aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp
blob: cf3d13ffb7ba7608f7186434f9c1baba05774fb6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
//===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines SValBuilder, the base class for all (complete) SValBuilder
//  implementations.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Basic/LLVM.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <tuple>

using namespace clang;
using namespace ento;

//===----------------------------------------------------------------------===//
// Basic SVal creation.
//===----------------------------------------------------------------------===//

void SValBuilder::anchor() {}

SValBuilder::SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
                         ProgramStateManager &stateMgr)
    : Context(context), BasicVals(context, alloc),
      SymMgr(context, BasicVals, alloc), MemMgr(context, alloc),
      StateMgr(stateMgr),
      AnOpts(
          stateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions()),
      ArrayIndexTy(context.LongLongTy),
      ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {}

DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
  if (Loc::isLocType(type))
    return makeNullWithType(type);

  if (type->isIntegralOrEnumerationType())
    return makeIntVal(0, type);

  if (type->isArrayType() || type->isRecordType() || type->isVectorType() ||
      type->isAnyComplexType())
    return makeCompoundVal(type, BasicVals.getEmptySValList());

  // FIXME: Handle floats.
  return UnknownVal();
}

nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
                                          BinaryOperator::Opcode op,
                                          const llvm::APSInt &rhs,
                                          QualType type) {
  // The Environment ensures we always get a persistent APSInt in
  // BasicValueFactory, so we don't need to get the APSInt from
  // BasicValueFactory again.
  assert(lhs);
  assert(!Loc::isLocType(type));
  return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
}

nonloc::SymbolVal SValBuilder::makeNonLoc(const llvm::APSInt &lhs,
                                          BinaryOperator::Opcode op,
                                          const SymExpr *rhs, QualType type) {
  assert(rhs);
  assert(!Loc::isLocType(type));
  return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
}

nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
                                          BinaryOperator::Opcode op,
                                          const SymExpr *rhs, QualType type) {
  assert(lhs && rhs);
  assert(!Loc::isLocType(type));
  return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
}

NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op,
                               QualType type) {
  assert(operand);
  assert(!Loc::isLocType(type));
  return nonloc::SymbolVal(SymMgr.getUnarySymExpr(operand, op, type));
}

nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *operand,
                                          QualType fromTy, QualType toTy) {
  assert(operand);
  assert(!Loc::isLocType(toTy));
  if (fromTy == toTy)
    return operand;
  return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
}

SVal SValBuilder::convertToArrayIndex(SVal val) {
  if (val.isUnknownOrUndef())
    return val;

  // Common case: we have an appropriately sized integer.
  if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
    const llvm::APSInt& I = CI->getValue();
    if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
      return val;
  }

  return evalCast(val, ArrayIndexTy, QualType{});
}

nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
  return makeTruthVal(boolean->getValue());
}

DefinedOrUnknownSVal
SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) {
  QualType T = region->getValueType();

  if (T->isNullPtrType())
    return makeZeroVal(T);

  if (!SymbolManager::canSymbolicate(T))
    return UnknownVal();

  SymbolRef sym = SymMgr.getRegionValueSymbol(region);

  if (Loc::isLocType(T))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}

DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
                                                   const Expr *Ex,
                                                   const LocationContext *LCtx,
                                                   unsigned Count) {
  QualType T = Ex->getType();

  if (T->isNullPtrType())
    return makeZeroVal(T);

  // Compute the type of the result. If the expression is not an R-value, the
  // result should be a location.
  QualType ExType = Ex->getType();
  if (Ex->isGLValue())
    T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);

  return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
}

DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
                                                   const Expr *expr,
                                                   const LocationContext *LCtx,
                                                   QualType type,
                                                   unsigned count) {
  if (type->isNullPtrType())
    return makeZeroVal(type);

  if (!SymbolManager::canSymbolicate(type))
    return UnknownVal();

  SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);

  if (Loc::isLocType(type))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}

DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
                                                   const LocationContext *LCtx,
                                                   QualType type,
                                                   unsigned visitCount) {
  if (type->isNullPtrType())
    return makeZeroVal(type);

  if (!SymbolManager::canSymbolicate(type))
    return UnknownVal();

  SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);

  if (Loc::isLocType(type))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}

DefinedOrUnknownSVal
SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
                                      const LocationContext *LCtx,
                                      unsigned VisitCount) {
  QualType T = E->getType();
  return getConjuredHeapSymbolVal(E, LCtx, T, VisitCount);
}

DefinedOrUnknownSVal
SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
                                      const LocationContext *LCtx,
                                      QualType type, unsigned VisitCount) {
  assert(Loc::isLocType(type));
  assert(SymbolManager::canSymbolicate(type));
  if (type->isNullPtrType())
    return makeZeroVal(type);

  SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, type, VisitCount);
  return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
}

DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
                                              const MemRegion *region,
                                              const Expr *expr, QualType type,
                                              const LocationContext *LCtx,
                                              unsigned count) {
  assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");

  SymbolRef sym =
      SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);

  if (Loc::isLocType(type))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}

DefinedOrUnknownSVal
SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
                                             const TypedValueRegion *region) {
  QualType T = region->getValueType();

  if (T->isNullPtrType())
    return makeZeroVal(T);

  if (!SymbolManager::canSymbolicate(T))
    return UnknownVal();

  SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);

  if (Loc::isLocType(T))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}

DefinedSVal SValBuilder::getMemberPointer(const NamedDecl *ND) {
  assert(!ND || (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(ND)));

  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(ND)) {
    // Sema treats pointers to static member functions as have function pointer
    // type, so return a function pointer for the method.
    // We don't need to play a similar trick for static member fields
    // because these are represented as plain VarDecls and not FieldDecls
    // in the AST.
    if (MD->isStatic())
      return getFunctionPointer(MD);
  }

  return nonloc::PointerToMember(ND);
}

DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
  return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
}

DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
                                         CanQualType locTy,
                                         const LocationContext *locContext,
                                         unsigned blockCount) {
  const BlockCodeRegion *BC =
    MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
  const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
                                                        blockCount);
  return loc::MemRegionVal(BD);
}

Optional<loc::MemRegionVal>
SValBuilder::getCastedMemRegionVal(const MemRegion *R, QualType Ty) {
  if (auto OptR = StateMgr.getStoreManager().castRegion(R, Ty))
    return loc::MemRegionVal(*OptR);
  return None;
}

/// Return a memory region for the 'this' object reference.
loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
                                          const StackFrameContext *SFC) {
  return loc::MemRegionVal(
      getRegionManager().getCXXThisRegion(D->getThisType(), SFC));
}

/// Return a memory region for the 'this' object reference.
loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
                                          const StackFrameContext *SFC) {
  const Type *T = D->getTypeForDecl();
  QualType PT = getContext().getPointerType(QualType(T, 0));
  return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
}

Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
  E = E->IgnoreParens();

  switch (E->getStmtClass()) {
  // Handle expressions that we treat differently from the AST's constant
  // evaluator.
  case Stmt::AddrLabelExprClass:
    return makeLoc(cast<AddrLabelExpr>(E));

  case Stmt::CXXScalarValueInitExprClass:
  case Stmt::ImplicitValueInitExprClass:
    return makeZeroVal(E->getType());

  case Stmt::ObjCStringLiteralClass: {
    const auto *SL = cast<ObjCStringLiteral>(E);
    return makeLoc(getRegionManager().getObjCStringRegion(SL));
  }

  case Stmt::StringLiteralClass: {
    const auto *SL = cast<StringLiteral>(E);
    return makeLoc(getRegionManager().getStringRegion(SL));
  }

  case Stmt::PredefinedExprClass: {
    const auto *PE = cast<PredefinedExpr>(E);
    assert(PE->getFunctionName() &&
           "Since we analyze only instantiated functions, PredefinedExpr "
           "should have a function name.");
    return makeLoc(getRegionManager().getStringRegion(PE->getFunctionName()));
  }

  // Fast-path some expressions to avoid the overhead of going through the AST's
  // constant evaluator
  case Stmt::CharacterLiteralClass: {
    const auto *C = cast<CharacterLiteral>(E);
    return makeIntVal(C->getValue(), C->getType());
  }

  case Stmt::CXXBoolLiteralExprClass:
    return makeBoolVal(cast<CXXBoolLiteralExpr>(E));

  case Stmt::TypeTraitExprClass: {
    const auto *TE = cast<TypeTraitExpr>(E);
    return makeTruthVal(TE->getValue(), TE->getType());
  }

  case Stmt::IntegerLiteralClass:
    return makeIntVal(cast<IntegerLiteral>(E));

  case Stmt::ObjCBoolLiteralExprClass:
    return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));

  case Stmt::CXXNullPtrLiteralExprClass:
    return makeNullWithType(E->getType());

  case Stmt::CStyleCastExprClass:
  case Stmt::CXXFunctionalCastExprClass:
  case Stmt::CXXConstCastExprClass:
  case Stmt::CXXReinterpretCastExprClass:
  case Stmt::CXXStaticCastExprClass:
  case Stmt::ImplicitCastExprClass: {
    const auto *CE = cast<CastExpr>(E);
    switch (CE->getCastKind()) {
    default:
      break;
    case CK_ArrayToPointerDecay:
    case CK_IntegralToPointer:
    case CK_NoOp:
    case CK_BitCast: {
      const Expr *SE = CE->getSubExpr();
      Optional<SVal> Val = getConstantVal(SE);
      if (!Val)
        return None;
      return evalCast(*Val, CE->getType(), SE->getType());
    }
    }
    // FALLTHROUGH
    LLVM_FALLTHROUGH;
  }

  // If we don't have a special case, fall back to the AST's constant evaluator.
  default: {
    // Don't try to come up with a value for materialized temporaries.
    if (E->isGLValue())
      return None;

    ASTContext &Ctx = getContext();
    Expr::EvalResult Result;
    if (E->EvaluateAsInt(Result, Ctx))
      return makeIntVal(Result.Val.getInt());

    if (Loc::isLocType(E->getType()))
      if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
        return makeNullWithType(E->getType());

    return None;
  }
  }
}

SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op,
                                   NonLoc LHS, NonLoc RHS,
                                   QualType ResultTy) {
  SymbolRef symLHS = LHS.getAsSymbol();
  SymbolRef symRHS = RHS.getAsSymbol();

  // TODO: When the Max Complexity is reached, we should conjure a symbol
  // instead of generating an Unknown value and propagate the taint info to it.
  const unsigned MaxComp = AnOpts.MaxSymbolComplexity;

  if (symLHS && symRHS &&
      (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
    return makeNonLoc(symLHS, Op, symRHS, ResultTy);

  if (symLHS && symLHS->computeComplexity() < MaxComp)
    if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
      return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);

  if (symRHS && symRHS->computeComplexity() < MaxComp)
    if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
      return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);

  return UnknownVal();
}

SVal SValBuilder::evalMinus(NonLoc X) {
  switch (X.getSubKind()) {
  case nonloc::ConcreteIntKind:
    return makeIntVal(-X.castAs<nonloc::ConcreteInt>().getValue());
  case nonloc::SymbolValKind:
    return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Minus,
                      X.getType(Context));
  default:
    return UnknownVal();
  }
}

SVal SValBuilder::evalComplement(NonLoc X) {
  switch (X.getSubKind()) {
  case nonloc::ConcreteIntKind:
    return makeIntVal(~X.castAs<nonloc::ConcreteInt>().getValue());
  case nonloc::SymbolValKind:
    return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Not,
                      X.getType(Context));
  default:
    return UnknownVal();
  }
}

SVal SValBuilder::evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc,
                 SVal operand, QualType type) {
  auto OpN = operand.getAs<NonLoc>();
  if (!OpN)
    return UnknownVal();

  if (opc == UO_Minus)
    return evalMinus(*OpN);
  if (opc == UO_Not)
    return evalComplement(*OpN);
  llvm_unreachable("Unexpected unary operator");
}

SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
                            SVal lhs, SVal rhs, QualType type) {
  if (lhs.isUndef() || rhs.isUndef())
    return UndefinedVal();

  if (lhs.isUnknown() || rhs.isUnknown())
    return UnknownVal();

  if (isa<nonloc::LazyCompoundVal>(lhs) || isa<nonloc::LazyCompoundVal>(rhs)) {
    return UnknownVal();
  }

  if (op == BinaryOperatorKind::BO_Cmp) {
    // We can't reason about C++20 spaceship operator yet.
    //
    // FIXME: Support C++20 spaceship operator.
    //        The main problem here is that the result is not integer.
    return UnknownVal();
  }

  if (Optional<Loc> LV = lhs.getAs<Loc>()) {
    if (Optional<Loc> RV = rhs.getAs<Loc>())
      return evalBinOpLL(state, op, *LV, *RV, type);

    return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
  }

  if (const Optional<Loc> RV = rhs.getAs<Loc>()) {
    const auto IsCommutative = [](BinaryOperatorKind Op) {
      return Op == BO_Mul || Op == BO_Add || Op == BO_And || Op == BO_Xor ||
             Op == BO_Or;
    };

    if (IsCommutative(op)) {
      // Swap operands.
      return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
    }

    // If the right operand is a concrete int location then we have nothing
    // better but to treat it as a simple nonloc.
    if (auto RV = rhs.getAs<loc::ConcreteInt>()) {
      const nonloc::ConcreteInt RhsAsLoc = makeIntVal(RV->getValue());
      return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), RhsAsLoc, type);
    }
  }

  return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
                     type);
}

ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs,
                                        SVal rhs) {
  return state->isNonNull(evalEQ(state, lhs, rhs));
}

SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) {
  return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType());
}

DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
                                         DefinedOrUnknownSVal lhs,
                                         DefinedOrUnknownSVal rhs) {
  return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs))
      .castAs<DefinedOrUnknownSVal>();
}

/// Recursively check if the pointer types are equal modulo const, volatile,
/// and restrict qualifiers. Also, assume that all types are similar to 'void'.
/// Assumes the input types are canonical.
static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
                                                         QualType FromTy) {
  while (Context.UnwrapSimilarTypes(ToTy, FromTy)) {
    Qualifiers Quals1, Quals2;
    ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
    FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);

    // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
    // spaces) are identical.
    Quals1.removeCVRQualifiers();
    Quals2.removeCVRQualifiers();
    if (Quals1 != Quals2)
      return false;
  }

  // If we are casting to void, the 'From' value can be used to represent the
  // 'To' value.
  //
  // FIXME: Doing this after unwrapping the types doesn't make any sense. A
  // cast from 'int**' to 'void**' is not special in the way that a cast from
  // 'int*' to 'void*' is.
  if (ToTy->isVoidType())
    return true;

  if (ToTy != FromTy)
    return false;

  return true;
}

// Handles casts of type CK_IntegralCast.
// At the moment, this function will redirect to evalCast, except when the range
// of the original value is known to be greater than the max of the target type.
SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
                                   QualType castTy, QualType originalTy) {
  // No truncations if target type is big enough.
  if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
    return evalCast(val, castTy, originalTy);

  SymbolRef se = val.getAsSymbol();
  if (!se) // Let evalCast handle non symbolic expressions.
    return evalCast(val, castTy, originalTy);

  // Find the maximum value of the target type.
  APSIntType ToType(getContext().getTypeSize(castTy),
                    castTy->isUnsignedIntegerType());
  llvm::APSInt ToTypeMax = ToType.getMaxValue();
  NonLoc ToTypeMaxVal =
      makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue()
                                        : ToTypeMax.getSExtValue(),
                 castTy)
          .castAs<NonLoc>();
  // Check the range of the symbol being casted against the maximum value of the
  // target type.
  NonLoc FromVal = val.castAs<NonLoc>();
  QualType CmpTy = getConditionType();
  NonLoc CompVal =
      evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
  ProgramStateRef IsNotTruncated, IsTruncated;
  std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
  if (!IsNotTruncated && IsTruncated) {
    // Symbol is truncated so we evaluate it as a cast.
    return makeNonLoc(se, originalTy, castTy);
  }
  return evalCast(val, castTy, originalTy);
}

//===----------------------------------------------------------------------===//
// Cast methods.
// `evalCast` is the main method
// `evalCastKind` and `evalCastSubKind` are helpers
//===----------------------------------------------------------------------===//

/// Cast a given SVal to another SVal using given QualType's.
/// \param V -- SVal that should be casted.
/// \param CastTy -- QualType that V should be casted according to.
/// \param OriginalTy -- QualType which is associated to V. It provides
/// additional information about what type the cast performs from.
/// \returns the most appropriate casted SVal.
/// Note: Many cases don't use an exact OriginalTy. It can be extracted
/// from SVal or the cast can performs unconditionaly. Always pass OriginalTy!
/// It can be crucial in certain cases and generates different results.
/// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy
/// only. This behavior is uncertain and should be improved.
SVal SValBuilder::evalCast(SVal V, QualType CastTy, QualType OriginalTy) {
  if (CastTy.isNull())
    return V;

  CastTy = Context.getCanonicalType(CastTy);

  const bool IsUnknownOriginalType = OriginalTy.isNull();
  if (!IsUnknownOriginalType) {
    OriginalTy = Context.getCanonicalType(OriginalTy);

    if (CastTy == OriginalTy)
      return V;

    // FIXME: Move this check to the most appropriate
    // evalCastKind/evalCastSubKind function. For const casts, casts to void,
    // just propagate the value.
    if (!CastTy->isVariableArrayType() && !OriginalTy->isVariableArrayType())
      if (shouldBeModeledWithNoOp(Context, Context.getPointerType(CastTy),
                                  Context.getPointerType(OriginalTy)))
        return V;
  }

  // Cast SVal according to kinds.
  switch (V.getBaseKind()) {
  case SVal::UndefinedValKind:
    return evalCastKind(V.castAs<UndefinedVal>(), CastTy, OriginalTy);
  case SVal::UnknownValKind:
    return evalCastKind(V.castAs<UnknownVal>(), CastTy, OriginalTy);
  case SVal::LocKind:
    return evalCastKind(V.castAs<Loc>(), CastTy, OriginalTy);
  case SVal::NonLocKind:
    return evalCastKind(V.castAs<NonLoc>(), CastTy, OriginalTy);
  }

  llvm_unreachable("Unknown SVal kind");
}

SVal SValBuilder::evalCastKind(UndefinedVal V, QualType CastTy,
                               QualType OriginalTy) {
  return V;
}

SVal SValBuilder::evalCastKind(UnknownVal V, QualType CastTy,
                               QualType OriginalTy) {
  return V;
}

SVal SValBuilder::evalCastKind(Loc V, QualType CastTy, QualType OriginalTy) {
  switch (V.getSubKind()) {
  case loc::ConcreteIntKind:
    return evalCastSubKind(V.castAs<loc::ConcreteInt>(), CastTy, OriginalTy);
  case loc::GotoLabelKind:
    return evalCastSubKind(V.castAs<loc::GotoLabel>(), CastTy, OriginalTy);
  case loc::MemRegionValKind:
    return evalCastSubKind(V.castAs<loc::MemRegionVal>(), CastTy, OriginalTy);
  }

  llvm_unreachable("Unknown SVal kind");
}

SVal SValBuilder::evalCastKind(NonLoc V, QualType CastTy, QualType OriginalTy) {
  switch (V.getSubKind()) {
  case nonloc::CompoundValKind:
    return evalCastSubKind(V.castAs<nonloc::CompoundVal>(), CastTy, OriginalTy);
  case nonloc::ConcreteIntKind:
    return evalCastSubKind(V.castAs<nonloc::ConcreteInt>(), CastTy, OriginalTy);
  case nonloc::LazyCompoundValKind:
    return evalCastSubKind(V.castAs<nonloc::LazyCompoundVal>(), CastTy,
                           OriginalTy);
  case nonloc::LocAsIntegerKind:
    return evalCastSubKind(V.castAs<nonloc::LocAsInteger>(), CastTy,
                           OriginalTy);
  case nonloc::SymbolValKind:
    return evalCastSubKind(V.castAs<nonloc::SymbolVal>(), CastTy, OriginalTy);
  case nonloc::PointerToMemberKind:
    return evalCastSubKind(V.castAs<nonloc::PointerToMember>(), CastTy,
                           OriginalTy);
  }

  llvm_unreachable("Unknown SVal kind");
}

SVal SValBuilder::evalCastSubKind(loc::ConcreteInt V, QualType CastTy,
                                  QualType OriginalTy) {
  // Pointer to bool.
  if (CastTy->isBooleanType())
    return makeTruthVal(V.getValue().getBoolValue(), CastTy);

  // Pointer to integer.
  if (CastTy->isIntegralOrEnumerationType()) {
    llvm::APSInt Value = V.getValue();
    BasicVals.getAPSIntType(CastTy).apply(Value);
    return makeIntVal(Value);
  }

  // Pointer to any pointer.
  if (Loc::isLocType(CastTy)) {
    llvm::APSInt Value = V.getValue();
    BasicVals.getAPSIntType(CastTy).apply(Value);
    return loc::ConcreteInt(BasicVals.getValue(Value));
  }

  // Pointer to whatever else.
  return UnknownVal();
}

SVal SValBuilder::evalCastSubKind(loc::GotoLabel V, QualType CastTy,
                                  QualType OriginalTy) {
  // Pointer to bool.
  if (CastTy->isBooleanType())
    // Labels are always true.
    return makeTruthVal(true, CastTy);

  // Pointer to integer.
  if (CastTy->isIntegralOrEnumerationType()) {
    const unsigned BitWidth = Context.getIntWidth(CastTy);
    return makeLocAsInteger(V, BitWidth);
  }

  const bool IsUnknownOriginalType = OriginalTy.isNull();
  if (!IsUnknownOriginalType) {
    // Array to pointer.
    if (isa<ArrayType>(OriginalTy))
      if (CastTy->isPointerType() || CastTy->isReferenceType())
        return UnknownVal();
  }

  // Pointer to any pointer.
  if (Loc::isLocType(CastTy))
    return V;

  // Pointer to whatever else.
  return UnknownVal();
}

static bool hasSameUnqualifiedPointeeType(QualType ty1, QualType ty2) {
  return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
         ty2->getPointeeType().getCanonicalType().getTypePtr();
}

SVal SValBuilder::evalCastSubKind(loc::MemRegionVal V, QualType CastTy,
                                  QualType OriginalTy) {
  // Pointer to bool.
  if (CastTy->isBooleanType()) {
    const MemRegion *R = V.getRegion();
    if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
        if (FD->isWeak())
          // FIXME: Currently we are using an extent symbol here,
          // because there are no generic region address metadata
          // symbols to use, only content metadata.
          return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));

    if (const SymbolicRegion *SymR = R->getSymbolicBase()) {
      SymbolRef Sym = SymR->getSymbol();
      QualType Ty = Sym->getType();
      // This change is needed for architectures with varying
      // pointer widths. See the amdgcn opencl reproducer with
      // this change as an example: solver-sym-simplification-ptr-bool.cl
      if (!Ty->isReferenceType())
        return makeNonLoc(Sym, BO_NE, BasicVals.getZeroWithTypeSize(Ty),
                          CastTy);
    }
    // Non-symbolic memory regions are always true.
    return makeTruthVal(true, CastTy);
  }

  const bool IsUnknownOriginalType = OriginalTy.isNull();
  // Try to cast to array
  const auto *ArrayTy =
      IsUnknownOriginalType
          ? nullptr
          : dyn_cast<ArrayType>(OriginalTy.getCanonicalType());

  // Pointer to integer.
  if (CastTy->isIntegralOrEnumerationType()) {
    SVal Val = V;
    // Array to integer.
    if (ArrayTy) {
      // We will always decay to a pointer.
      QualType ElemTy = ArrayTy->getElementType();
      Val = StateMgr.ArrayToPointer(V, ElemTy);
      // FIXME: Keep these here for now in case we decide soon that we
      // need the original decayed type.
      //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
      //    QualType pointerTy = C.getPointerType(elemTy);
    }
    const unsigned BitWidth = Context.getIntWidth(CastTy);
    return makeLocAsInteger(Val.castAs<Loc>(), BitWidth);
  }

  // Pointer to pointer.
  if (Loc::isLocType(CastTy)) {

    if (IsUnknownOriginalType) {
      // When retrieving symbolic pointer and expecting a non-void pointer,
      // wrap them into element regions of the expected type if necessary.
      // It is necessary to make sure that the retrieved value makes sense,
      // because there's no other cast in the AST that would tell us to cast
      // it to the correct pointer type. We might need to do that for non-void
      // pointers as well.
      // FIXME: We really need a single good function to perform casts for us
      // correctly every time we need it.
      const MemRegion *R = V.getRegion();
      if (CastTy->isPointerType() && !CastTy->isVoidPointerType()) {
        if (const auto *SR = dyn_cast<SymbolicRegion>(R)) {
          QualType SRTy = SR->getSymbol()->getType();
          if (!hasSameUnqualifiedPointeeType(SRTy, CastTy)) {
            if (auto OptMemRegV = getCastedMemRegionVal(SR, CastTy))
              return *OptMemRegV;
          }
        }
      }
      // Next fixes pointer dereference using type different from its initial
      // one. See PR37503 and PR49007 for details.
      if (const auto *ER = dyn_cast<ElementRegion>(R)) {
        if (auto OptMemRegV = getCastedMemRegionVal(ER, CastTy))
          return *OptMemRegV;
      }

      return V;
    }

    if (OriginalTy->isIntegralOrEnumerationType() ||
        OriginalTy->isBlockPointerType() || OriginalTy->isFunctionPointerType())
      return V;

    // Array to pointer.
    if (ArrayTy) {
      // Are we casting from an array to a pointer?  If so just pass on
      // the decayed value.
      if (CastTy->isPointerType() || CastTy->isReferenceType()) {
        // We will always decay to a pointer.
        QualType ElemTy = ArrayTy->getElementType();
        return StateMgr.ArrayToPointer(V, ElemTy);
      }
      // Are we casting from an array to an integer?  If so, cast the decayed
      // pointer value to an integer.
      assert(CastTy->isIntegralOrEnumerationType());
    }

    // Other pointer to pointer.
    assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
           CastTy->isReferenceType());

    // We get a symbolic function pointer for a dereference of a function
    // pointer, but it is of function type. Example:

    //  struct FPRec {
    //    void (*my_func)(int * x);
    //  };
    //
    //  int bar(int x);
    //
    //  int f1_a(struct FPRec* foo) {
    //    int x;
    //    (*foo->my_func)(&x);
    //    return bar(x)+1; // no-warning
    //  }

    // Get the result of casting a region to a different type.
    const MemRegion *R = V.getRegion();
    if (auto OptMemRegV = getCastedMemRegionVal(R, CastTy))
      return *OptMemRegV;
  }

  // Pointer to whatever else.
  // FIXME: There can be gross cases where one casts the result of a
  // function (that returns a pointer) to some other value that happens to
  // fit within that pointer value.  We currently have no good way to model
  // such operations.  When this happens, the underlying operation is that
  // the caller is reasoning about bits.  Conceptually we are layering a
  // "view" of a location on top of those bits.  Perhaps we need to be more
  // lazy about mutual possible views, even on an SVal?  This may be
  // necessary for bit-level reasoning as well.
  return UnknownVal();
}

SVal SValBuilder::evalCastSubKind(nonloc::CompoundVal V, QualType CastTy,
                                  QualType OriginalTy) {
  // Compound to whatever.
  return UnknownVal();
}

SVal SValBuilder::evalCastSubKind(nonloc::ConcreteInt V, QualType CastTy,
                                  QualType OriginalTy) {
  auto CastedValue = [V, CastTy, this]() {
    llvm::APSInt Value = V.getValue();
    BasicVals.getAPSIntType(CastTy).apply(Value);
    return Value;
  };

  // Integer to bool.
  if (CastTy->isBooleanType())
    return makeTruthVal(V.getValue().getBoolValue(), CastTy);

  // Integer to pointer.
  if (CastTy->isIntegralOrEnumerationType())
    return makeIntVal(CastedValue());

  // Integer to pointer.
  if (Loc::isLocType(CastTy))
    return makeIntLocVal(CastedValue());

  // Pointer to whatever else.
  return UnknownVal();
}

SVal SValBuilder::evalCastSubKind(nonloc::LazyCompoundVal V, QualType CastTy,
                                  QualType OriginalTy) {
  // Compound to whatever.
  return UnknownVal();
}

SVal SValBuilder::evalCastSubKind(nonloc::LocAsInteger V, QualType CastTy,
                                  QualType OriginalTy) {
  Loc L = V.getLoc();

  // Pointer as integer to bool.
  if (CastTy->isBooleanType())
    // Pass to Loc function.
    return evalCastKind(L, CastTy, OriginalTy);

  const bool IsUnknownOriginalType = OriginalTy.isNull();
  // Pointer as integer to pointer.
  if (!IsUnknownOriginalType && Loc::isLocType(CastTy) &&
      OriginalTy->isIntegralOrEnumerationType()) {
    if (const MemRegion *R = L.getAsRegion())
      if (auto OptMemRegV = getCastedMemRegionVal(R, CastTy))
        return *OptMemRegV;
    return L;
  }

  // Pointer as integer with region to integer/pointer.
  const MemRegion *R = L.getAsRegion();
  if (!IsUnknownOriginalType && R) {
    if (CastTy->isIntegralOrEnumerationType())
      return evalCastSubKind(loc::MemRegionVal(R), CastTy, OriginalTy);

    if (Loc::isLocType(CastTy)) {
      assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
             CastTy->isReferenceType());
      // Delegate to store manager to get the result of casting a region to a
      // different type. If the MemRegion* returned is NULL, this expression
      // Evaluates to UnknownVal.
      if (auto OptMemRegV = getCastedMemRegionVal(R, CastTy))
        return *OptMemRegV;
    }
  } else {
    if (Loc::isLocType(CastTy)) {
      if (IsUnknownOriginalType)
        return evalCastSubKind(loc::MemRegionVal(R), CastTy, OriginalTy);
      return L;
    }

    SymbolRef SE = nullptr;
    if (R) {
      if (const SymbolicRegion *SR =
              dyn_cast<SymbolicRegion>(R->StripCasts())) {
        SE = SR->getSymbol();
      }
    }

    if (!CastTy->isFloatingType() || !SE || SE->getType()->isFloatingType()) {
      // FIXME: Correctly support promotions/truncations.
      const unsigned CastSize = Context.getIntWidth(CastTy);
      if (CastSize == V.getNumBits())
        return V;

      return makeLocAsInteger(L, CastSize);
    }
  }

  // Pointer as integer to whatever else.
  return UnknownVal();
}

SVal SValBuilder::evalCastSubKind(nonloc::SymbolVal V, QualType CastTy,
                                  QualType OriginalTy) {
  SymbolRef SE = V.getSymbol();

  const bool IsUnknownOriginalType = OriginalTy.isNull();
  // Symbol to bool.
  if (!IsUnknownOriginalType && CastTy->isBooleanType()) {
    // Non-float to bool.
    if (Loc::isLocType(OriginalTy) ||
        OriginalTy->isIntegralOrEnumerationType() ||
        OriginalTy->isMemberPointerType()) {
      BasicValueFactory &BVF = getBasicValueFactory();
      return makeNonLoc(SE, BO_NE, BVF.getValue(0, SE->getType()), CastTy);
    }
  } else {
    // Symbol to integer, float.
    QualType T = Context.getCanonicalType(SE->getType());

    // Produce SymbolCast if CastTy and T are different integers.
    // NOTE: In the end the type of SymbolCast shall be equal to CastTy.
    if (T->isIntegralOrUnscopedEnumerationType() &&
        CastTy->isIntegralOrUnscopedEnumerationType()) {
      AnalyzerOptions &Opts =
          StateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions();
      // If appropriate option is disabled, ignore the cast.
      // NOTE: ShouldSupportSymbolicIntegerCasts is `false` by default.
      if (!Opts.ShouldSupportSymbolicIntegerCasts)
        return V;
      return simplifySymbolCast(V, CastTy);
    }
    if (!Loc::isLocType(CastTy))
      if (!IsUnknownOriginalType || !CastTy->isFloatingType() ||
          T->isFloatingType())
        return makeNonLoc(SE, T, CastTy);
  }

  // Symbol to pointer and whatever else.
  return UnknownVal();
}

SVal SValBuilder::evalCastSubKind(nonloc::PointerToMember V, QualType CastTy,
                                  QualType OriginalTy) {
  // Member pointer to whatever.
  return V;
}

nonloc::SymbolVal SValBuilder::simplifySymbolCast(nonloc::SymbolVal V,
                                                  QualType CastTy) {
  // We use seven conditions to recognize a simplification case.
  // For the clarity let `CastTy` be `C`, SE->getType() - `T`, root type - `R`,
  // prefix `u` for unsigned, `s` for signed, no prefix - any sign:
  // E.g. (char)(short)(uint x)
  //      ( sC )( sT  )( uR  x)
  //
  // C === R (the same type)
  //  (char)(char x) -> (char x)
  //  (long)(long x) -> (long x)
  // Note: Comparisons operators below are for bit width.
  // C == T
  //  (short)(short)(int x) -> (short)(int x)
  //  (int)(long)(char x) -> (int)(char x) (sizeof(long) == sizeof(int))
  //  (long)(ullong)(char x) -> (long)(char x) (sizeof(long) == sizeof(ullong))
  // C < T
  //  (short)(int)(char x) -> (short)(char x)
  //  (char)(int)(short x) -> (char)(short x)
  //  (short)(int)(short x) -> (short x)
  // C > T > uR
  //  (int)(short)(uchar x) -> (int)(uchar x)
  //  (uint)(short)(uchar x) -> (uint)(uchar x)
  //  (int)(ushort)(uchar x) -> (int)(uchar x)
  // C > sT > sR
  //  (int)(short)(char x) -> (int)(char x)
  //  (uint)(short)(char x) -> (uint)(char x)
  // C > sT == sR
  //  (int)(char)(char x) -> (int)(char x)
  //  (uint)(short)(short x) -> (uint)(short x)
  // C > uT == uR
  //  (int)(uchar)(uchar x) -> (int)(uchar x)
  //  (uint)(ushort)(ushort x) -> (uint)(ushort x)
  //  (llong)(ulong)(uint x) -> (llong)(uint x) (sizeof(ulong) == sizeof(uint))

  SymbolRef SE = V.getSymbol();
  QualType T = Context.getCanonicalType(SE->getType());

  if (T == CastTy)
    return V;

  if (!isa<SymbolCast>(SE))
    return makeNonLoc(SE, T, CastTy);

  SymbolRef RootSym = cast<SymbolCast>(SE)->getOperand();
  QualType RT = RootSym->getType().getCanonicalType();

  // FIXME support simplification from non-integers.
  if (!RT->isIntegralOrEnumerationType())
    return makeNonLoc(SE, T, CastTy);

  BasicValueFactory &BVF = getBasicValueFactory();
  APSIntType CTy = BVF.getAPSIntType(CastTy);
  APSIntType TTy = BVF.getAPSIntType(T);

  const auto WC = CTy.getBitWidth();
  const auto WT = TTy.getBitWidth();

  if (WC <= WT) {
    const bool isSameType = (RT == CastTy);
    if (isSameType)
      return nonloc::SymbolVal(RootSym);
    return makeNonLoc(RootSym, RT, CastTy);
  }

  APSIntType RTy = BVF.getAPSIntType(RT);
  const auto WR = RTy.getBitWidth();
  const bool UT = TTy.isUnsigned();
  const bool UR = RTy.isUnsigned();

  if (((WT > WR) && (UR || !UT)) || ((WT == WR) && (UT == UR)))
    return makeNonLoc(RootSym, RT, CastTy);

  return makeNonLoc(SE, T, CastTy);
}