aboutsummaryrefslogtreecommitdiff
path: root/tables/apr_tables.c
blob: 51b23407cc0ee0cee1d664e3c21c5bcaed2397ec (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Resource allocation code... the code here is responsible for making
 * sure that nothing leaks.
 *
 * rst --- 4/95 --- 6/95
 */

#include "apr_private.h"

#include "apr_general.h"
#include "apr_pools.h"
#include "apr_tables.h"
#include "apr_strings.h"
#include "apr_lib.h"
#if APR_HAVE_STDLIB_H
#include <stdlib.h>
#endif
#if APR_HAVE_STRING_H
#include <string.h>
#endif
#if APR_HAVE_STRINGS_H
#include <strings.h>
#endif

#if (APR_POOL_DEBUG || defined(MAKE_TABLE_PROFILE)) && APR_HAVE_STDIO_H
#include <stdio.h>
#endif

/*****************************************************************
 * This file contains array and apr_table_t functions only.
 */

/*****************************************************************
 *
 * The 'array' functions...
 */

static void make_array_core(apr_array_header_t *res, apr_pool_t *p,
			    int nelts, int elt_size, int clear)
{
    /*
     * Assure sanity if someone asks for
     * array of zero elts.
     */
    if (nelts < 1) {
        nelts = 1;
    }

    if (clear) {
        res->elts = apr_pcalloc(p, nelts * elt_size);
    }
    else {
        res->elts = apr_palloc(p, nelts * elt_size);
    }

    res->pool = p;
    res->elt_size = elt_size;
    res->nelts = 0;		/* No active elements yet... */
    res->nalloc = nelts;	/* ...but this many allocated */
}

APR_DECLARE(int) apr_is_empty_array(const apr_array_header_t *a)
{
    return ((a == NULL) || (a->nelts == 0));
}

APR_DECLARE(apr_array_header_t *) apr_array_make(apr_pool_t *p,
						int nelts, int elt_size)
{
    apr_array_header_t *res;

    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
    make_array_core(res, p, nelts, elt_size, 1);
    return res;
}

APR_DECLARE(void) apr_array_clear(apr_array_header_t *arr)
{
    arr->nelts = 0;
}

APR_DECLARE(void *) apr_array_pop(apr_array_header_t *arr)
{
    if (apr_is_empty_array(arr)) {
        return NULL;
    }
   
    return arr->elts + (arr->elt_size * (--arr->nelts));
}

APR_DECLARE(void *) apr_array_push(apr_array_header_t *arr)
{
    if (arr->nelts == arr->nalloc) {
        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
        char *new_data;

        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);

        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
        memset(new_data + arr->nalloc * arr->elt_size, 0,
               arr->elt_size * (new_size - arr->nalloc));
        arr->elts = new_data;
        arr->nalloc = new_size;
    }

    ++arr->nelts;
    return arr->elts + (arr->elt_size * (arr->nelts - 1));
}

static void *apr_array_push_noclear(apr_array_header_t *arr)
{
    if (arr->nelts == arr->nalloc) {
        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
        char *new_data;

        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);

        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
        arr->elts = new_data;
        arr->nalloc = new_size;
    }

    ++arr->nelts;
    return arr->elts + (arr->elt_size * (arr->nelts - 1));
}

APR_DECLARE(void) apr_array_cat(apr_array_header_t *dst,
			       const apr_array_header_t *src)
{
    int elt_size = dst->elt_size;

    if (dst->nelts + src->nelts > dst->nalloc) {
	int new_size = (dst->nalloc <= 0) ? 1 : dst->nalloc * 2;
	char *new_data;

	while (dst->nelts + src->nelts > new_size) {
	    new_size *= 2;
	}

	new_data = apr_pcalloc(dst->pool, elt_size * new_size);
	memcpy(new_data, dst->elts, dst->nalloc * elt_size);

	dst->elts = new_data;
	dst->nalloc = new_size;
    }

    memcpy(dst->elts + dst->nelts * elt_size, src->elts,
	   elt_size * src->nelts);
    dst->nelts += src->nelts;
}

APR_DECLARE(apr_array_header_t *) apr_array_copy(apr_pool_t *p,
						const apr_array_header_t *arr)
{
    apr_array_header_t *res =
        (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
    make_array_core(res, p, arr->nalloc, arr->elt_size, 0);

    memcpy(res->elts, arr->elts, arr->elt_size * arr->nelts);
    res->nelts = arr->nelts;
    memset(res->elts + res->elt_size * res->nelts, 0,
           res->elt_size * (res->nalloc - res->nelts));
    return res;
}

/* This cute function copies the array header *only*, but arranges
 * for the data section to be copied on the first push or arraycat.
 * It's useful when the elements of the array being copied are
 * read only, but new stuff *might* get added on the end; we have the
 * overhead of the full copy only where it is really needed.
 */

static APR_INLINE void copy_array_hdr_core(apr_array_header_t *res,
					   const apr_array_header_t *arr)
{
    res->elts = arr->elts;
    res->elt_size = arr->elt_size;
    res->nelts = arr->nelts;
    res->nalloc = arr->nelts;	/* Force overflow on push */
}

APR_DECLARE(apr_array_header_t *)
    apr_array_copy_hdr(apr_pool_t *p,
		       const apr_array_header_t *arr)
{
    apr_array_header_t *res;

    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
    res->pool = p;
    copy_array_hdr_core(res, arr);
    return res;
}

/* The above is used here to avoid consing multiple new array bodies... */

APR_DECLARE(apr_array_header_t *)
    apr_array_append(apr_pool_t *p,
		      const apr_array_header_t *first,
		      const apr_array_header_t *second)
{
    apr_array_header_t *res = apr_array_copy_hdr(p, first);

    apr_array_cat(res, second);
    return res;
}

/* apr_array_pstrcat generates a new string from the apr_pool_t containing
 * the concatenated sequence of substrings referenced as elements within
 * the array.  The string will be empty if all substrings are empty or null,
 * or if there are no elements in the array.
 * If sep is non-NUL, it will be inserted between elements as a separator.
 */
APR_DECLARE(char *) apr_array_pstrcat(apr_pool_t *p,
				     const apr_array_header_t *arr,
				     const char sep)
{
    char *cp, *res, **strpp;
    apr_size_t len;
    int i;

    if (arr->nelts <= 0 || arr->elts == NULL) {    /* Empty table? */
        return (char *) apr_pcalloc(p, 1);
    }

    /* Pass one --- find length of required string */

    len = 0;
    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
        if (strpp && *strpp != NULL) {
            len += strlen(*strpp);
        }
        if (++i >= arr->nelts) {
            break;
	}
        if (sep) {
            ++len;
	}
    }

    /* Allocate the required string */

    res = (char *) apr_palloc(p, len + 1);
    cp = res;

    /* Pass two --- copy the argument strings into the result space */

    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
        if (strpp && *strpp != NULL) {
            len = strlen(*strpp);
            memcpy(cp, *strpp, len);
            cp += len;
        }
        if (++i >= arr->nelts) {
            break;
	}
        if (sep) {
            *cp++ = sep;
	}
    }

    *cp = '\0';

    /* Return the result string */

    return res;
}


/*****************************************************************
 *
 * The "table" functions.
 */

#if APR_CHARSET_EBCDIC
#define CASE_MASK 0xbfbfbfbf
#else
#define CASE_MASK 0xdfdfdfdf
#endif

#define TABLE_HASH_SIZE 32
#define TABLE_INDEX_MASK 0x1f
#define TABLE_HASH(key)  (TABLE_INDEX_MASK & *(unsigned char *)(key))
#define TABLE_INDEX_IS_INITIALIZED(t, i) ((t)->index_initialized & (1 << (i)))
#define TABLE_SET_INDEX_INITIALIZED(t, i) ((t)->index_initialized |= (1 << (i)))

/* Compute the "checksum" for a key, consisting of the first
 * 4 bytes, normalized for case-insensitivity and packed into
 * an int...this checksum allows us to do a single integer
 * comparison as a fast check to determine whether we can
 * skip a strcasecmp
 */
#define COMPUTE_KEY_CHECKSUM(key, checksum)    \
{                                              \
    const char *k = (key);                     \
    apr_uint32_t c = (apr_uint32_t)*k;         \
    (checksum) = c;                            \
    (checksum) <<= 8;                          \
    if (c) {                                   \
        c = (apr_uint32_t)*++k;                \
        checksum |= c;                         \
    }                                          \
    (checksum) <<= 8;                          \
    if (c) {                                   \
        c = (apr_uint32_t)*++k;                \
        checksum |= c;                         \
    }                                          \
    (checksum) <<= 8;                          \
    if (c) {                                   \
        c = (apr_uint32_t)*++k;                \
        checksum |= c;                         \
    }                                          \
    checksum &= CASE_MASK;                     \
}

/** The opaque string-content table type */
struct apr_table_t {
    /* This has to be first to promote backwards compatibility with
     * older modules which cast a apr_table_t * to an apr_array_header_t *...
     * they should use the apr_table_elts() function for most of the
     * cases they do this for.
     */
    /** The underlying array for the table */
    apr_array_header_t a;
#ifdef MAKE_TABLE_PROFILE
    /** Who created the array. */
    void *creator;
#endif
    /* An index to speed up table lookups.  The way this works is:
     *   - Hash the key into the index:
     *     - index_first[TABLE_HASH(key)] is the offset within
     *       the table of the first entry with that key
     *     - index_last[TABLE_HASH(key)] is the offset within
     *       the table of the last entry with that key
     *   - If (and only if) there is no entry in the table whose
     *     key hashes to index element i, then the i'th bit
     *     of index_initialized will be zero.  (Check this before
     *     trying to use index_first[i] or index_last[i]!)
     */
    apr_uint32_t index_initialized;
    int index_first[TABLE_HASH_SIZE];
    int index_last[TABLE_HASH_SIZE];
};

/*
 * NOTICE: if you tweak this you should look at is_empty_table() 
 * and table_elts() in alloc.h
 */
#ifdef MAKE_TABLE_PROFILE
static apr_table_entry_t *do_table_push(const char *func, apr_table_t *t)
{
    if (t->a.nelts == t->a.nalloc) {
        fprintf(stderr, "%s: table created by %p hit limit of %u\n",
                func ? func : "table_push", t->creator, t->a.nalloc);
    }
    return (apr_table_entry_t *) apr_array_push_noclear(&t->a);
}
#if defined(__GNUC__) && __GNUC__ >= 2
#define table_push(t) do_table_push(__FUNCTION__, t)
#else
#define table_push(t) do_table_push(NULL, t)
#endif
#else /* MAKE_TABLE_PROFILE */
#define table_push(t)	((apr_table_entry_t *) apr_array_push_noclear(&(t)->a))
#endif /* MAKE_TABLE_PROFILE */

APR_DECLARE(const apr_array_header_t *) apr_table_elts(const apr_table_t *t)
{
    return (const apr_array_header_t *)t;
}

APR_DECLARE(int) apr_is_empty_table(const apr_table_t *t)
{
    return ((t == NULL) || (t->a.nelts == 0));
}

APR_DECLARE(apr_table_t *) apr_table_make(apr_pool_t *p, int nelts)
{
    apr_table_t *t = apr_palloc(p, sizeof(apr_table_t));

    make_array_core(&t->a, p, nelts, sizeof(apr_table_entry_t), 0);
#ifdef MAKE_TABLE_PROFILE
    t->creator = __builtin_return_address(0);
#endif
    t->index_initialized = 0;
    return t;
}

APR_DECLARE(apr_table_t *) apr_table_copy(apr_pool_t *p, const apr_table_t *t)
{
    apr_table_t *new = apr_palloc(p, sizeof(apr_table_t));

#if APR_POOL_DEBUG
    /* we don't copy keys and values, so it's necessary that t->a.pool
     * have a life span at least as long as p
     */
    if (!apr_pool_is_ancestor(t->a.pool, p)) {
	fprintf(stderr, "apr_table_copy: t's pool is not an ancestor of p\n");
	abort();
    }
#endif
    make_array_core(&new->a, p, t->a.nalloc, sizeof(apr_table_entry_t), 0);
    memcpy(new->a.elts, t->a.elts, t->a.nelts * sizeof(apr_table_entry_t));
    new->a.nelts = t->a.nelts;
    memcpy(new->index_first, t->index_first, sizeof(int) * TABLE_HASH_SIZE);
    memcpy(new->index_last, t->index_last, sizeof(int) * TABLE_HASH_SIZE);
    new->index_initialized = t->index_initialized;
    return new;
}

APR_DECLARE(apr_table_t *) apr_table_clone(apr_pool_t *p, const apr_table_t *t)
{
    const apr_array_header_t *array = apr_table_elts(t);
    apr_table_entry_t *elts = (apr_table_entry_t *) array->elts;
    apr_table_t *new = apr_table_make(p, array->nelts);
    int i;

    for (i = 0; i < array->nelts; i++) {
        apr_table_add(new, elts[i].key, elts[i].val);
    }

    return new;
}

static void table_reindex(apr_table_t *t)
{
    int i;
    int hash;
    apr_table_entry_t *next_elt = (apr_table_entry_t *) t->a.elts;

    t->index_initialized = 0;
    for (i = 0; i < t->a.nelts; i++, next_elt++) {
        hash = TABLE_HASH(next_elt->key);
        t->index_last[hash] = i;
        if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
            t->index_first[hash] = i;
            TABLE_SET_INDEX_INITIALIZED(t, hash);
        }
    }
}

APR_DECLARE(void) apr_table_clear(apr_table_t *t)
{
    t->a.nelts = 0;
    t->index_initialized = 0;
}

APR_DECLARE(const char *) apr_table_get(const apr_table_t *t, const char *key)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_uint32_t checksum;
    int hash;

    if (key == NULL) {
	return NULL;
    }

    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        return NULL;
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {
	    return next_elt->val;
	}
    }

    return NULL;
}

APR_DECLARE(void) apr_table_set(apr_table_t *t, const char *key,
                                const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_table_entry_t *table_end;
    apr_uint32_t checksum;
    int hash;

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so overwrite it */

            int must_reindex = 0;
            apr_table_entry_t *dst_elt = NULL;

            next_elt->val = apr_pstrdup(t->a.pool, val);

            /* Remove any other instances of this key */
            for (next_elt++; next_elt <= end_elt; next_elt++) {
                if ((checksum == next_elt->key_checksum) &&
                    !strcasecmp(next_elt->key, key)) {
                    t->a.nelts--;
                    if (!dst_elt) {
                        dst_elt = next_elt;
                    }
                }
                else if (dst_elt) {
                    *dst_elt++ = *next_elt;
                    must_reindex = 1;
                }
            }

            /* If we've removed anything, shift over the remainder
             * of the table (note that the previous loop didn't
             * run to the end of the table, just to the last match
             * for the index)
             */
            if (dst_elt) {
                for (; next_elt < table_end; next_elt++) {
                    *dst_elt++ = *next_elt;
                }
                must_reindex = 1;
            }
            if (must_reindex) {
                table_reindex(t);
            }
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = apr_pstrdup(t->a.pool, key);
    next_elt->val = apr_pstrdup(t->a.pool, val);
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_setn(apr_table_t *t, const char *key,
                                 const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_table_entry_t *table_end;
    apr_uint32_t checksum;
    int hash;

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so overwrite it */

            int must_reindex = 0;
            apr_table_entry_t *dst_elt = NULL;

            next_elt->val = (char *)val;

            /* Remove any other instances of this key */
            for (next_elt++; next_elt <= end_elt; next_elt++) {
                if ((checksum == next_elt->key_checksum) &&
                    !strcasecmp(next_elt->key, key)) {
                    t->a.nelts--;
                    if (!dst_elt) {
                        dst_elt = next_elt;
                    }
                }
                else if (dst_elt) {
                    *dst_elt++ = *next_elt;
                    must_reindex = 1;
                }
            }

            /* If we've removed anything, shift over the remainder
             * of the table (note that the previous loop didn't
             * run to the end of the table, just to the last match
             * for the index)
             */
            if (dst_elt) {
                for (; next_elt < table_end; next_elt++) {
                    *dst_elt++ = *next_elt;
                }
                must_reindex = 1;
            }
            if (must_reindex) {
                table_reindex(t);
            }
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = (char *)key;
    next_elt->val = (char *)val;
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_unset(apr_table_t *t, const char *key)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_table_entry_t *dst_elt;
    apr_uint32_t checksum;
    int hash;
    int must_reindex;

    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        return;
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
    must_reindex = 0;
    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found a match: remove this entry, plus any additional
             * matches for the same key that might follow
             */
            apr_table_entry_t *table_end = ((apr_table_entry_t *) t->a.elts) +
                t->a.nelts;
            t->a.nelts--;
            dst_elt = next_elt;
            for (next_elt++; next_elt <= end_elt; next_elt++) {
                if ((checksum == next_elt->key_checksum) &&
                    !strcasecmp(next_elt->key, key)) {
                    t->a.nelts--;
                }
                else {
                    *dst_elt++ = *next_elt;
                }
            }

            /* Shift over the remainder of the table (note that
             * the previous loop didn't run to the end of the table,
             * just to the last match for the index)
             */
            for (; next_elt < table_end; next_elt++) {
                *dst_elt++ = *next_elt;
            }
            must_reindex = 1;
            break;
        }
    }
    if (must_reindex) {
        table_reindex(t);
    }
}

APR_DECLARE(void) apr_table_merge(apr_table_t *t, const char *key,
				 const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_uint32_t checksum;
    int hash;

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so merge with it */
	    next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
                                        val, NULL);
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = apr_pstrdup(t->a.pool, key);
    next_elt->val = apr_pstrdup(t->a.pool, val);
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_mergen(apr_table_t *t, const char *key,
				  const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_uint32_t checksum;
    int hash;

#if APR_POOL_DEBUG
    {
	if (!apr_pool_is_ancestor(apr_pool_find(key), t->a.pool)) {
	    fprintf(stderr, "apr_table_mergen: key not in ancestor pool of t\n");
	    abort();
	}
	if (!apr_pool_is_ancestor(apr_pool_find(val), t->a.pool)) {
	    fprintf(stderr, "apr_table_mergen: val not in ancestor pool of t\n");
	    abort();
	}
    }
#endif

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so merge with it */
	    next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
                                        val, NULL);
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = (char *)key;
    next_elt->val = (char *)val;
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_add(apr_table_t *t, const char *key,
			       const char *val)
{
    apr_table_entry_t *elts;
    apr_uint32_t checksum;
    int hash;

    hash = TABLE_HASH(key);
    t->index_last[hash] = t->a.nelts;
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    elts = (apr_table_entry_t *) table_push(t);
    elts->key = apr_pstrdup(t->a.pool, key);
    elts->val = apr_pstrdup(t->a.pool, val);
    elts->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_addn(apr_table_t *t, const char *key,
				const char *val)
{
    apr_table_entry_t *elts;
    apr_uint32_t checksum;
    int hash;

#if APR_POOL_DEBUG
    {
	if (!apr_pool_is_ancestor(apr_pool_find(key), t->a.pool)) {
	    fprintf(stderr, "apr_table_addn: key not in ancestor pool of t\n");
	    abort();
	}
	if (!apr_pool_is_ancestor(apr_pool_find(val), t->a.pool)) {
	    fprintf(stderr, "apr_table_addn: val not in ancestor pool of t\n");
	    abort();
	}
    }
#endif

    hash = TABLE_HASH(key);
    t->index_last[hash] = t->a.nelts;
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    elts = (apr_table_entry_t *) table_push(t);
    elts->key = (char *)key;
    elts->val = (char *)val;
    elts->key_checksum = checksum;
}

APR_DECLARE(apr_table_t *) apr_table_overlay(apr_pool_t *p,
					     const apr_table_t *overlay,
					     const apr_table_t *base)
{
    apr_table_t *res;

#if APR_POOL_DEBUG
    /* we don't copy keys and values, so it's necessary that
     * overlay->a.pool and base->a.pool have a life span at least
     * as long as p
     */
    if (!apr_pool_is_ancestor(overlay->a.pool, p)) {
	fprintf(stderr,
		"apr_table_overlay: overlay's pool is not an ancestor of p\n");
	abort();
    }
    if (!apr_pool_is_ancestor(base->a.pool, p)) {
	fprintf(stderr,
		"apr_table_overlay: base's pool is not an ancestor of p\n");
	abort();
    }
#endif

    res = apr_palloc(p, sizeof(apr_table_t));
    /* behave like append_arrays */
    res->a.pool = p;
    copy_array_hdr_core(&res->a, &overlay->a);
    apr_array_cat(&res->a, &base->a);
    table_reindex(res);
    return res;
}

/* And now for something completely abstract ...

 * For each key value given as a vararg:
 *   run the function pointed to as
 *     int comp(void *r, char *key, char *value);
 *   on each valid key-value pair in the apr_table_t t that matches the vararg key,
 *   or once for every valid key-value pair if the vararg list is empty,
 *   until the function returns false (0) or we finish the table.
 *
 * Note that we restart the traversal for each vararg, which means that
 * duplicate varargs will result in multiple executions of the function
 * for each matching key.  Note also that if the vararg list is empty,
 * only one traversal will be made and will cut short if comp returns 0.
 *
 * Note that the table_get and table_merge functions assume that each key in
 * the apr_table_t is unique (i.e., no multiple entries with the same key).  This
 * function does not make that assumption, since it (unfortunately) isn't
 * true for some of Apache's tables.
 *
 * Note that rec is simply passed-on to the comp function, so that the
 * caller can pass additional info for the task.
 *
 * ADDENDUM for apr_table_vdo():
 * 
 * The caching api will allow a user to walk the header values:
 *
 * apr_status_t apr_cache_el_header_walk(apr_cache_el *el, 
 *    int (*comp)(void *, const char *, const char *), void *rec, ...);
 *
 * So it can be ..., however from there I use a  callback that use a va_list:
 *
 * apr_status_t (*cache_el_header_walk)(apr_cache_el *el, 
 *    int (*comp)(void *, const char *, const char *), void *rec, va_list);
 *
 * To pass those ...'s on down to the actual module that will handle walking
 * their headers, in the file case this is actually just an apr_table - and
 * rather than reimplementing apr_table_do (which IMHO would be bad) I just
 * called it with the va_list. For mod_shmem_cache I don't need it since I
 * can't use apr_table's, but mod_file_cache should (though a good hash would
 * be better, but that's a different issue :). 
 *
 * So to make mod_file_cache easier to maintain, it's a good thing
 */
APR_DECLARE_NONSTD(int) apr_table_do(apr_table_do_callback_fn_t *comp,
                                     void *rec, const apr_table_t *t, ...)
{
    int rv;

    va_list vp;
    va_start(vp, t);
    rv = apr_table_vdo(comp, rec, t, vp);
    va_end(vp);

    return rv;
} 

/* XXX: do the semantics of this routine make any sense?  Right now,
 * if the caller passed in a non-empty va_list of keys to search for,
 * the "early termination" facility only terminates on *that* key; other
 * keys will continue to process.  Note that this only has any effect
 * at all if there are multiple entries in the table with the same key,
 * otherwise the called function can never effectively early-terminate
 * this function, as the zero return value is effectively ignored.
 *
 * Note also that this behavior is at odds with the behavior seen if an
 * empty va_list is passed in -- in that case, a zero return value terminates
 * the entire apr_table_vdo (which is what I think should happen in
 * both cases).
 *
 * If nobody objects soon, I'm going to change the order of the nested
 * loops in this function so that any zero return value from the (*comp)
 * function will cause a full termination of apr_table_vdo.  I'm hesitant
 * at the moment because these (funky) semantics have been around for a
 * very long time, and although Apache doesn't seem to use them at all,
 * some third-party vendor might.  I can only think of one possible reason
 * the existing semantics would make any sense, and it's very Apache-centric,
 * which is this: if (*comp) is looking for matches of a particular
 * substring in request headers (let's say it's looking for a particular
 * cookie name in the Set-Cookie headers), then maybe it wants to be
 * able to stop searching early as soon as it finds that one and move
 * on to the next key.  That's only an optimization of course, but changing
 * the behavior of this function would mean that any code that tried
 * to do that would stop working right.
 *
 * Sigh.  --JCW, 06/28/02
 */
APR_DECLARE(int) apr_table_vdo(apr_table_do_callback_fn_t *comp,
                               void *rec, const apr_table_t *t, va_list vp)
{
    char *argp;
    apr_table_entry_t *elts = (apr_table_entry_t *) t->a.elts;
    int vdorv = 1;

    argp = va_arg(vp, char *);
    do {
        int rv = 1, i;
        if (argp) {
            /* Scan for entries that match the next key */
            int hash = TABLE_HASH(argp);
            if (TABLE_INDEX_IS_INITIALIZED(t, hash)) {
                apr_uint32_t checksum;
                COMPUTE_KEY_CHECKSUM(argp, checksum);
                for (i = t->index_first[hash];
                     rv && (i <= t->index_last[hash]); ++i) {
                    if (elts[i].key && (checksum == elts[i].key_checksum) &&
                                        !strcasecmp(elts[i].key, argp)) {
                        rv = (*comp) (rec, elts[i].key, elts[i].val);
                    }
                }
            }
        }
        else {
            /* Scan the entire table */
            for (i = 0; rv && (i < t->a.nelts); ++i) {
                if (elts[i].key) {
                    rv = (*comp) (rec, elts[i].key, elts[i].val);
                }
            }
        }
        if (rv == 0) {
            vdorv = 0;
        }
    } while (argp && ((argp = va_arg(vp, char *)) != NULL));

    return vdorv;
}

static apr_table_entry_t **table_mergesort(apr_pool_t *pool,
                                           apr_table_entry_t **values, 
                                           apr_size_t n)
{
    /* Bottom-up mergesort, based on design in Sedgewick's "Algorithms
     * in C," chapter 8
     */
    apr_table_entry_t **values_tmp =
        (apr_table_entry_t **)apr_palloc(pool, n * sizeof(apr_table_entry_t*));
    apr_size_t i;
    apr_size_t blocksize;

    /* First pass: sort pairs of elements (blocksize=1) */
    for (i = 0; i + 1 < n; i += 2) {
        if (strcasecmp(values[i]->key, values[i + 1]->key) > 0) {
            apr_table_entry_t *swap = values[i];
            values[i] = values[i + 1];
            values[i + 1] = swap;
        }
    }

    /* Merge successively larger blocks */
    blocksize = 2;
    while (blocksize < n) {
        apr_table_entry_t **dst = values_tmp;
        apr_size_t next_start;
        apr_table_entry_t **swap;

        /* Merge consecutive pairs blocks of the next blocksize.
         * Within a block, elements are in sorted order due to
         * the previous iteration.
         */
        for (next_start = 0; next_start + blocksize < n;
             next_start += (blocksize + blocksize)) {

            apr_size_t block1_start = next_start;
            apr_size_t block2_start = block1_start + blocksize;
            apr_size_t block1_end = block2_start;
            apr_size_t block2_end = block2_start + blocksize;
            if (block2_end > n) {
                /* The last block may be smaller than blocksize */
                block2_end = n;
            }
            for (;;) {

                /* Merge the next two blocks:
                 * Pick the smaller of the next element from
                 * block 1 and the next element from block 2.
                 * Once either of the blocks is emptied, copy
                 * over all the remaining elements from the
                 * other block
                 */
                if (block1_start == block1_end) {
                    for (; block2_start < block2_end; block2_start++) {
                        *dst++ = values[block2_start];
                    }
                    break;
                }
                else if (block2_start == block2_end) {
                    for (; block1_start < block1_end; block1_start++) {
                        *dst++ = values[block1_start];
                    }
                    break;
                }
                if (strcasecmp(values[block1_start]->key,
                               values[block2_start]->key) > 0) {
                    *dst++ = values[block2_start++];
                }
                else {
                    *dst++ = values[block1_start++];
                }
            }
        }

        /* If n is not a multiple of 2*blocksize, some elements
         * will be left over at the end of the array.
         */
        for (i = dst - values_tmp; i < n; i++) {
            values_tmp[i] = values[i];
        }

        /* The output array of this pass becomes the input
         * array of the next pass, and vice versa
         */
        swap = values_tmp;
        values_tmp = values;
        values = swap;

        blocksize += blocksize;
    }

    return values;
}

APR_DECLARE(void) apr_table_compress(apr_table_t *t, unsigned flags)
{
    apr_table_entry_t **sort_array;
    apr_table_entry_t **sort_next;
    apr_table_entry_t **sort_end;
    apr_table_entry_t *table_next;
    apr_table_entry_t **last;
    int i;
    int dups_found;

    if (t->a.nelts <= 1) {
        return;
    }

    /* Copy pointers to all the table elements into an
     * array and sort to allow for easy detection of
     * duplicate keys
     */
    sort_array = (apr_table_entry_t **)
        apr_palloc(t->a.pool, t->a.nelts * sizeof(apr_table_entry_t*));
    sort_next = sort_array;
    table_next = (apr_table_entry_t *)t->a.elts;
    i = t->a.nelts;
    do {
        *sort_next++ = table_next++;
    } while (--i);

    /* Note: the merge is done with mergesort instead of quicksort
     * because mergesort is a stable sort and runs in n*log(n)
     * time regardless of its inputs (quicksort is quadratic in
     * the worst case)
     */
    sort_array = table_mergesort(t->a.pool, sort_array, t->a.nelts);

    /* Process any duplicate keys */
    dups_found = 0;
    sort_next = sort_array;
    sort_end = sort_array + t->a.nelts;
    last = sort_next++;
    while (sort_next < sort_end) {
        if (((*sort_next)->key_checksum == (*last)->key_checksum) &&
            !strcasecmp((*sort_next)->key, (*last)->key)) {
            apr_table_entry_t **dup_last = sort_next + 1;
            dups_found = 1;
            while ((dup_last < sort_end) &&
                   ((*dup_last)->key_checksum == (*last)->key_checksum) &&
                   !strcasecmp((*dup_last)->key, (*last)->key)) {
                dup_last++;
            }
            dup_last--; /* Elements from last through dup_last, inclusive,
                         * all have the same key
                         */
            if (flags == APR_OVERLAP_TABLES_MERGE) {
                apr_size_t len = 0;
                apr_table_entry_t **next = last;
                char *new_val;
                char *val_dst;
                do {
                    len += strlen((*next)->val);
                    len += 2; /* for ", " or trailing null */
                } while (++next <= dup_last);
                new_val = (char *)apr_palloc(t->a.pool, len);
                val_dst = new_val;
                next = last;
                for (;;) {
                    strcpy(val_dst, (*next)->val);
                    val_dst += strlen((*next)->val);
                    next++;
                    if (next > dup_last) {
                        *val_dst = 0;
                        break;
                    }
                    else {
                        *val_dst++ = ',';
                        *val_dst++ = ' ';
                    }
                }
                (*last)->val = new_val;
            }
            else { /* overwrite */
                (*last)->val = (*dup_last)->val;
            }
            do {
                (*sort_next)->key = NULL;
            } while (++sort_next <= dup_last);
        }
        else {
            last = sort_next++;
        }
    }

    /* Shift elements to the left to fill holes left by removing duplicates */
    if (dups_found) {
        apr_table_entry_t *src = (apr_table_entry_t *)t->a.elts;
        apr_table_entry_t *dst = (apr_table_entry_t *)t->a.elts;
        apr_table_entry_t *last_elt = src + t->a.nelts;
        do {
            if (src->key) {
                *dst++ = *src;
            }
        } while (++src < last_elt);
        t->a.nelts -= (int)(last_elt - dst);
    }

    table_reindex(t);
}

static void apr_table_cat(apr_table_t *t, const apr_table_t *s)
{
    const int n = t->a.nelts;
    register int idx;

    apr_array_cat(&t->a,&s->a);

    if (n == 0) {
        memcpy(t->index_first,s->index_first,sizeof(int) * TABLE_HASH_SIZE);
        memcpy(t->index_last, s->index_last, sizeof(int) * TABLE_HASH_SIZE);
        t->index_initialized = s->index_initialized;
        return;
    }

    for (idx = 0; idx < TABLE_HASH_SIZE; ++idx) {
        if (TABLE_INDEX_IS_INITIALIZED(s, idx)) {
            t->index_last[idx] = s->index_last[idx] + n;
            if (!TABLE_INDEX_IS_INITIALIZED(t, idx)) {
                t->index_first[idx] = s->index_first[idx] + n;
            }
        }
    }

    t->index_initialized |= s->index_initialized;
}

APR_DECLARE(void) apr_table_overlap(apr_table_t *a, const apr_table_t *b,
				    unsigned flags)
{
    if (a->a.nelts + b->a.nelts == 0) {
        return;
    }

#if APR_POOL_DEBUG
    /* Since the keys and values are not copied, it's required that
     * b->a.pool has a lifetime at least as long as a->a.pool. */
    if (!apr_pool_is_ancestor(b->a.pool, a->a.pool)) {
        fprintf(stderr, "apr_table_overlap: b's pool is not an ancestor of a's\n");
        abort();
    }
#endif

    apr_table_cat(a, b);

    apr_table_compress(a, flags);
}