aboutsummaryrefslogtreecommitdiff
path: root/test/SemaCXX/cxx1y-deduced-return-type.cpp
blob: 593ec48b4394cdb7af1b6250bf40bcea50170bcb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only %s
// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only %s -fdelayed-template-parsing -DDELAYED_TEMPLATE_PARSING

auto f(); // expected-note {{previous}}
int f(); // expected-error {{differ only in their return type}}

auto &g();
auto g() -> auto &;

auto h() -> auto *;
auto *h();

struct Conv1 {
  operator auto(); // expected-note {{declared here}}
} conv1;
int conv1a = conv1; // expected-error {{function 'operator auto' with deduced return type cannot be used before it is defined}}
// expected-error@-1 {{no viable conversion}}
Conv1::operator auto() { return 123; }
int conv1b = conv1;
int conv1c = conv1.operator auto();
int conv1d = conv1.operator int(); // expected-error {{no member named 'operator int'}}

struct Conv2 {
  operator auto() { return 0; }  // expected-note {{previous}}
  operator auto() { return 0.; } // expected-error {{cannot be redeclared}} expected-error {{cannot initialize return object of type 'auto' with an rvalue of type 'double'}}
};

struct Conv3 {
  operator auto() { int *p = nullptr; return p; }  // expected-note {{candidate}}
  operator auto*() { int *p = nullptr; return p; } // expected-note {{candidate}}
} conv3;
int *conv3a = conv3; // expected-error {{ambiguous}}
int *conv3b = conv3.operator auto();
int *conv3c = conv3.operator auto*();

template<typename T>
struct Conv4 {
  operator auto() { return T(); }
};
Conv4<int> conv4int;
int conv4a = conv4int;
int conv4b = conv4int.operator auto();

auto a();
auto a() { return 0; }
using T = decltype(a());
using T = int;
auto a(); // expected-note {{previous}}
using T = decltype(a());
auto *a(); // expected-error {{differ only in their return type}}

auto b(bool k) {
  if (k)
    return "hello";
  return "goodbye";
}

auto *ptr_1() {
  return 100; // expected-error {{cannot deduce return type 'auto *' from returned value of type 'int'}}
}

const auto &ref_1() {
  return 0; // expected-warning {{returning reference to local temporary}}
}

auto init_list() {
  return { 1, 2, 3 }; // expected-error {{cannot deduce return type from initializer list}}
}

auto fwd_decl(); // expected-note 2{{here}}

int n = fwd_decl(); // expected-error {{function 'fwd_decl' with deduced return type cannot be used before it is defined}}
int k = sizeof(fwd_decl()); // expected-error {{used before it is defined}}

auto fac(int n) {
  if (n <= 2)
    return n;
  return n * fac(n-1); // ok
}

auto fac_2(int n) { // expected-note {{declared here}}
  if (n > 2)
    return n * fac_2(n-1); // expected-error {{cannot be used before it is defined}}
  return n;
}

auto void_ret() {}
using Void = void;
using Void = decltype(void_ret());

auto &void_ret_2() {} // expected-error {{cannot deduce return type 'auto &' for function with no return statements}}
const auto void_ret_3() {} // ok, return type 'const void' is adjusted to 'void'

const auto void_ret_4() {
  if (false)
    return void();
  if (false)
    return;
  return 0; // expected-error {{'auto' in return type deduced as 'int' here but deduced as 'void' in earlier return statement}}
}

namespace Templates {
  template<typename T> auto f1() {
    return T() + 1;
  }
  template<typename T> auto &f2(T &&v) { return v; }
  int a = f1<int>();
  const int &b = f2(0);
  double d;
  float &c = f2(0.0); // expected-error {{non-const lvalue reference to type 'float' cannot bind to a value of unrelated type 'double'}}

  template<typename T> auto fwd_decl(); // expected-note {{declared here}}
  int e = fwd_decl<int>(); // expected-error {{cannot be used before it is defined}}
  template<typename T> auto fwd_decl() { return 0; }
  int f = fwd_decl<int>();
  template <typename T>
  auto fwd_decl(); // expected-note {{candidate template ignored: could not match 'auto ()' against 'int ()'}}
  int g = fwd_decl<char>();

  auto (*p)() = f1; // expected-error {{incompatible initializer}}
  auto (*q)() = f1<int>; // ok

  typedef decltype(f2(1.2)) dbl; // expected-note {{previous}}
  typedef float dbl; // expected-error {{typedef redefinition with different types ('float' vs 'decltype(f2(1.2))' (aka 'double &'))}}

  extern template auto fwd_decl<double>();
  int k1 = fwd_decl<double>();
  extern template int fwd_decl<char>(); // expected-error {{does not refer to a function template}}
  int k2 = fwd_decl<char>();

  template <typename T> auto instantiate() { T::error; } // expected-error {{has no members}} \
    // expected-note {{candidate template ignored: could not match 'auto ()' against 'void ()'}}
  extern template auto instantiate<int>(); // ok
  int k = instantiate<int>(); // expected-note {{in instantiation of}}
  template<> auto instantiate<char>() {} // ok
  template<> void instantiate<double>() {} // expected-error {{no function template matches}}

  template<typename T> auto arg_single() { return 0; }
  template<typename T> auto arg_multi() { return 0l; }
  template<typename T> auto arg_multi(int) { return "bad"; }
  template<typename T> struct Outer {
    static auto arg_single() { return 0.f; }
    static auto arg_multi() { return 0.; }
    static auto arg_multi(int) { return "bad"; }
  };
  template<typename T> T &take_fn(T (*p)());

  int &check1 = take_fn(arg_single); // expected-error {{no matching}} expected-note@-2 {{couldn't infer}}
  int &check2 = take_fn(arg_single<int>);
  int &check3 = take_fn<int>(arg_single); // expected-error {{no matching}} expected-note@-4{{no overload of 'arg_single'}}
  int &check4 = take_fn<int>(arg_single<int>);
  long &check5 = take_fn(arg_multi); // expected-error {{no matching}} expected-note@-6 {{couldn't infer}}
  long &check6 = take_fn(arg_multi<int>);
  long &check7 = take_fn<long>(arg_multi); // expected-error {{no matching}} expected-note@-8{{no overload of 'arg_multi'}}
  long &check8 = take_fn<long>(arg_multi<int>);

  float &mem_check1 = take_fn(Outer<int>::arg_single);
  float &mem_check2 = take_fn<float>(Outer<char>::arg_single);
  double &mem_check3 = take_fn(Outer<long>::arg_multi);
  double &mem_check4 = take_fn<double>(Outer<double>::arg_multi);

  namespace Deduce1 {
  template <typename T> auto f() { return 0; } // expected-note {{couldn't infer template argument 'T'}}
    template<typename T> void g(T(*)()); // expected-note 2{{candidate}}
    void h() {
      auto p = f<int>;
      auto (*q)() = f<int>;
      int (*r)() = f; // expected-error {{does not match}}
      g(f<int>);
      g<int>(f); // expected-error {{no matching function}}
      g(f); // expected-error {{no matching function}}
    }
  }

  namespace Deduce2 {
  template <typename T> auto f(int) { return 0; } // expected-note {{couldn't infer template argument 'T'}}
    template<typename T> void g(T(*)(int)); // expected-note 2{{candidate}}
    void h() {
      auto p = f<int>;
      auto (*q)(int) = f<int>;
      int (*r)(int) = f; // expected-error {{does not match}}
      g(f<int>);
      g<int>(f); // expected-error {{no matching function}}
      g(f); // expected-error {{no matching function}}
    }
  }

  namespace Deduce3 {
    template<typename T> auto f(T) { return 0; }
    template<typename T> void g(T(*)(int)); // expected-note {{couldn't infer}}
    void h() {
      auto p = f<int>;
      auto (*q)(int) = f<int>;
      int (*r)(int) = f; // ok
      g(f<int>);
      g<int>(f); // ok
      g(f); // expected-error {{no matching function}}
    }
  }

  namespace DeduceInDeducedReturnType {
    template<typename T, typename U> auto f() -> auto (T::*)(U) {
      int (T::*result)(U) = nullptr;
      return result;
    }
    struct S {};
    int (S::*(*p)())(double) = f;
    int (S::*(*q)())(double) = f<S, double>;
  }
}

auto fwd_decl_using();
namespace N { using ::fwd_decl_using; }
auto fwd_decl_using() { return 0; }
namespace N { int k = N::fwd_decl_using(); }

namespace OverloadResolutionNonTemplate {
  auto f();
  auto f(int); // expected-note {{here}}

  int &g(int (*f)()); // expected-note {{not viable: no overload of 'f' matching 'int (*)()'}}
  char &g(int (*f)(int)); // expected-note {{not viable: no overload of 'f' matching 'int (*)(int)'}}

  int a = g(f); // expected-error {{no matching function}}

  auto f() { return 0; }

  // FIXME: It's not completely clear whether this should be ill-formed.
  int &b = g(f); // expected-error {{used before it is defined}}

  auto f(int) { return 0.0; }

  int &c = g(f); // ok
}

namespace OverloadResolutionTemplate {
  auto f();
  template<typename T> auto f(T);

  int &g(int (*f)()); // expected-note {{not viable: no overload of 'f' matching 'int (*)()'}} expected-note {{candidate}}
  char &g(int (*f)(int)); // expected-note {{not viable: no overload of 'f' matching 'int (*)(int)'}} expected-note {{candidate}}

  int a = g(f); // expected-error {{no matching function}}

  auto f() { return 0; }

  int &b = g(f); // ok (presumably), due to deduction failure forming type of 'f<int>'

  template<typename T> auto f(T) { return 0; }

  int &c = g(f); // expected-error {{ambiguous}}
}

namespace DefaultedMethods {
  struct A {
    auto operator=(const A&) = default; // expected-error {{must return 'DefaultedMethods::A &'}}
    A &operator=(A&&); // expected-note {{previous}}
  };
  auto A::operator=(A&&) = default; // expected-error {{return type of out-of-line definition of 'DefaultedMethods::A::operator=' differs from that in the declaration}}
}

namespace Constexpr {
  constexpr auto f1(int n) { return n; }
  template<typename T> struct X { constexpr auto f() {} }; // PR18746
  template<typename T> struct Y { constexpr T f() {} }; // expected-note {{control reached end of constexpr function}}
  void f() {
    X<int>().f();
    Y<void>().f();
    constexpr int q = Y<int>().f(); // expected-error {{must be initialized by a constant expression}} expected-note {{in call to '&Y<int>()->f()'}}
  }
  struct NonLiteral { ~NonLiteral(); } nl; // expected-note {{user-provided destructor}}
  constexpr auto f2(int n) { return nl; } // expected-error {{return type 'Constexpr::NonLiteral' is not a literal type}}
}

// It's not really clear whether these are valid, but this matches g++.
using size_t = decltype(sizeof(0));
auto operator new(size_t n, const char*); // expected-error {{must return type 'void *'}}
auto operator delete(void *, const char*); // expected-error {{must return type 'void'}}

namespace Virtual {
  struct S {
    virtual auto f() { return 0; } // expected-error {{function with deduced return type cannot be virtual}} expected-note {{here}}
  };
  // Allow 'auto' anyway for error recovery.
  struct T : S {
    int f();
  };
  struct U : S {
    auto f(); // expected-error {{different return}}
  };

  // And here's why...
  struct V { virtual auto f(); }; // expected-error {{cannot be virtual}}
  struct W : V { virtual auto f(); }; // expected-error {{cannot be virtual}}
  auto V::f() { return 0; } // in tu1.cpp
  auto W::f() { return 0.0; } // in tu2.cpp
  W w;
  int k1 = w.f();
  int k2 = ((V&)w).f();
}

namespace std_examples {

namespace NoReturn {
  auto f() {}
  void (*p)() = &f;

  auto f(); // ok

  auto *g() {} // expected-error {{cannot deduce return type 'auto *' for function with no return statements}}

  auto h() = delete; // expected-note {{explicitly deleted}}
  auto x = h(); // expected-error {{call to deleted}}
}

namespace UseBeforeComplete {
  auto n = n; // expected-error {{variable 'n' declared with 'auto' type cannot appear in its own initializer}}
  auto f(); // expected-note {{declared here}}
  void g() { &f; } // expected-error {{function 'f' with deduced return type cannot be used before it is defined}}
  auto sum(int i) {
    if (i == 1)
      return i;
    else
      return sum(i - 1) + i;
  }
}

namespace Redecl {
  auto f();
  auto f() { return 42; }
  auto f(); // expected-note 2{{previous}}
  int f(); // expected-error {{functions that differ only in their return type cannot be overloaded}}
  decltype(auto) f(); // expected-error {{cannot be overloaded}}

  template <typename T> auto g(T t) { return t; } // expected-note {{candidate}} \
                                                  // expected-note {{candidate function [with T = int]}}
  template auto g(int);
  template char g(char); // expected-error {{does not refer to a function}}
  template<> auto g(double);

  template<typename T> T g(T t) { return t; } // expected-note {{candidate}}
  template char g(char);
  template auto g(float);

  void h() { return g(42); } // expected-error {{ambiguous}}
}

namespace ExplicitInstantiationDecl {
  template<typename T> auto f(T t) { return t; }
  extern template auto f(int);
  int (*p)(int) = f;
}
namespace MemberTemplatesWithDeduction {
  struct M {
    template<class T> auto foo(T t) { return t; }
    template<class T> auto operator()(T t) const { return t; }
    template<class T> static __attribute__((unused)) int static_foo(T) {
      return 5;
    }
    template<class T> operator T() { return T{}; }
    operator auto() { return &static_foo<int>; } 
  };
  struct N : M {
    using M::foo;
    using M::operator();
    using M::static_foo;
    using M::operator auto;
  };
  
  template <class T> int test() {
    int i = T{}.foo(3);
    T m = T{}.foo(M{});
    int j = T{}(3);
    M m2 = M{}(M{});
    int k = T{}.static_foo(4);
    int l = T::static_foo(5);
    int l2 = T{};
    struct X { };
    X x = T{};
    return 0;
  }
  int Minst = test<M>();
  int Ninst = test<N>();
  
}
}

namespace CurrentInstantiation {
  // PR16875
  template<typename T> struct S {
    auto f() { return T(); }
    int g() { return f(); }
    auto h(bool b) {
      if (b)
        return T();
      return h(true);
    }
  };
  int k1 = S<int>().g();
  int k2 = S<int>().h(false);

  template<typename T> struct U {
 #ifndef DELAYED_TEMPLATE_PARSING
    auto f(); // expected-note {{here}}
    int g() { return f(); } // expected-error {{cannot be used before it is defined}}
 #else
    auto f(); 
    int g() { return f(); } 
 #endif
  };
 #ifndef DELAYED_TEMPLATE_PARSING 
  template int U<int>::g(); // expected-note {{in instantiation of}}
 #else
  template int U<int>::g();
 #endif
  template<typename T> auto U<T>::f() { return T(); }
  template int U<short>::g(); // ok
}

namespace WithDefaultArgs {
  template<typename U> struct A {
    template<typename T = U> friend auto f(A) { return []{}; }
  };
  template<typename T> void f();
  using T = decltype(f(A<int>()));
  using T = decltype(f<int>(A<int>()));
}

namespace MultilevelDeduction {

auto F() -> auto* { return (int*)0; }

auto (*G())() -> int* { return F; }

auto run = G();

namespace Templated {
template<class T>
auto F(T t) -> auto* { return (T*)0; }

template<class T>
auto (*G(T t))(T) -> T* { return &F<T>; }


template<class T>
auto (*G2(T t))(T) -> auto* { return &F<T>; }

auto run_int = G(1);
auto run_char = G2('a');

}
}

namespace rnk {
extern "C" int puts(const char *s);
template <typename T>
auto foo(T x) -> decltype(x) {
#ifdef DELAYED_TEMPLATE_PARSING
  ::rnk::bar();
#endif
  return x;
}
void bar() { puts("bar"); }
int main() { return foo(0); }

}

namespace OverloadedOperators {
  template<typename T> struct A {
    auto operator()() { return T{}; }
    auto operator[](int) { return T{}; }
    auto operator+(int) { return T{}; }
    auto operator+() { return T{}; }
    friend auto operator-(A) { return T{}; }
    friend auto operator-(A, A) { return T{}; }
  };
  void f(A<int> a) {
    int b = a();
    int c = a[0];
    int d = a + 0;
    int e = +a;
    int f = -a;
    int g = a - a;
  }
}

namespace TrailingReturnTypeForConversionOperator {
  struct X {
    operator auto() -> int { return 0; } // expected-error {{cannot specify any part of a return type in the declaration of a conversion function; put the complete type after 'operator'}}
  } x;
  int k = x.operator auto();

  struct Y {
    operator auto() -> int & { // expected-error {{cannot specify}}
      return 0; // expected-error {{cannot bind to}}
    }
  };
};

namespace PR24989 {
  auto x = [](auto){};
  using T = decltype(x);
  void (T::*p)(int) const = &T::operator();
}

void forinit_decltypeauto() {
  for (decltype(auto) forinit_decltypeauto_inner();;) {} // expected-warning {{interpreted as a function}} expected-note {{replace}}
}