0;
	vp = NULL;
	mp = NULL;

	/*
	 * The object is already known NOT to be dead.   It
	 * is possible for the vget() to block the whole
	 * pageout daemon, but the new low-memory handling
	 * code should prevent it.
	 *
	 * We can't wait forever for the vnode lock, we might
	 * deadlock due to a vn_read() getting stuck in
	 * vm_wait while holding this vnode.  We skip the 
	 * vnode if we can't get it in a reasonable amount
	 * of time.
	 */
	if (object->type == OBJT_VNODE) {
		vm_page_xunbusy(m);
		vp = object->handle;
		if (vp->v_type == VREG &&
		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
			mp = NULL;
			error = EDEADLK;
			goto unlock_all;
		}
		KASSERT(mp != NULL,
		    ("vp %p with NULL v_mount", vp));
		vm_object_reference_locked(object);
		pindex = m->pindex;
		VM_OBJECT_WUNLOCK(object);
		lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
		    LK_SHARED : LK_EXCLUSIVE;
		if (vget(vp, lockmode | LK_TIMELOCK)) {
			vp = NULL;
			error = EDEADLK;
			goto unlock_mp;
		}
		VM_OBJECT_WLOCK(object);

		/*
		 * Ensure that the object and vnode were not disassociated
		 * while locks were dropped.
		 */
		if (vp->v_object != object) {
			error = ENOENT;
			goto unlock_all;
		}

		/*
		 * While the object was unlocked, the page may have been:
		 * (1) moved to a different queue,
		 * (2) reallocated to a different object,
		 * (3) reallocated to a different offset, or
		 * (4) cleaned.
		 */
		if (!vm_page_in_laundry(m) || m->object != object ||
		    m->pindex != pindex || m->dirty == 0) {
			error = ENXIO;
			goto unlock_all;
		}

		/*
		 * The page may have been busied while the object lock was
		 * released.
		 */
		if (vm_page_tryxbusy(m) == 0) {
			error = EBUSY;
			goto unlock_all;
		}
	}

	/*
	 * Remove all writeable mappings, failing if the page is wired.
	 */
	if (!vm_page_try_remove_write(m)) {
		vm_page_xunbusy(m);
		error = EBUSY;
		goto unlock_all;
	}

	/*
	 * If a page is dirty, then it is either being washed
	 * (but not yet cleaned) or it is still in the
	 * laundry.  If it is still in the laundry, then we
	 * start the cleaning operation. 
	 */
	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
		error = EIO;

unlock_all:
	VM_OBJECT_WUNLOCK(object);

unlock_mp:
	if (mp != NULL) {
		if (vp != NULL)
			vput(vp);
		vm_object_deallocate(object);
		vn_finished_write(mp);
	}

	return (error);
}

/*
 * Attempt to launder the specified number of pages.
 *
 * Returns the number of pages successfully laundered.
 */
static int
vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
{
	struct scan_state ss;
	struct vm_pagequeue *pq;
	vm_object_t object;
	vm_page_t m, marker;
	vm_page_astate_t new, old;
	int act_delta, error, numpagedout, queue, refs, starting_target;
	int vnodes_skipped;
	bool pageout_ok;

	object = NULL;
	starting_target = launder;
	vnodes_skipped = 0;

	/*
	 * Scan the laundry queues for pages eligible to be laundered.  We stop
	 * once the target number of dirty pages have been laundered, or once
	 * we've reached the end of the queue.  A single iteration of this loop
	 * may cause more than one page to be laundered because of clustering.
	 *
	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
	 * swap devices are configured.
	 */
	if (atomic_load_acq_int(&swapdev_enabled))
		queue = PQ_UNSWAPPABLE;
	else
		queue = PQ_LAUNDRY;

scan:
	marker = &vmd->vmd_markers[queue];
	pq = &vmd->vmd_pagequeues[queue];
	vm_pagequeue_lock(pq);
	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
		if (__predict_false((m->flags & PG_MARKER) != 0))
			continue;

		/*
		 * Don't touch a page that was removed from the queue after the
		 * page queue lock was released.  Otherwise, ensure that any
		 * pending queue operations, such as dequeues for wired pages,
		 * are handled.
		 */
		if (vm_pageout_defer(m, queue, true))
			continue;

		/*
		 * Lock the page's object.
		 */
		if (object == NULL || object != m->object) {
			if (object != NULL)
				VM_OBJECT_WUNLOCK(object);
			object = atomic_load_ptr(&m->object);
			if (__predict_false(object == NULL))
				/* The page is being freed by another thread. */
				continue;

			/* Depends on type-stability. */
			VM_OBJECT_WLOCK(object);
			if (__predict_false(m->object != object)) {
				VM_OBJECT_WUNLOCK(object);
				object = NULL;
				continue;
			}
		}

		if (vm_page_tryxbusy(m) == 0)
			continue;

		/*
		 * Check for wirings now that we hold the object lock and have
		 * exclusively busied the page.  If the page is mapped, it may
		 * still be wired by pmap lookups.  The call to
		 * vm_page_try_remove_all() below atomically checks for such
		 * wirings and removes mappings.  If the page is unmapped, the
		 * wire count is guaranteed not to increase after this check.
		 */
		if (__predict_false(vm_page_wired(m)))
			goto skip_page;

		/*
		 * Invalid pages can be easily freed.  They cannot be
		 * mapped; vm_page_free() asserts this.
		 */
		if (vm_page_none_valid(m))
			goto free_page;

		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;

		for (old = vm_page_astate_load(m);;) {
			/*
			 * Check to see if the page has been removed from the
			 * queue since the first such check.  Leave it alone if
			 * so, discarding any references collected by
			 * pmap_ts_referenced().
			 */
			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
				goto skip_page;

			new = old;
			act_delta = refs;
			if ((old.flags & PGA_REFERENCED) != 0) {
				new.flags &= ~PGA_REFERENCED;
				act_delta++;
			}
			if (act_delta == 0) {
				;
			} else if (object->ref_count != 0) {
				/*
				 * Increase the activation count if the page was
				 * referenced while in the laundry queue.  This
				 * makes it less likely that the page will be
				 * returned prematurely to the laundry queue.
				 */
				new.act_count += ACT_ADVANCE +
				    act_delta;
				if (new.act_count > ACT_MAX)
					new.act_count = ACT_MAX;

				new.flags &= ~PGA_QUEUE_OP_MASK;
				new.flags |= PGA_REQUEUE;
				new.queue = PQ_ACTIVE;
				if (!vm_page_pqstate_commit(m, &old, new))
					continue;

				/*
				 * If this was a background laundering, count
				 * activated pages towards our target.  The
				 * purpose of background laundering is to ensure
				 * that pages are eventually cycled through the
				 * laundry queue, and an activation is a valid
				 * way out.
				 */
				if (!in_shortfall)
					launder--;
				VM_CNT_INC(v_reactivated);
				goto skip_page;
			} else if ((object->flags & OBJ_DEAD) == 0) {
				new.flags |= PGA_REQUEUE;
				if (!vm_page_pqstate_commit(m, &old, new))
					continue;
				goto skip_page;
			}
			break;
		}

		/*
		 * If the page appears to be clean at the machine-independent
		 * layer, then remove all of its mappings from the pmap in
		 * anticipation of freeing it.  If, however, any of the page's
		 * mappings allow write access, then the page may still be
		 * modified until the last of those mappings are removed.
		 */
		if (object->ref_count != 0) {
			vm_page_test_dirty(m);
			if (m->dirty == 0 && !vm_page_try_remove_all(m))
				goto skip_page;
		}

		/*
		 * Clean pages are freed, and dirty pages are paged out unless
		 * they belong to a dead object.  Requeueing dirty pages from
		 * dead objects is pointless, as they are being paged out and
		 * freed by the thread that destroyed the object.
		 */
		if (m->dirty == 0) {
free_page:
			/*
			 * Now we are guaranteed that no other threads are
			 * manipulating the page, check for a last-second
			 * reference.
			 */
			if (vm_pageout_defer(m, queue, true))
				goto skip_page;
			vm_page_free(m);
			VM_CNT_INC(v_dfree);
		} else if ((object->flags & OBJ_DEAD) == 0) {
			if (object->type != OBJT_SWAP &&
			    object->type != OBJT_DEFAULT)
				pageout_ok = true;
			else if (disable_swap_pageouts)
				pageout_ok = false;
			else
				pageout_ok = true;
			if (!pageout_ok) {
				vm_page_launder(m);
				goto skip_page;
			}

			/*
			 * Form a cluster with adjacent, dirty pages from the
			 * same object, and page out that entire cluster.
			 *
			 * The adjacent, dirty pages must also be in the
			 * laundry.  However, their mappings are not checked
			 * for new references.  Consequently, a recently
			 * referenced page may be paged out.  However, that
			 * page will not be prematurely reclaimed.  After page
			 * out, the page will be placed in the inactive queue,
			 * where any new references will be detected and the
			 * page reactivated.
			 */
			error = vm_pageout_clean(m, &numpagedout);
			if (error == 0) {
				launder -= numpagedout;
				ss.scanned += numpagedout;
			} else if (error == EDEADLK) {
				pageout_lock_miss++;
				vnodes_skipped++;
			}
			object = NULL;
		} else {
skip_page:
			vm_page_xunbusy(m);
		}
	}
	if (object != NULL) {
		VM_OBJECT_WUNLOCK(object);
		object = NULL;
	}
	vm_pagequeue_lock(pq);
	vm_pageout_end_scan(&ss);
	vm_pagequeue_unlock(pq);

	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
		queue = PQ_LAUNDRY;
		goto scan;
	}

	/*
	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
	 * and we didn't launder enough pages.
	 */
	if (vnodes_skipped > 0 && launder > 0)
		(void)speedup_syncer();

	return (starting_target - launder);
}

/*
 * Compute the integer square root.
 */
static u_int
isqrt(u_int num)
{
	u_int bit, root, tmp;

	bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
	root = 0;
	while (bit != 0) {
		tmp = root + bit;
		root >>= 1;
		if (num >= tmp) {
			num -= tmp;
			root += bit;
		}
		bit >>= 2;
	}
	return (root);
}

/*
 * Perform the work of the laundry thread: periodically wake up and determine
 * whether any pages need to be laundered.  If so, determine the number of pages
 * that need to be laundered, and launder them.
 */
static void
vm_pageout_laundry_worker(void *arg)
{
	struct vm_domain *vmd;
	struct vm_pagequeue *pq;
	uint64_t nclean, ndirty, nfreed;
	int domain, last_target, launder, shortfall, shortfall_cycle, target;
	bool in_shortfall;

	domain = (uintptr_t)arg;
	vmd = VM_DOMAIN(domain);
	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));

	shortfall = 0;
	in_shortfall = false;
	shortfall_cycle = 0;
	last_target = target = 0;
	nfreed = 0;

	/*
	 * Calls to these handlers are serialized by the swap syscall lock.
	 */
	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
	    EVENTHANDLER_PRI_ANY);
	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
	    EVENTHANDLER_PRI_ANY);

	/*
	 * The pageout laundry worker is never done, so loop forever.
	 */
	for (;;) {
		KASSERT(target >= 0, ("negative target %d", target));
		KASSERT(shortfall_cycle >= 0,
		    ("negative cycle %d", shortfall_cycle));
		launder = 0;

		/*
		 * First determine whether we need to launder pages to meet a
		 * shortage of free pages.
		 */
		if (shortfall > 0) {
			in_shortfall = true;
			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
			target = shortfall;
		} else if (!in_shortfall)
			goto trybackground;
		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
			/*
			 * We recently entered shortfall and began laundering
			 * pages.  If we have completed that laundering run
			 * (and we are no longer in shortfall) or we have met
			 * our laundry target through other activity, then we
			 * can stop laundering pages.
			 */
			in_shortfall = false;
			target = 0;
			goto trybackground;
		}
		launder = target / shortfall_cycle--;
		goto dolaundry;

		/*
		 * There's no immediate need to launder any pages; see if we
		 * meet the conditions to perform background laundering:
		 *
		 * 1. The ratio of dirty to clean inactive pages exceeds the
		 *    background laundering threshold, or
		 * 2. we haven't yet reached the target of the current
		 *    background laundering run.
		 *
		 * The background laundering threshold is not a constant.
		 * Instead, it is a slowly growing function of the number of
		 * clean pages freed by the page daemon since the last
		 * background laundering.  Thus, as the ratio of dirty to
		 * clean inactive pages grows, the amount of memory pressure
		 * required to trigger laundering decreases.  We ensure
		 * that the threshold is non-zero after an inactive queue
		 * scan, even if that scan failed to free a single clean page.
		 */
trybackground:
		nclean = vmd->vmd_free_count +
		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
			target = vmd->vmd_background_launder_target;
		}

		/*
		 * We have a non-zero background laundering target.  If we've
		 * laundered up to our maximum without observing a page daemon
		 * request, just stop.  This is a safety belt that ensures we
		 * don't launder an excessive amount if memory pressure is low
		 * and the ratio of dirty to clean pages is large.  Otherwise,
		 * proceed at the background laundering rate.
		 */
		if (target > 0) {
			if (nfreed > 0) {
				nfreed = 0;
				last_target = target;
			} else if (last_target - target >=
			    vm_background_launder_max * PAGE_SIZE / 1024) {
				target = 0;
			}
			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
			launder /= VM_LAUNDER_RATE;
			if (launder > target)
				launder = target;
		}

dolaundry:
		if (launder > 0) {
			/*
			 * Because of I/O clustering, the number of laundered
			 * pages could exceed "target" by the maximum size of
			 * a cluster minus one. 
			 */
			target -= min(vm_pageout_launder(vmd, launder,
			    in_shortfall), target);
			pause("laundp", hz / VM_LAUNDER_RATE);
		}

		/*
		 * If we're not currently laundering pages and the page daemon
		 * hasn't posted a new request, sleep until the page daemon
		 * kicks us.
		 */
		vm_pagequeue_lock(pq);
		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
			(void)mtx_sleep(&vmd->vmd_laundry_request,
			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);

		/*
		 * If the pagedaemon has indicated that it's in shortfall, start
		 * a shortfall laundering unless we're already in the middle of
		 * one.  This may preempt a background laundering.
		 */
		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
		    (!in_shortfall || shortfall_cycle == 0)) {
			shortfall = vm_laundry_target(vmd) +
			    vmd->vmd_pageout_deficit;
			target = 0;
		} else
			shortfall = 0;

		if (target == 0)
			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
		nfreed += vmd->vmd_clean_pages_freed;
		vmd->vmd_clean_pages_freed = 0;
		vm_pagequeue_unlock(pq);
	}
}

/*
 * Compute the number of pages we want to try to move from the
 * active queue to either the inactive or laundry queue.
 *
 * When scanning active pages during a shortage, we make clean pages
 * count more heavily towards the page shortage than dirty pages.
 * This is because dirty pages must be laundered before they can be
 * reused and thus have less utility when attempting to quickly
 * alleviate a free page shortage.  However, this weighting also
 * causes the scan to deactivate dirty pages more aggressively,
 * improving the effectiveness of clustering.
 */
static int
vm_pageout_active_target(struct vm_domain *vmd)
{
	int shortage;

	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
	shortage *= act_scan_laundry_weight;
	return (shortage);
}

/*
 * Scan the active queue.  If there is no shortage of inactive pages, scan a
 * small portion of the queue in order to maintain quasi-LRU.
 */
static void
vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
{
	struct scan_state ss;
	vm_object_t object;
	vm_page_t m, marker;
	struct vm_pagequeue *pq;
	vm_page_astate_t old, new;
	long min_scan;
	int act_delta, max_scan, ps_delta, refs, scan_tick;
	uint8_t nqueue;

	marker = &vmd->vmd_markers[PQ_ACTIVE];
	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
	vm_pagequeue_lock(pq);

	/*
	 * If we're just idle polling attempt to visit every
	 * active page within 'update_period' seconds.
	 */
	scan_tick = ticks;
	if (vm_pageout_update_period != 0) {
		min_scan = pq->pq_cnt;
		min_scan *= scan_tick - vmd->vmd_last_active_scan;
		min_scan /= hz * vm_pageout_update_period;
	} else
		min_scan = 0;
	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
		vmd->vmd_last_active_scan = scan_tick;

	/*
	 * Scan the active queue for pages that can be deactivated.  Update
	 * the per-page activity counter and use it to identify deactivation
	 * candidates.  Held pages may be deactivated.
	 *
	 * To avoid requeuing each page that remains in the active queue, we
	 * implement the CLOCK algorithm.  To keep the implementation of the
	 * enqueue operation consistent for all page queues, we use two hands,
	 * represented by marker pages. Scans begin at the first hand, which
	 * precedes the second hand in the queue.  When the two hands meet,
	 * they are moved back to the head and tail of the queue, respectively,
	 * and scanning resumes.
	 */
	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
act_scan:
	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
	while ((m = vm_pageout_next(&ss, false)) != NULL) {
		if (__predict_false(m == &vmd->vmd_clock[1])) {
			vm_pagequeue_lock(pq);
			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
			    plinks.q);
			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
			    plinks.q);
			max_scan -= ss.scanned;
			vm_pageout_end_scan(&ss);
			goto act_scan;
		}
		if (__predict_false((m->flags & PG_MARKER) != 0))
			continue;

		/*
		 * Don't touch a page that was removed from the queue after the
		 * page queue lock was released.  Otherwise, ensure that any
		 * pending queue operations, such as dequeues for wired pages,
		 * are handled.
		 */
		if (vm_pageout_defer(m, PQ_ACTIVE, true))
			continue;

		/*
		 * A page's object pointer may be set to NULL before
		 * the object lock is acquired.
		 */
		object = atomic_load_ptr(&m->object);
		if (__predict_false(object == NULL))
			/*
			 * The page has been removed from its object.
			 */
			continue;

		/* Deferred free of swap space. */
		if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
		    VM_OBJECT_TRYWLOCK(object)) {
			if (m->object == object)
				vm_pager_page_unswapped(m);
			VM_OBJECT_WUNLOCK(object);
		}

		/*
		 * Check to see "how much" the page has been used.
		 *
		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
		 * that a reference from a concurrently destroyed mapping is
		 * observed here and now.
		 *
		 * Perform an unsynchronized object ref count check.  While
		 * the page lock ensures that the page is not reallocated to
		 * another object, in particular, one with unmanaged mappings
		 * that cannot support pmap_ts_referenced(), two races are,
		 * nonetheless, possible:
		 * 1) The count was transitioning to zero, but we saw a non-
		 *    zero value.  pmap_ts_referenced() will return zero
		 *    because the page is not mapped.
		 * 2) The count was transitioning to one, but we saw zero.
		 *    This race delays the detection of a new reference.  At
		 *    worst, we will deactivate and reactivate the page.
		 */
		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;

		old = vm_page_astate_load(m);
		do {
			/*
			 * Check to see if the page has been removed from the
			 * queue since the first such check.  Leave it alone if
			 * so, discarding any references collected by
			 * pmap_ts_referenced().
			 */
			if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
				ps_delta = 0;
				break;
			}

			/*
			 * Advance or decay the act_count based on recent usage.
			 */
			new = old;
			act_delta = refs;
			if ((old.flags & PGA_REFERENCED) != 0) {
				new.flags &= ~PGA_REFERENCED;
				act_delta++;
			}
			if (act_delta != 0) {
				new.act_count += ACT_ADVANCE + act_delta;
				if (new.act_count > ACT_MAX)
					new.act_count = ACT_MAX;
			} else {
				new.act_count -= min(new.act_count,
				    ACT_DECLINE);
			}

			if (new.act_count > 0) {
				/*
				 * Adjust the activation count and keep the page
				 * in the active queue.  The count might be left
				 * unchanged if it is saturated.  The page may
				 * have been moved to a different queue since we
				 * started the scan, in which case we move it
				 * back.
				 */
				ps_delta = 0;
				if (old.queue != PQ_ACTIVE) {
					new.flags &= ~PGA_QUEUE_OP_MASK;
					new.flags |= PGA_REQUEUE;
					new.queue = PQ_ACTIVE;
				}
			} else {
				/*
				 * When not short for inactive pages, let dirty
				 * pages go through the inactive queue before
				 * moving to the laundry queue.  This gives them
				 * some extra time to be reactivated,
				 * potentially avoiding an expensive pageout.
				 * However, during a page shortage, the inactive
				 * queue is necessarily small, and so dirty
				 * pages would only spend a trivial amount of
				 * time in the inactive queue.  Therefore, we
				 * might as well place them directly in the
				 * laundry queue to reduce queuing overhead.
				 *
				 * Calling vm_page_test_dirty() here would
				 * require acquisition of the object's write
				 * lock.  However, during a page shortage,
				 * directing dirty pages into the laundry queue
				 * is only an optimization and not a
				 * requirement.  Therefore, we simply rely on
				 * the opportunistic updates to the page's dirty
				 * field by the pmap.
				 */
				if (page_shortage <= 0) {
					nqueue = PQ_INACTIVE;
					ps_delta = 0;
				} else if (m->dirty == 0) {
					nqueue = PQ_INACTIVE;
					ps_delta = act_scan_laundry_weight;
				} else {
					nqueue = PQ_LAUNDRY;
					ps_delta = 1;
				}

				new.flags &= ~PGA_QUEUE_OP_MASK;
				new.flags |= PGA_REQUEUE;
				new.queue = nqueue;
			}
		} while (!vm_page_pqstate_commit(m, &old, new));

		page_shortage -= ps_delta;
	}
	vm_pagequeue_lock(pq);
	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
	vm_pageout_end_scan(&ss);
	vm_pagequeue_unlock(pq);
}

static int
vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
    vm_page_t m)
{
	vm_page_astate_t as;

	vm_pagequeue_assert_locked(pq);

	as = vm_page_astate_load(m);
	if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
		return (0);
	vm_page_aflag_set(m, PGA_ENQUEUED);
	TAILQ_INSERT_BEFORE(marker, m, plinks.q);
	return (1);
}

/*
 * Re-add stuck pages to the inactive queue.  We will examine them again
 * during the next scan.  If the queue state of a page has changed since
 * it was physically removed from the page queue in
 * vm_pageout_collect_batch(), don't do anything with that page.
 */
static void
vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
    vm_page_t m)
{
	struct vm_pagequeue *pq;
	vm_page_t marker;
	int delta;

	delta = 0;
	marker = ss->marker;
	pq = ss->pq;

	if (m != NULL) {
		if (vm_batchqueue_insert(bq, m))
			return;
		vm_pagequeue_lock(pq);
		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
	} else
		vm_pagequeue_lock(pq);
	while ((m = vm_batchqueue_pop(bq)) != NULL)
		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
	vm_pagequeue_cnt_add(pq, delta);
	vm_pagequeue_unlock(pq);
	vm_batchqueue_init(bq);
}

static void
vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
{
	struct timeval start, end;
	struct scan_state ss;
	struct vm_batchqueue rq;
	struct vm_page marker_page;
	vm_page_t m, marker;
	struct vm_pagequeue *pq;
	vm_object_t object;
	vm_page_astate_t old, new;
	int act_delta, addl_page_shortage, starting_page_shortage, refs;

	object = NULL;
	vm_batchqueue_init(&rq);
	getmicrouptime(&start);

	/*
	 * The addl_page_shortage is an estimate of the number of temporarily
	 * stuck pages in the inactive queue.  In other words, the
	 * number of pages from the inactive count that should be
	 * discounted in setting the target for the active queue scan.
	 */
	addl_page_shortage = 0;

	/*
	 * Start scanning the inactive queue for pages that we can free.  The
	 * scan will stop when we reach the target or we have scanned the
	 * entire queue.  (Note that m->a.act_count is not used to make
	 * decisions for the inactive queue, only for the active queue.)
	 */
	starting_page_shortage = page_shortage;
	marker = &marker_page;
	vm_page_init_marker(marker, PQ_INACTIVE, 0);
	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
	vm_pagequeue_lock(pq);
	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
	while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
		KASSERT((m->flags & PG_MARKER) == 0,
		    ("marker page %p was dequeued", m));

		/*
		 * Don't touch a page that was removed from the queue after the
		 * page queue lock was released.  Otherwise, ensure that any
		 * pending queue operations, such as dequeues for wired pages,
		 * are handled.
		 */
		if (vm_pageout_defer(m, PQ_INACTIVE, false))
			continue;

		/*
		 * Lock the page's object.
		 */
		if (object == NULL || object != m->object) {
			if (object != NULL)
				VM_OBJECT_WUNLOCK(object);
			object = atomic_load_ptr(&m->object);
			if (__predict_false(object == NULL))
				/* The page is being freed by another thread. */
				continue;

			/* Depends on type-stability. */
			VM_OBJECT_WLOCK(object);
			if (__predict_false(m->object != object)) {
				VM_OBJECT_WUNLOCK(object);
				object = NULL;
				goto reinsert;
			}
		}

		if (vm_page_tryxbusy(m) == 0) {
			/*
			 * Don't mess with busy pages.  Leave them at
			 * the front of the queue.  Most likely, they
			 * are being paged out and will leave the
			 * queue shortly after the scan finishes.  So,
			 * they ought to be discounted from the
			 * inactive count.
			 */
			addl_page_shortage++;
			goto reinsert;
		}

		/* Deferred free of swap space. */
		if ((m->a.flags & PGA_SWAP_FREE) != 0)
			vm_pager_page_unswapped(m);

		/*
		 * Check for wirings now that we hold the object lock and have
		 * exclusively busied the page.  If the page is mapped, it may
		 * still be wired by pmap lookups.  The call to
		 * vm_page_try_remove_all() below atomically checks for such
		 * wirings and removes mappings.  If the page is unmapped, the
		 * wire count is guaranteed not to increase after this check.
		 */
		if (__predict_false(vm_page_wired(m)))
			goto skip_page;

		/*
		 * Invalid pages can be easily freed. They cannot be
		 * mapped, vm_page_free() asserts this.
		 */
		if (vm_page_none_valid(m))
			goto free_page;

		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;

		for (old = vm_page_astate_load(m);;) {
			/*
			 * Check to see if the page has been removed from the
			 * queue since the first such check.  Leave it alone if
			 * so, discarding any references collected by
			 * pmap_ts_referenced().
			 */
			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
				goto skip_page;

			new = old;
			act_delta = refs;
			if ((old.flags & PGA_REFERENCED) != 0) {
				new.flags &= ~PGA_REFERENCED;
				act_delta++;
			}
			if (act_delta == 0) {
				;
			} else if (object->ref_count != 0) {
				/*
				 * Increase the activation count if the
				 * page was referenced while in the
				 * inactive queue.  This makes it less
				 * likely that the page will be returned
				 * prematurely to the inactive queue.
				 */
				new.act_count += ACT_ADVANCE +
				    act_delta;
				if (new.act_count > ACT_MAX)
					new.act_count = ACT_MAX;

				new.flags &= ~PGA_QUEUE_OP_MASK;
				new.flags |= PGA_REQUEUE;
				new.queue = PQ_ACTIVE;
				if (!vm_page_pqstate_commit(m, &old, new))
					continue;

				VM_CNT_INC(v_reactivated);
				goto skip_page;
			} else if ((object->flags & OBJ_DEAD) == 0) {
				new.queue = PQ_INACTIVE;
				new.flags |= PGA_REQUEUE;
				if (!vm_page_pqstate_commit(m, &old, new))
					continue;
				goto skip_page;
			}
			break;
		}

		/*
		 * If the page appears to be clean at the machine-independent
		 * layer, then remove all of its mappings from the pmap in
		 * anticipation of freeing it.  If, however, any of the page's
		 * mappings allow write access, then the page may still be
		 * modified until the last of those mappings are removed.
		 */
		if (object->ref_count != 0) {
			vm_page_test_dirty(m);
			if (m->dirty == 0 && !vm_page_try_remove_all(m))
				goto skip_page;
		}

		/*
		 * Clean pages can be freed, but dirty pages must be sent back
		 * to the laundry, unless they belong to a dead object.
		 * Requeueing dirty pages from dead objects is pointless, as
		 * they are being paged out and freed by the thread that
		 * destroyed the object.
		 */
		if (m->dirty == 0) {
free_page:
			/*
			 * Now we are guaranteed that no other threads are
			 * manipulating the page, check for a last-second
			 * reference that would save it from doom.
			 */
			if (vm_pageout_defer(m, PQ_INACTIVE, false))
				goto skip_page;

			/*
			 * Because we dequeued the page and have already checked
			 * for pending dequeue and enqueue requests, we can
			 * safely disassociate the page from the inactive queue
			 * without holding the queue lock.
			 */
			m->a.queue = PQ_NONE;
			vm_page_free(m);
			page_shortage--;
			continue;
		}
		if ((object->flags & OBJ_DEAD) == 0)
			vm_page_launder(m);
skip_page:
		vm_page_xunbusy(m);
		continue;
reinsert:
		vm_pageout_reinsert_inactive(&ss, &rq, m);
	}
	if (object != NULL)
		VM_OBJECT_WUNLOCK(object);
	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
	vm_pagequeue_lock(pq);
	vm_pageout_end_scan(&ss);
	vm_pagequeue_unlock(pq);

	/*
	 * Record the remaining shortage and the progress and rate it was made.
	 */
	atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
	getmicrouptime(&end);
	timevalsub(&end, &start);
	atomic_add_int(&vmd->vmd_inactive_us,
	    end.tv_sec * 1000000 + end.tv_usec);
	atomic_add_int(&vmd->vmd_inactive_freed,
	    starting_page_shortage - page_shortage);
}

/*
 * Dispatch a number of inactive threads according to load and collect the
 * results to present a coherent view of paging activity on this domain.
 */
static int
vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
{
	u_int freed, pps, slop, threads, us;

	vmd->vmd_inactive_shortage = shortage;
	slop = 0;

	/*
	 * If we have more work than we can do in a quarter of our interval, we
	 * fire off multiple threads to process it.
	 */
	threads = vmd->vmd_inactive_threads;
	if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
	    shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
		vmd->vmd_inactive_shortage /= threads;
		slop = shortage % threads;
		vm_domain_pageout_lock(vmd);
		blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
		blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
		wakeup(&vmd->vmd_inactive_shortage);
		vm_domain_pageout_unlock(vmd);
	}

	/* Run the local thread scan. */
	vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);

	/*
	 * Block until helper threads report results and then accumulate
	 * totals.
	 */
	blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
	freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
	VM_CNT_ADD(v_dfree, freed);

	/*
	 * Calculate the per-thread paging rate with an exponential decay of
	 * prior results.  Careful to avoid integer rounding errors with large
	 * us values.
	 */
	us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
	if (us > 1000000)
		/* Keep rounding to tenths */
		pps = (freed * 10) / ((us * 10) / 1000000);
	else
		pps = (1000000 / us) * freed;
	vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);

	return (shortage - freed);
}

/*
 * Attempt to reclaim the requested number of pages from the inactive queue.
 * Returns true if the shortage was addressed.
 */
static int
vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
{
	struct vm_pagequeue *pq;
	u_int addl_page_shortage, deficit, page_shortage;
	u_int starting_page_shortage;

	/*
	 * vmd_pageout_deficit counts the number of pages requested in
	 * allocations that failed because of a free page shortage.  We assume
	 * that the allocations will be reattempted and thus include the deficit
	 * in our scan target.
	 */
	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
	starting_page_shortage = shortage + deficit;

	/*
	 * Run the inactive scan on as many threads as is necessary.
	 */
	page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
	addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);

	/*
	 * Wake up the laundry thread so that it can perform any needed
	 * laundering.  If we didn't meet our target, we're in shortfall and
	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
	 * swap devices are configured, the laundry thread has no work to do, so
	 * don't bother waking it up.
	 *
	 * The laundry thread uses the number of inactive queue scans elapsed
	 * since the last laundering to determine whether to launder again, so
	 * keep count.
	 */
	if (starting_page_shortage > 0) {
		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
		vm_pagequeue_lock(pq);
		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
			if (page_shortage > 0) {
				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
				VM_CNT_INC(v_pdshortfalls);
			} else if (vmd->vmd_laundry_request !=
			    VM_LAUNDRY_SHORTFALL)
				vmd->vmd_laundry_request =
				    VM_LAUNDRY_BACKGROUND;
			wakeup(&vmd->vmd_laundry_request);
		}
		vmd->vmd_clean_pages_freed +=
		    starting_page_shortage - page_shortage;
		vm_pagequeue_unlock(pq);
	}

	/*
	 * Wakeup the swapout daemon if we didn't free the targeted number of
	 * pages.
	 */
	if (page_shortage > 0)
		vm_swapout_run();

	/*
	 * If the inactive queue scan fails repeatedly to meet its
	 * target, kill the largest process.
	 */
	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);

	/*
	 * Reclaim pages by swapping out idle processes, if configured to do so.
	 */
	vm_swapout_run_idle();

	/*
	 * See the description of addl_page_shortage above.
	 */
	*addl_shortage = addl_page_shortage + deficit;

	return (page_shortage <= 0);
}

static int vm_pageout_oom_vote;

/*
 * The pagedaemon threads randlomly select one to perform the
 * OOM.  Trying to kill processes before all pagedaemons
 * failed to reach free target is premature.
 */
static void
vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
    int starting_page_shortage)
{
	int old_vote;

	if (starting_page_shortage <= 0 || starting_page_shortage !=
	    page_shortage)
		vmd->vmd_oom_seq = 0;
	else
		vmd->vmd_oom_seq++;
	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
		if (vmd->vmd_oom) {
			vmd->vmd_oom = FALSE;
			atomic_subtract_int(&vm_pageout_oom_vote, 1);
		}
		return;
	}

	/*
	 * Do not follow the call sequence until OOM condition is
	 * cleared.
	 */
	vmd->vmd_oom_seq = 0;

	if (vmd->vmd_oom)
		return;

	vmd->vmd_oom = TRUE;
	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
	if (old_vote != vm_ndomains - 1)
		return;

	/*
	 * The current pagedaemon thread is the last in the quorum to
	 * start OOM.  Initiate the selection and signaling of the
	 * victim.
	 */
	vm_pageout_oom(VM_OOM_MEM);

	/*
	 * After one round of OOM terror, recall our vote.  On the
	 * next pass, current pagedaemon would vote again if the low
	 * memory condition is still there, due to vmd_oom being
	 * false.
	 */
	vmd->vmd_oom = FALSE;
	atomic_subtract_int(&vm_pageout_oom_vote, 1);
}

/*
 * The OOM killer is the page daemon's action of last resort when
 * memory allocation requests have been stalled for a prolonged period
 * of time because it cannot reclaim memory.  This function computes
 * the approximate number of physical pages that could be reclaimed if
 * the specified address space is destroyed.
 *
 * Private, anonymous memory owned by the address space is the
 * principal resource that we expect to recover after an OOM kill.
 * Since the physical pages mapped by the address space's COW entries
 * are typically shared pages, they are unlikely to be released and so
 * they are not counted.
 *
 * To get to the point where the page daemon runs the OOM killer, its
 * efforts to write-back vnode-backed pages may have stalled.  This
 * could be caused by a memory allocation deadlock in the write path
 * that might be resolved by an OOM kill.  Therefore, physical pages
 * belonging to vnode-backed objects are counted, because they might
 * be freed without being written out first if the address space holds
 * the last reference to an unlinked vnode.
 *
 * Similarly, physical pages belonging to OBJT_PHYS objects are
 * counted because the address space might hold the last reference to
 * the object.
 */
static long
vm_pageout_oom_pagecount(struct vmspace *vmspace)
{
	vm_map_t map;
	vm_map_entry_t entry;
	vm_object_t obj;
	long res;

	map = &vmspace->vm_map;
	KASSERT(!map->system_map, ("system map"));
	sx_assert(&map->lock, SA_LOCKED);
	res = 0;
	VM_MAP_ENTRY_FOREACH(entry, map) {
		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
			continue;
		obj = entry->object.vm_object;
		if (obj == NULL)
			continue;
		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
		    obj->ref_count != 1)
			continue;
		switch (obj->type) {
		case OBJT_DEFAULT:
		case OBJT_SWAP:
		case OBJT_PHYS:
		case OBJT_VNODE:
			res += obj->resident_page_count;
			break;
		}
	}
	return (res);
}

static int vm_oom_ratelim_last;
static int vm_oom_pf_secs = 10;
SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
    "");
static struct mtx vm_oom_ratelim_mtx;

void
vm_pageout_oom(int shortage)
{
	struct proc *p, *bigproc;
	vm_offset_t size, bigsize;
	struct thread *td;
	struct vmspace *vm;
	int now;
	bool breakout;

	/*
	 * For OOM requests originating from vm_fault(), there is a high
	 * chance that a single large process faults simultaneously in
	 * several threads.  Also, on an active system running many
	 * processes of middle-size, like buildworld, all of them
	 * could fault almost simultaneously as well.
	 *
	 * To avoid killing too many processes, rate-limit OOMs
	 * initiated by vm_fault() time-outs on the waits for free
	 * pages.
	 */
	mtx_lock(&vm_oom_ratelim_mtx);
	now = ticks;
	if (shortage == VM_OOM_MEM_PF &&
	    (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
		mtx_unlock(&vm_oom_ratelim_mtx);
		return;
	}
	vm_oom_ratelim_last = now;
	mtx_unlock(&vm_oom_ratelim_mtx);

	/*
	 * We keep the process bigproc locked once we find it to keep anyone
	 * from messing with it; however, there is a possibility of
	 * deadlock if process B is bigproc and one of its child processes
	 * attempts to propagate a signal to B while we are waiting for A's
	 * lock while walking this list.  To avoid this, we don't block on
	 * the process lock but just skip a process if it is already locked.
	 */
	bigproc = NULL;
	bigsize = 0;
	sx_slock(&allproc_lock);
	FOREACH_PROC_IN_SYSTEM(p) {
		PROC_LOCK(p);

		/*
		 * If this is a system, protected or killed process, skip it.
		 */
		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
		    p->p_pid == 1 || P_KILLED(p) ||
		    (p->p_pid < 48 && swap_pager_avail != 0)) {
			PROC_UNLOCK(p);
			continue;
		}
		/*
		 * If the process is in a non-running type state,
		 * don't touch it.  Check all the threads individually.
		 */
		breakout = false;
		FOREACH_THREAD_IN_PROC(p, td) {
			thread_lock(td);
			if (!TD_ON_RUNQ(td) &&
			    !TD_IS_RUNNING(td) &&
			    !TD_IS_SLEEPING(td) &&
			    !TD_IS_SUSPENDED(td) &&
			    !TD_IS_SWAPPED(td)) {
				thread_unlock(td);
				breakout = true;
				break;
			}
			thread_unlock(td);
		}
		if (breakout) {
			PROC_UNLOCK(p);
			continue;
		}
		/*
		 * get the process size
		 */
		vm = vmspace_acquire_ref(p);
		if (vm == NULL) {
			PROC_UNLOCK(p);
			continue;
		}
		_PHOLD_LITE(p);
		PROC_UNLOCK(p);
		sx_sunlock(&allproc_lock);
		if (!vm_map_trylock_read(&vm->vm_map)) {
			vmspace_free(vm);
			sx_slock(&allproc_lock);
			PRELE(p);
			continue;
		}
		size = vmspace_swap_count(vm);
		if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
			size += vm_pageout_oom_pagecount(vm);
		vm_map_unlock_read(&vm->vm_map);
		vmspace_free(vm);
		sx_slock(&allproc_lock);

		/*
		 * If this process is bigger than the biggest one,
		 * remember it.
		 */
		if (size > bigsize) {
			if (bigproc != NULL)
				PRELE(bigproc);
			bigproc = p;
			bigsize = size;
		} else {
			PRELE(p);
		}
	}
	sx_sunlock(&allproc_lock);
	if (bigproc != NULL) {
		if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
			panic("out of swap space");
		PROC_LOCK(bigproc);
		killproc(bigproc, "out of swap space");
		sched_nice(bigproc, PRIO_MIN);
		_PRELE(bigproc);
		PROC_UNLOCK(bigproc);
	}
}

/*
 * Signal a free page shortage to subsystems that have registered an event
 * handler.  Reclaim memory from UMA in the event of a severe shortage.
 * Return true if the free page count should be re-evaluated.
 */
static bool
vm_pageout_lowmem(void)
{
	static int lowmem_ticks = 0;
	int last;
	bool ret;

	ret = false;

	last = atomic_load_int(&lowmem_ticks);
	while ((u_int)(ticks - last) / hz >= lowmem_period) {
		if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
			continue;

		/*
		 * Decrease registered cache sizes.
		 */
		SDT_PROBE0(vm, , , vm__lowmem_scan);
		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);

		/*
		 * We do this explicitly after the caches have been
		 * drained above.
		 */
		uma_reclaim(UMA_RECLAIM_TRIM);
		ret = true;
		break;
	}

	/*
	 * Kick off an asynchronous reclaim of cached memory if one of the
	 * page daemons is failing to keep up with demand.  Use the "severe"
	 * threshold instead of "min" to ensure that we do not blow away the
	 * caches if a subset of the NUMA domains are depleted by kernel memory
	 * allocations; the domainset iterators automatically skip domains
	 * below the "min" threshold on the first pass.
	 *
	 * UMA reclaim worker has its own rate-limiting mechanism, so don't
	 * worry about kicking it too often.
	 */
	if (vm_page_count_severe())
		uma_reclaim_wakeup();

	return (ret);
}

static void
vm_pageout_worker(void *arg)
{
	struct vm_domain *vmd;
	u_int ofree;
	int addl_shortage, domain, shortage;
	bool target_met;

	domain = (uintptr_t)arg;
	vmd = VM_DOMAIN(domain);
	shortage = 0;
	target_met = true;

	/*
	 * XXXKIB It could be useful to bind pageout daemon threads to
	 * the cores belonging to the domain, from which vm_page_array
	 * is allocated.
	 */

	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
	vmd->vmd_last_active_scan = ticks;

	/*
	 * The pageout daemon worker is never done, so loop forever.
	 */
	while (TRUE) {
		vm_domain_pageout_lock(vmd);

		/*
		 * We need to clear wanted before we check the limits.  This
		 * prevents races with wakers who will check wanted after they
		 * reach the limit.
		 */
		atomic_store_int(&vmd->vmd_pageout_wanted, 0);

		/*
		 * Might the page daemon need to run again?
		 */
		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
			/*
			 * Yes.  If the scan failed to produce enough free
			 * pages, sleep uninterruptibly for some time in the
			 * hope that the laundry thread will clean some pages.
			 */
			vm_domain_pageout_unlock(vmd);
			if (!target_met)
				pause("pwait", hz / VM_INACT_SCAN_RATE);
		} else {
			/*
			 * No, sleep until the next wakeup or until pages
			 * need to have their reference stats updated.
			 */
			if (mtx_sleep(&vmd->vmd_pageout_wanted,
			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
				VM_CNT_INC(v_pdwakeups);
		}

		/* Prevent spurious wakeups by ensuring that wanted is set. */
		atomic_store_int(&vmd->vmd_pageout_wanted, 1);

		/*
		 * Use the controller to calculate how many pages to free in
		 * this interval, and scan the inactive queue.  If the lowmem
		 * handlers appear to have freed up some pages, subtract the
		 * difference from the inactive queue scan target.
		 */
		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
		if (shortage > 0) {
			ofree = vmd->vmd_free_count;
			if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
				shortage -= min(vmd->vmd_free_count - ofree,
				    (u_int)shortage);
			target_met = vm_pageout_inactive(vmd, shortage,
			    &addl_shortage);
		} else
			addl_shortage = 0;

		/*
		 * Scan the active queue.  A positive value for shortage
		 * indicates that we must aggressively deactivate pages to avoid
		 * a shortfall.
		 */
		shortage = vm_pageout_active_target(vmd) + addl_shortage;
		vm_pageout_scan_active(vmd, shortage);
	}
}

/*
 * vm_pageout_helper runs additional pageout daemons in times of high paging
 * activity.
 */
static void
vm_pageout_helper(void *arg)
{
	struct vm_domain *vmd;
	int domain;

	domain = (uintptr_t)arg;
	vmd = VM_DOMAIN(domain);

	vm_domain_pageout_lock(vmd);
	for (;;) {
		msleep(&vmd->vmd_inactive_shortage,
		    vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
		blockcount_release(&vmd->vmd_inactive_starting, 1);

		vm_domain_pageout_unlock(vmd);
		vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
		vm_domain_pageout_lock(vmd);

		/*
		 * Release the running count while the pageout lock is held to
		 * prevent wakeup races.
		 */
		blockcount_release(&vmd->vmd_inactive_running, 1);
	}
}

static int
get_pageout_threads_per_domain(const struct vm_domain *vmd)
{
	unsigned total_pageout_threads, eligible_cpus, domain_cpus;

	if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
		return (0);

	/*
	 * Semi-arbitrarily constrain pagedaemon threads to less than half the
	 * total number of CPUs in the system as an upper limit.
	 */
	if (pageout_cpus_per_thread < 2)
		pageout_cpus_per_thread = 2;
	else if (pageout_cpus_per_thread > mp_ncpus)
		pageout_cpus_per_thread = mp_ncpus;

	total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
	domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);

	/* Pagedaemons are not run in empty domains. */
	eligible_cpus = mp_ncpus;
	for (unsigned i = 0; i < vm_ndomains; i++)
		if (VM_DOMAIN_EMPTY(i))
			eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);

	/*
	 * Assign a portion of the total pageout threads to this domain
	 * corresponding to the fraction of pagedaemon-eligible CPUs in the
	 * domain.  In asymmetric NUMA systems, domains with more CPUs may be
	 * allocated more threads than domains with fewer CPUs.
	 */
	return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
}

/*
 * Initialize basic pageout daemon settings.  See the comment above the
 * definition of vm_domain for some explanation of how these thresholds are
 * used.
 */
static void
vm_pageout_init_domain(int domain)
{
	struct vm_domain *vmd;
	struct sysctl_oid *oid;

	vmd = VM_DOMAIN(domain);
	vmd->vmd_interrupt_free_min = 2;

	/*
	 * v_free_reserved needs to include enough for the largest
	 * swap pager structures plus enough for any pv_entry structs
	 * when paging. 
	 */
	vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
	    vmd->vmd_interrupt_free_min;
	vmd->vmd_free_reserved = vm_pageout_page_count +
	    vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
	vmd->vmd_free_min = vmd->vmd_page_count / 200;
	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
	vmd->vmd_free_min += vmd->vmd_free_reserved;
	vmd->vmd_free_severe += vmd->vmd_free_reserved;
	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;

	/*
	 * Set the default wakeup threshold to be 10% below the paging
	 * target.  This keeps the steady state out of shortfall.
	 */
	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;

	/*
	 * Target amount of memory to move out of the laundry queue during a
	 * background laundering.  This is proportional to the amount of system
	 * memory.
	 */
	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
	    vmd->vmd_free_min) / 10;

	/* Initialize the pageout daemon pid controller. */
	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
	    vmd->vmd_free_target, PIDCTRL_BOUND,
	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
	    "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));

	vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
}

static void
vm_pageout_init(void)
{
	u_long freecount;
	int i;

	/*
	 * Initialize some paging parameters.
	 */
	if (vm_cnt.v_page_count < 2000)
		vm_pageout_page_count = 8;

	freecount = 0;
	for (i = 0; i < vm_ndomains; i++) {
		struct vm_domain *vmd;

		vm_pageout_init_domain(i);
		vmd = VM_DOMAIN(i);
		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
		vm_cnt.v_free_target += vmd->vmd_free_target;
		vm_cnt.v_free_min += vmd->vmd_free_min;
		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
		vm_cnt.v_free_severe += vmd->vmd_free_severe;
		freecount += vmd->vmd_free_count;
	}

	/*
	 * Set interval in seconds for active scan.  We want to visit each
	 * page at least once every ten minutes.  This is to prevent worst
	 * case paging behaviors with stale active LRU.
	 */
	if (vm_pageout_update_period == 0)
		vm_pageout_update_period = 600;

	/*
	 * Set the maximum number of user-wired virtual pages.  Historically the
	 * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
	 * may also request user-wired memory.
	 */
	if (vm_page_max_user_wired == 0)
		vm_page_max_user_wired = 4 * freecount / 5;
}

/*
 *     vm_pageout is the high level pageout daemon.
 */
static void
vm_pageout(void)
{
	struct proc *p;
	struct thread *td;
	int error, first, i, j, pageout_threads;

	p = curproc;
	td = curthread;

	mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
	swap_pager_swap_init();
	for (first = -1, i = 0; i < vm_ndomains; i++) {
		if (VM_DOMAIN_EMPTY(i)) {
			if (bootverbose)
				printf("domain %d empty; skipping pageout\n",
				    i);
			continue;
		}
		if (first == -1)
			first = i;
		else {
			error = kthread_add(vm_pageout_worker,
			    (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
			if (error != 0)
				panic("starting pageout for domain %d: %d\n",
				    i, error);
		}
		pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
		for (j = 0; j < pageout_threads - 1; j++) {
			error = kthread_add(vm_pageout_helper,
			    (void *)(uintptr_t)i, p, NULL, 0, 0,
			    "dom%d helper%d", i, j);
			if (error != 0)
				panic("starting pageout helper %d for domain "
				    "%d: %d\n", j, i, error);
		}
		error = kthread_add(vm_pageout_laundry_worker,
		    (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
		if (error != 0)
			panic("starting laundry for domain %d: %d", i, error);
	}
	error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
	if (error != 0)
		panic("starting uma_reclaim helper, error %d\n", error);

	snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
	vm_pageout_worker((void *)(uintptr_t)first);
}

/*
 * Perform an advisory wakeup of the page daemon.
 */
void
pagedaemon_wakeup(int domain)
{
	struct vm_domain *vmd;

	vmd = VM_DOMAIN(domain);
	vm_domain_pageout_assert_unlocked(vmd);
	if (curproc == pageproc)
		return;

	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
		vm_domain_pageout_lock(vmd);
		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
		wakeup(&vmd->vmd_pageout_wanted);
		vm_domain_pageout_unlock(vmd);
	}
}