aboutsummaryrefslogtreecommitdiff
path: root/tools/llvm-mca/InstrBuilder.cpp
blob: 053b7b4e8175757623c61be63579796c9c0c363d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements the InstrBuilder interface.
///
//===----------------------------------------------------------------------===//

#include "InstrBuilder.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "llvm-mca"

namespace mca {

using namespace llvm;

static void initializeUsedResources(InstrDesc &ID,
                                    const MCSchedClassDesc &SCDesc,
                                    const MCSubtargetInfo &STI,
                                    ArrayRef<uint64_t> ProcResourceMasks) {
  const MCSchedModel &SM = STI.getSchedModel();

  // Populate resources consumed.
  using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
  std::vector<ResourcePlusCycles> Worklist;

  // Track cycles contributed by resources that are in a "Super" relationship.
  // This is required if we want to correctly match the behavior of method
  // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
  // of "consumed" processor resources and resource cycles, the logic in
  // ExpandProcResource() doesn't update the number of resource cycles
  // contributed by a "Super" resource to a group.
  // We need to take this into account when we find that a processor resource is
  // part of a group, and it is also used as the "Super" of other resources.
  // This map stores the number of cycles contributed by sub-resources that are
  // part of a "Super" resource. The key value is the "Super" resource mask ID.
  DenseMap<uint64_t, unsigned> SuperResources;

  for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
    const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
    const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
    uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
    if (PR.BufferSize != -1)
      ID.Buffers.push_back(Mask);
    CycleSegment RCy(0, PRE->Cycles, false);
    Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
    if (PR.SuperIdx) {
      uint64_t Super = ProcResourceMasks[PR.SuperIdx];
      SuperResources[Super] += PRE->Cycles;
    }
  }

  // Sort elements by mask popcount, so that we prioritize resource units over
  // resource groups, and smaller groups over larger groups.
  llvm::sort(Worklist.begin(), Worklist.end(),
             [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
               unsigned popcntA = countPopulation(A.first);
               unsigned popcntB = countPopulation(B.first);
               if (popcntA < popcntB)
                 return true;
               if (popcntA > popcntB)
                 return false;
               return A.first < B.first;
             });

  uint64_t UsedResourceUnits = 0;

  // Remove cycles contributed by smaller resources.
  for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
    ResourcePlusCycles &A = Worklist[I];
    if (!A.second.size()) {
      A.second.NumUnits = 0;
      A.second.setReserved();
      ID.Resources.emplace_back(A);
      continue;
    }

    ID.Resources.emplace_back(A);
    uint64_t NormalizedMask = A.first;
    if (countPopulation(A.first) == 1) {
      UsedResourceUnits |= A.first;
    } else {
      // Remove the leading 1 from the resource group mask.
      NormalizedMask ^= PowerOf2Floor(NormalizedMask);
    }

    for (unsigned J = I + 1; J < E; ++J) {
      ResourcePlusCycles &B = Worklist[J];
      if ((NormalizedMask & B.first) == NormalizedMask) {
        B.second.CS.Subtract(A.second.size() - SuperResources[A.first]);
        if (countPopulation(B.first) > 1)
          B.second.NumUnits++;
      }
    }
  }

  // A SchedWrite may specify a number of cycles in which a resource group
  // is reserved. For example (on target x86; cpu Haswell):
  //
  //  SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
  //    let ResourceCycles = [2, 2, 3];
  //  }
  //
  // This means:
  // Resource units HWPort0 and HWPort1 are both used for 2cy.
  // Resource group HWPort01 is the union of HWPort0 and HWPort1.
  // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
  // will not be usable for 2 entire cycles from instruction issue.
  //
  // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
  // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
  // extra delay on top of the 2 cycles latency.
  // During those extra cycles, HWPort01 is not usable by other instructions.
  for (ResourcePlusCycles &RPC : ID.Resources) {
    if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
      // Remove the leading 1 from the resource group mask.
      uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
      if ((Mask & UsedResourceUnits) == Mask)
        RPC.second.setReserved();
    }
  }

  LLVM_DEBUG({
    for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
      dbgs() << "\t\tMask=" << R.first << ", cy=" << R.second.size() << '\n';
    for (const uint64_t R : ID.Buffers)
      dbgs() << "\t\tBuffer Mask=" << R << '\n';
  });
}

static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
                              const MCSchedClassDesc &SCDesc,
                              const MCSubtargetInfo &STI) {
  if (MCDesc.isCall()) {
    // We cannot estimate how long this call will take.
    // Artificially set an arbitrarily high latency (100cy).
    ID.MaxLatency = 100U;
    return;
  }

  int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
  // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
  ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
}

void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
                                  unsigned SchedClassID) {
  const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
  const MCSchedModel &SM = STI.getSchedModel();
  const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);

  // These are for now the (strong) assumptions made by this algorithm:
  //  * The number of explicit and implicit register definitions in a MCInst
  //    matches the number of explicit and implicit definitions according to
  //    the opcode descriptor (MCInstrDesc).
  //  * Register definitions take precedence over register uses in the operands
  //    list.
  //  * If an opcode specifies an optional definition, then the optional
  //    definition is always the last operand in the sequence, and it can be
  //    set to zero (i.e. "no register").
  //
  // These assumptions work quite well for most out-of-order in-tree targets
  // like x86. This is mainly because the vast majority of instructions is
  // expanded to MCInst using a straightforward lowering logic that preserves
  // the ordering of the operands.
  unsigned NumExplicitDefs = MCDesc.getNumDefs();
  unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
  unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
  unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
  if (MCDesc.hasOptionalDef())
    TotalDefs++;
  ID.Writes.resize(TotalDefs);
  // Iterate over the operands list, and skip non-register operands.
  // The first NumExplictDefs register operands are expected to be register
  // definitions.
  unsigned CurrentDef = 0;
  unsigned i = 0;
  for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
    const MCOperand &Op = MCI.getOperand(i);
    if (!Op.isReg())
      continue;

    WriteDescriptor &Write = ID.Writes[CurrentDef];
    Write.OpIndex = i;
    if (CurrentDef < NumWriteLatencyEntries) {
      const MCWriteLatencyEntry &WLE =
          *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
      // Conservatively default to MaxLatency.
      Write.Latency =
          WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
      Write.SClassOrWriteResourceID = WLE.WriteResourceID;
    } else {
      // Assign a default latency for this write.
      Write.Latency = ID.MaxLatency;
      Write.SClassOrWriteResourceID = 0;
    }
    Write.IsOptionalDef = false;
    LLVM_DEBUG({
      dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
    CurrentDef++;
  }

  if (CurrentDef != NumExplicitDefs)
    llvm::report_fatal_error(
        "error: Expected more register operand definitions. ");

  CurrentDef = 0;
  for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
    unsigned Index = NumExplicitDefs + CurrentDef;
    WriteDescriptor &Write = ID.Writes[Index];
    Write.OpIndex = ~CurrentDef;
    Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
    if (Index < NumWriteLatencyEntries) {
      const MCWriteLatencyEntry &WLE =
          *STI.getWriteLatencyEntry(&SCDesc, Index);
      // Conservatively default to MaxLatency.
      Write.Latency =
          WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
      Write.SClassOrWriteResourceID = WLE.WriteResourceID;
    } else {
      // Assign a default latency for this write.
      Write.Latency = ID.MaxLatency;
      Write.SClassOrWriteResourceID = 0;
    }

    Write.IsOptionalDef = false;
    assert(Write.RegisterID != 0 && "Expected a valid phys register!");
    LLVM_DEBUG({
      dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex
             << ", PhysReg=" << MRI.getName(Write.RegisterID)
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
  }

  if (MCDesc.hasOptionalDef()) {
    // Always assume that the optional definition is the last operand of the
    // MCInst sequence.
    const MCOperand &Op = MCI.getOperand(MCI.getNumOperands() - 1);
    if (i == MCI.getNumOperands() || !Op.isReg())
      llvm::report_fatal_error(
          "error: expected a register operand for an optional "
          "definition. Instruction has not be correctly analyzed.\n",
          false);

    WriteDescriptor &Write = ID.Writes[TotalDefs - 1];
    Write.OpIndex = MCI.getNumOperands() - 1;
    // Assign a default latency for this write.
    Write.Latency = ID.MaxLatency;
    Write.SClassOrWriteResourceID = 0;
    Write.IsOptionalDef = true;
  }
}

void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
                                 unsigned SchedClassID) {
  const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
  unsigned NumExplicitDefs = MCDesc.getNumDefs();

  // Skip explicit definitions.
  unsigned i = 0;
  for (; i < MCI.getNumOperands() && NumExplicitDefs; ++i) {
    const MCOperand &Op = MCI.getOperand(i);
    if (Op.isReg())
      NumExplicitDefs--;
  }

  if (NumExplicitDefs)
    llvm::report_fatal_error(
        "error: Expected more register operand definitions. ", false);

  unsigned NumExplicitUses = MCI.getNumOperands() - i;
  unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
  if (MCDesc.hasOptionalDef()) {
    assert(NumExplicitUses);
    NumExplicitUses--;
  }
  unsigned TotalUses = NumExplicitUses + NumImplicitUses;
  if (!TotalUses)
    return;

  ID.Reads.resize(TotalUses);
  for (unsigned CurrentUse = 0; CurrentUse < NumExplicitUses; ++CurrentUse) {
    ReadDescriptor &Read = ID.Reads[CurrentUse];
    Read.OpIndex = i + CurrentUse;
    Read.UseIndex = CurrentUse;
    Read.SchedClassID = SchedClassID;
    LLVM_DEBUG(dbgs() << "\t\t[Use] OpIdx=" << Read.OpIndex
                      << ", UseIndex=" << Read.UseIndex << '\n');
  }

  for (unsigned CurrentUse = 0; CurrentUse < NumImplicitUses; ++CurrentUse) {
    ReadDescriptor &Read = ID.Reads[NumExplicitUses + CurrentUse];
    Read.OpIndex = ~CurrentUse;
    Read.UseIndex = NumExplicitUses + CurrentUse;
    Read.RegisterID = MCDesc.getImplicitUses()[CurrentUse];
    Read.SchedClassID = SchedClassID;
    LLVM_DEBUG(dbgs() << "\t\t[Use] OpIdx=" << Read.OpIndex << ", RegisterID="
                      << MRI.getName(Read.RegisterID) << '\n');
  }
}

const InstrDesc &InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
  assert(STI.getSchedModel().hasInstrSchedModel() &&
         "Itineraries are not yet supported!");

  // Obtain the instruction descriptor from the opcode.
  unsigned short Opcode = MCI.getOpcode();
  const MCInstrDesc &MCDesc = MCII.get(Opcode);
  const MCSchedModel &SM = STI.getSchedModel();

  // Then obtain the scheduling class information from the instruction.
  unsigned SchedClassID = MCDesc.getSchedClass();
  unsigned CPUID = SM.getProcessorID();

  // Try to solve variant scheduling classes.
  if (SchedClassID) {
    while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
      SchedClassID = STI.resolveVariantSchedClass(SchedClassID, &MCI, CPUID);

    if (!SchedClassID)
      llvm::report_fatal_error("unable to resolve this variant class.");
  }

  // Check if this instruction is supported. Otherwise, report a fatal error.
  const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
  if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
    std::string ToString;
    llvm::raw_string_ostream OS(ToString);
    WithColor::error() << "found an unsupported instruction in the input"
                       << " assembly sequence.\n";
    MCIP.printInst(&MCI, OS, "", STI);
    OS.flush();

    WithColor::note() << "instruction: " << ToString << '\n';
    llvm::report_fatal_error(
        "Don't know how to analyze unsupported instructions.");
  }

  // Create a new empty descriptor.
  std::unique_ptr<InstrDesc> ID = llvm::make_unique<InstrDesc>();
  ID->NumMicroOps = SCDesc.NumMicroOps;

  if (MCDesc.isCall()) {
    // We don't correctly model calls.
    WithColor::warning() << "found a call in the input assembly sequence.\n";
    WithColor::note() << "call instructions are not correctly modeled. "
                      << "Assume a latency of 100cy.\n";
  }

  if (MCDesc.isReturn()) {
    WithColor::warning() << "found a return instruction in the input"
                         << " assembly sequence.\n";
    WithColor::note() << "program counter updates are ignored.\n";
  }

  ID->MayLoad = MCDesc.mayLoad();
  ID->MayStore = MCDesc.mayStore();
  ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();

  initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
  computeMaxLatency(*ID, MCDesc, SCDesc, STI);
  populateWrites(*ID, MCI, SchedClassID);
  populateReads(*ID, MCI, SchedClassID);

  LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
  LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');

  // Now add the new descriptor.
  SchedClassID = MCDesc.getSchedClass();
  if (!SM.getSchedClassDesc(SchedClassID)->isVariant()) {
    Descriptors[MCI.getOpcode()] = std::move(ID);
    return *Descriptors[MCI.getOpcode()];
  }

  VariantDescriptors[&MCI] = std::move(ID);
  return *VariantDescriptors[&MCI];
}

const InstrDesc &InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
  if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
    return *Descriptors[MCI.getOpcode()];

  if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
    return *VariantDescriptors[&MCI];

  return createInstrDescImpl(MCI);
}

std::unique_ptr<Instruction>
InstrBuilder::createInstruction(const MCInst &MCI) {
  const InstrDesc &D = getOrCreateInstrDesc(MCI);
  std::unique_ptr<Instruction> NewIS = llvm::make_unique<Instruction>(D);

  // Initialize Reads first.
  for (const ReadDescriptor &RD : D.Reads) {
    int RegID = -1;
    if (!RD.isImplicitRead()) {
      // explicit read.
      const MCOperand &Op = MCI.getOperand(RD.OpIndex);
      // Skip non-register operands.
      if (!Op.isReg())
        continue;
      RegID = Op.getReg();
    } else {
      // Implicit read.
      RegID = RD.RegisterID;
    }

    // Skip invalid register operands.
    if (!RegID)
      continue;

    // Okay, this is a register operand. Create a ReadState for it.
    assert(RegID > 0 && "Invalid register ID found!");
    NewIS->getUses().emplace_back(llvm::make_unique<ReadState>(RD, RegID));
  }

  // Early exit if there are no writes.
  if (D.Writes.empty())
    return NewIS;

  // Track register writes that implicitly clear the upper portion of the
  // underlying super-registers using an APInt.
  APInt WriteMask(D.Writes.size(), 0);

  // Now query the MCInstrAnalysis object to obtain information about which
  // register writes implicitly clear the upper portion of a super-register.
  MCIA.clearsSuperRegisters(MRI, MCI, WriteMask);

  // Check if this is a dependency breaking instruction.
  if (MCIA.isDependencyBreaking(STI, MCI))
    NewIS->setDependencyBreaking();

  // Initialize writes.
  unsigned WriteIndex = 0;
  for (const WriteDescriptor &WD : D.Writes) {
    unsigned RegID = WD.isImplicitWrite() ? WD.RegisterID
                                          : MCI.getOperand(WD.OpIndex).getReg();
    // Check if this is a optional definition that references NoReg.
    if (WD.IsOptionalDef && !RegID) {
      ++WriteIndex;
      continue;
    }

    assert(RegID && "Expected a valid register ID!");
    NewIS->getDefs().emplace_back(llvm::make_unique<WriteState>(
        WD, RegID, /* ClearsSuperRegs */ WriteMask[WriteIndex]));
    ++WriteIndex;
  }

  return NewIS;
}
} // namespace mca