aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/lld/MachO/SyntheticSections.cpp
blob: 8e7ca520336cc41f41727fab2c825e1b757d5a97 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
//===- SyntheticSections.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "SyntheticSections.h"
#include "ConcatOutputSection.h"
#include "Config.h"
#include "ExportTrie.h"
#include "InputFiles.h"
#include "MachOStructs.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"

#include "lld/Common/CommonLinkerContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"

#if defined(__APPLE__)
#include <sys/mman.h>

#define COMMON_DIGEST_FOR_OPENSSL
#include <CommonCrypto/CommonDigest.h>
#else
#include "llvm/Support/SHA256.h"
#endif

#ifdef LLVM_HAVE_LIBXAR
#include <fcntl.h>
extern "C" {
#include <xar/xar.h>
}
#endif

using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;

// Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
#if defined(__APPLE__)
  // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
  // for some notes on this.
  CC_SHA256(data, len, output);
#else
  ArrayRef<uint8_t> block(data, len);
  std::array<uint8_t, 32> hash = SHA256::hash(block);
  static_assert(hash.size() == CodeSignatureSection::hashSize, "");
  memcpy(output, hash.data(), hash.size());
#endif
}

InStruct macho::in;
std::vector<SyntheticSection *> macho::syntheticSections;

SyntheticSection::SyntheticSection(const char *segname, const char *name)
    : OutputSection(SyntheticKind, name) {
  std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
  isec = makeSyntheticInputSection(segname, name);
  isec->parent = this;
  syntheticSections.push_back(this);
}

// dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
// from the beginning of the file (i.e. the header).
MachHeaderSection::MachHeaderSection()
    : SyntheticSection(segment_names::text, section_names::header) {
  // XXX: This is a hack. (See D97007)
  // Setting the index to 1 to pretend that this section is the text
  // section.
  index = 1;
  isec->isFinal = true;
}

void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
  loadCommands.push_back(lc);
  sizeOfCmds += lc->getSize();
}

uint64_t MachHeaderSection::getSize() const {
  uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
  // If we are emitting an encryptable binary, our load commands must have a
  // separate (non-encrypted) page to themselves.
  if (config->emitEncryptionInfo)
    size = alignTo(size, target->getPageSize());
  return size;
}

static uint32_t cpuSubtype() {
  uint32_t subtype = target->cpuSubtype;

  if (config->outputType == MH_EXECUTE && !config->staticLink &&
      target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
      config->platform() == PLATFORM_MACOS &&
      config->platformInfo.minimum >= VersionTuple(10, 5))
    subtype |= CPU_SUBTYPE_LIB64;

  return subtype;
}

void MachHeaderSection::writeTo(uint8_t *buf) const {
  auto *hdr = reinterpret_cast<mach_header *>(buf);
  hdr->magic = target->magic;
  hdr->cputype = target->cpuType;
  hdr->cpusubtype = cpuSubtype();
  hdr->filetype = config->outputType;
  hdr->ncmds = loadCommands.size();
  hdr->sizeofcmds = sizeOfCmds;
  hdr->flags = MH_DYLDLINK;

  if (config->namespaceKind == NamespaceKind::twolevel)
    hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;

  if (config->outputType == MH_DYLIB && !config->hasReexports)
    hdr->flags |= MH_NO_REEXPORTED_DYLIBS;

  if (config->markDeadStrippableDylib)
    hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;

  if (config->outputType == MH_EXECUTE && config->isPic)
    hdr->flags |= MH_PIE;

  if (config->outputType == MH_DYLIB && config->applicationExtension)
    hdr->flags |= MH_APP_EXTENSION_SAFE;

  if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition())
    hdr->flags |= MH_WEAK_DEFINES;

  if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry())
    hdr->flags |= MH_BINDS_TO_WEAK;

  for (const OutputSegment *seg : outputSegments) {
    for (const OutputSection *osec : seg->getSections()) {
      if (isThreadLocalVariables(osec->flags)) {
        hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
        break;
      }
    }
  }

  uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
  for (const LoadCommand *lc : loadCommands) {
    lc->writeTo(p);
    p += lc->getSize();
  }
}

PageZeroSection::PageZeroSection()
    : SyntheticSection(segment_names::pageZero, section_names::pageZero) {}

RebaseSection::RebaseSection()
    : LinkEditSection(segment_names::linkEdit, section_names::rebase) {}

namespace {
struct RebaseState {
  uint64_t sequenceLength;
  uint64_t skipLength;
};
} // namespace

static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
  assert(incr != 0);

  if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
      (incr % target->wordSize) == 0) {
    os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
                               (incr >> target->p2WordSize));
  } else {
    os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
    encodeULEB128(incr, os);
  }
}

static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
  assert(state.sequenceLength > 0);

  if (state.skipLength == target->wordSize) {
    if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
      os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
                                 state.sequenceLength);
    } else {
      os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
      encodeULEB128(state.sequenceLength, os);
    }
  } else if (state.sequenceLength == 1) {
    os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
    encodeULEB128(state.skipLength - target->wordSize, os);
  } else {
    os << static_cast<uint8_t>(
        REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
    encodeULEB128(state.sequenceLength, os);
    encodeULEB128(state.skipLength - target->wordSize, os);
  }
}

// Rebases are communicated to dyld using a bytecode, whose opcodes cause the
// memory location at a specific address to be rebased and/or the address to be
// incremented.
//
// Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
// one, encoding a series of evenly spaced addresses. This algorithm works by
// splitting up the sorted list of addresses into such chunks. If the locations
// are consecutive or the sequence consists of a single location, flushRebase
// will use a smaller, more specialized encoding.
static void encodeRebases(const OutputSegment *seg,
                          MutableArrayRef<Location> locations,
                          raw_svector_ostream &os) {
  // dyld operates on segments. Translate section offsets into segment offsets.
  for (Location &loc : locations)
    loc.offset =
        loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
  // The algorithm assumes that locations are unique.
  Location *end =
      llvm::unique(locations, [](const Location &a, const Location &b) {
        return a.offset == b.offset;
      });
  size_t count = end - locations.begin();

  os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
                             seg->index);
  assert(!locations.empty());
  uint64_t offset = locations[0].offset;
  encodeULEB128(offset, os);

  RebaseState state{1, target->wordSize};

  for (size_t i = 1; i < count; ++i) {
    offset = locations[i].offset;

    uint64_t skip = offset - locations[i - 1].offset;
    assert(skip != 0 && "duplicate locations should have been weeded out");

    if (skip == state.skipLength) {
      ++state.sequenceLength;
    } else if (state.sequenceLength == 1) {
      ++state.sequenceLength;
      state.skipLength = skip;
    } else if (skip < state.skipLength) {
      // The address is lower than what the rebase pointer would be if the last
      // location would be part of a sequence. We start a new sequence from the
      // previous location.
      --state.sequenceLength;
      flushRebase(state, os);

      state.sequenceLength = 2;
      state.skipLength = skip;
    } else {
      // The address is at some positive offset from the rebase pointer. We
      // start a new sequence which begins with the current location.
      flushRebase(state, os);
      emitIncrement(skip - state.skipLength, os);
      state.sequenceLength = 1;
      state.skipLength = target->wordSize;
    }
  }
  flushRebase(state, os);
}

void RebaseSection::finalizeContents() {
  if (locations.empty())
    return;

  raw_svector_ostream os{contents};
  os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);

  llvm::sort(locations, [](const Location &a, const Location &b) {
    return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
  });

  for (size_t i = 0, count = locations.size(); i < count;) {
    const OutputSegment *seg = locations[i].isec->parent->parent;
    size_t j = i + 1;
    while (j < count && locations[j].isec->parent->parent == seg)
      ++j;
    encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
    i = j;
  }
  os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
}

void RebaseSection::writeTo(uint8_t *buf) const {
  memcpy(buf, contents.data(), contents.size());
}

NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
                                                     const char *name)
    : SyntheticSection(segname, name) {
  align = target->wordSize;
}

void macho::addNonLazyBindingEntries(const Symbol *sym,
                                     const InputSection *isec, uint64_t offset,
                                     int64_t addend) {
  if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
    in.binding->addEntry(dysym, isec, offset, addend);
    if (dysym->isWeakDef())
      in.weakBinding->addEntry(sym, isec, offset, addend);
  } else if (const auto *defined = dyn_cast<Defined>(sym)) {
    in.rebase->addEntry(isec, offset);
    if (defined->isExternalWeakDef())
      in.weakBinding->addEntry(sym, isec, offset, addend);
    else if (defined->interposable)
      in.binding->addEntry(sym, isec, offset, addend);
  } else {
    // Undefined symbols are filtered out in scanRelocations(); we should never
    // get here
    llvm_unreachable("cannot bind to an undefined symbol");
  }
}

void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
  if (entries.insert(sym)) {
    assert(!sym->isInGot());
    sym->gotIndex = entries.size() - 1;

    addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
  }
}

void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
  for (size_t i = 0, n = entries.size(); i < n; ++i)
    if (auto *defined = dyn_cast<Defined>(entries[i]))
      write64le(&buf[i * target->wordSize], defined->getVA());
}

GotSection::GotSection()
    : NonLazyPointerSectionBase(segment_names::data, section_names::got) {
  flags = S_NON_LAZY_SYMBOL_POINTERS;
}

TlvPointerSection::TlvPointerSection()
    : NonLazyPointerSectionBase(segment_names::data,
                                section_names::threadPtrs) {
  flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
}

BindingSection::BindingSection()
    : LinkEditSection(segment_names::linkEdit, section_names::binding) {}

namespace {
struct Binding {
  OutputSegment *segment = nullptr;
  uint64_t offset = 0;
  int64_t addend = 0;
};
struct BindIR {
  // Default value of 0xF0 is not valid opcode and should make the program
  // scream instead of accidentally writing "valid" values.
  uint8_t opcode = 0xF0;
  uint64_t data = 0;
  uint64_t consecutiveCount = 0;
};
} // namespace

// Encode a sequence of opcodes that tell dyld to write the address of symbol +
// addend at osec->addr + outSecOff.
//
// The bind opcode "interpreter" remembers the values of each binding field, so
// we only need to encode the differences between bindings. Hence the use of
// lastBinding.
static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
                          int64_t addend, Binding &lastBinding,
                          std::vector<BindIR> &opcodes) {
  OutputSegment *seg = osec->parent;
  uint64_t offset = osec->getSegmentOffset() + outSecOff;
  if (lastBinding.segment != seg) {
    opcodes.push_back(
        {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
                              seg->index),
         offset});
    lastBinding.segment = seg;
    lastBinding.offset = offset;
  } else if (lastBinding.offset != offset) {
    opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
    lastBinding.offset = offset;
  }

  if (lastBinding.addend != addend) {
    opcodes.push_back(
        {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
    lastBinding.addend = addend;
  }

  opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
  // DO_BIND causes dyld to both perform the binding and increment the offset
  lastBinding.offset += target->wordSize;
}

static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
  // Pass 1: Combine bind/add pairs
  size_t i;
  int pWrite = 0;
  for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
    if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
        (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
      opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
      opcodes[pWrite].data = opcodes[i].data;
      ++i;
    } else {
      opcodes[pWrite] = opcodes[i - 1];
    }
  }
  if (i == opcodes.size())
    opcodes[pWrite] = opcodes[i - 1];
  opcodes.resize(pWrite + 1);

  // Pass 2: Compress two or more bind_add opcodes
  pWrite = 0;
  for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
    if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
        (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
        (opcodes[i].data == opcodes[i - 1].data)) {
      opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
      opcodes[pWrite].consecutiveCount = 2;
      opcodes[pWrite].data = opcodes[i].data;
      ++i;
      while (i < opcodes.size() &&
             (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
             (opcodes[i].data == opcodes[i - 1].data)) {
        opcodes[pWrite].consecutiveCount++;
        ++i;
      }
    } else {
      opcodes[pWrite] = opcodes[i - 1];
    }
  }
  if (i == opcodes.size())
    opcodes[pWrite] = opcodes[i - 1];
  opcodes.resize(pWrite + 1);

  // Pass 3: Use immediate encodings
  // Every binding is the size of one pointer. If the next binding is a
  // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
  // opcode can be scaled by wordSize into a single byte and dyld will
  // expand it to the correct address.
  for (auto &p : opcodes) {
    // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
    // but ld64 currently does this. This could be a potential bug, but
    // for now, perform the same behavior to prevent mysterious bugs.
    if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
        ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
        ((p.data % target->wordSize) == 0)) {
      p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
      p.data /= target->wordSize;
    }
  }
}

static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
  uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
  switch (opcode) {
  case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
  case BIND_OPCODE_ADD_ADDR_ULEB:
  case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
    os << op.opcode;
    encodeULEB128(op.data, os);
    break;
  case BIND_OPCODE_SET_ADDEND_SLEB:
    os << op.opcode;
    encodeSLEB128(static_cast<int64_t>(op.data), os);
    break;
  case BIND_OPCODE_DO_BIND:
    os << op.opcode;
    break;
  case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
    os << op.opcode;
    encodeULEB128(op.consecutiveCount, os);
    encodeULEB128(op.data, os);
    break;
  case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
    os << static_cast<uint8_t>(op.opcode | op.data);
    break;
  default:
    llvm_unreachable("cannot bind to an unrecognized symbol");
  }
}

// Non-weak bindings need to have their dylib ordinal encoded as well.
static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
  if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
    return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
  assert(dysym.getFile()->isReferenced());
  return dysym.getFile()->ordinal;
}

static int16_t ordinalForSymbol(const Symbol &sym) {
  if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
    return ordinalForDylibSymbol(*dysym);
  assert(cast<Defined>(&sym)->interposable);
  return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
}

static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
  if (ordinal <= 0) {
    os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
                               (ordinal & BIND_IMMEDIATE_MASK));
  } else if (ordinal <= BIND_IMMEDIATE_MASK) {
    os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
  } else {
    os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
    encodeULEB128(ordinal, os);
  }
}

static void encodeWeakOverride(const Defined *defined,
                               raw_svector_ostream &os) {
  os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
                             BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
     << defined->getName() << '\0';
}

// Organize the bindings so we can encoded them with fewer opcodes.
//
// First, all bindings for a given symbol should be grouped together.
// BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
// has an associated symbol string), so we only want to emit it once per symbol.
//
// Within each group, we sort the bindings by address. Since bindings are
// delta-encoded, sorting them allows for a more compact result. Note that
// sorting by address alone ensures that bindings for the same segment / section
// are located together, minimizing the number of times we have to emit
// BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
//
// Finally, we sort the symbols by the address of their first binding, again
// to facilitate the delta-encoding process.
template <class Sym>
std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
  std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
      bindingsMap.begin(), bindingsMap.end());
  for (auto &p : bindingsVec) {
    std::vector<BindingEntry> &bindings = p.second;
    llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
      return a.target.getVA() < b.target.getVA();
    });
  }
  llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
    return a.second[0].target.getVA() < b.second[0].target.getVA();
  });
  return bindingsVec;
}

// Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
// interprets to update a record with the following fields:
//  * segment index (of the segment to write the symbol addresses to, typically
//    the __DATA_CONST segment which contains the GOT)
//  * offset within the segment, indicating the next location to write a binding
//  * symbol type
//  * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
//  * symbol name
//  * addend
// When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
// a symbol in the GOT, and increments the segment offset to point to the next
// entry. It does *not* clear the record state after doing the bind, so
// subsequent opcodes only need to encode the differences between bindings.
void BindingSection::finalizeContents() {
  raw_svector_ostream os{contents};
  Binding lastBinding;
  int16_t lastOrdinal = 0;

  for (auto &p : sortBindings(bindingsMap)) {
    const Symbol *sym = p.first;
    std::vector<BindingEntry> &bindings = p.second;
    uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
    if (sym->isWeakRef())
      flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
    os << flags << sym->getName() << '\0'
       << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
    int16_t ordinal = ordinalForSymbol(*sym);
    if (ordinal != lastOrdinal) {
      encodeDylibOrdinal(ordinal, os);
      lastOrdinal = ordinal;
    }
    std::vector<BindIR> opcodes;
    for (const BindingEntry &b : bindings)
      encodeBinding(b.target.isec->parent,
                    b.target.isec->getOffset(b.target.offset), b.addend,
                    lastBinding, opcodes);
    if (config->optimize > 1)
      optimizeOpcodes(opcodes);
    for (const auto &op : opcodes)
      flushOpcodes(op, os);
  }
  if (!bindingsMap.empty())
    os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}

void BindingSection::writeTo(uint8_t *buf) const {
  memcpy(buf, contents.data(), contents.size());
}

WeakBindingSection::WeakBindingSection()
    : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}

void WeakBindingSection::finalizeContents() {
  raw_svector_ostream os{contents};
  Binding lastBinding;

  for (const Defined *defined : definitions)
    encodeWeakOverride(defined, os);

  for (auto &p : sortBindings(bindingsMap)) {
    const Symbol *sym = p.first;
    std::vector<BindingEntry> &bindings = p.second;
    os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
       << sym->getName() << '\0'
       << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
    std::vector<BindIR> opcodes;
    for (const BindingEntry &b : bindings)
      encodeBinding(b.target.isec->parent,
                    b.target.isec->getOffset(b.target.offset), b.addend,
                    lastBinding, opcodes);
    if (config->optimize > 1)
      optimizeOpcodes(opcodes);
    for (const auto &op : opcodes)
      flushOpcodes(op, os);
  }
  if (!bindingsMap.empty() || !definitions.empty())
    os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}

void WeakBindingSection::writeTo(uint8_t *buf) const {
  memcpy(buf, contents.data(), contents.size());
}

StubsSection::StubsSection()
    : SyntheticSection(segment_names::text, section_names::stubs) {
  flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
  // The stubs section comprises machine instructions, which are aligned to
  // 4 bytes on the archs we care about.
  align = 4;
  reserved2 = target->stubSize;
}

uint64_t StubsSection::getSize() const {
  return entries.size() * target->stubSize;
}

void StubsSection::writeTo(uint8_t *buf) const {
  size_t off = 0;
  for (const Symbol *sym : entries) {
    target->writeStub(buf + off, *sym);
    off += target->stubSize;
  }
}

void StubsSection::finalize() { isFinal = true; }

bool StubsSection::addEntry(Symbol *sym) {
  bool inserted = entries.insert(sym);
  if (inserted)
    sym->stubsIndex = entries.size() - 1;
  return inserted;
}

StubHelperSection::StubHelperSection()
    : SyntheticSection(segment_names::text, section_names::stubHelper) {
  flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
  align = 4; // This section comprises machine instructions
}

uint64_t StubHelperSection::getSize() const {
  return target->stubHelperHeaderSize +
         in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
}

bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }

void StubHelperSection::writeTo(uint8_t *buf) const {
  target->writeStubHelperHeader(buf);
  size_t off = target->stubHelperHeaderSize;
  for (const Symbol *sym : in.lazyBinding->getEntries()) {
    target->writeStubHelperEntry(buf + off, *sym, addr + off);
    off += target->stubHelperEntrySize;
  }
}

void StubHelperSection::setup() {
  Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
                                        /*isWeakRef=*/false);
  if (auto *undefined = dyn_cast<Undefined>(binder))
    treatUndefinedSymbol(*undefined,
                         "lazy binding (normally in libSystem.dylib)");

  // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
  stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
  if (stubBinder == nullptr)
    return;

  in.got->addEntry(stubBinder);

  in.imageLoaderCache->parent =
      ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
  inputSections.push_back(in.imageLoaderCache);
  // Since this isn't in the symbol table or in any input file, the noDeadStrip
  // argument doesn't matter.
  dyldPrivate =
      make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
                    /*isWeakDef=*/false,
                    /*isExternal=*/false, /*isPrivateExtern=*/false,
                    /*includeInSymtab=*/true,
                    /*isThumb=*/false, /*isReferencedDynamically=*/false,
                    /*noDeadStrip=*/false);
  dyldPrivate->used = true;
}

LazyPointerSection::LazyPointerSection()
    : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
  align = target->wordSize;
  flags = S_LAZY_SYMBOL_POINTERS;
}

uint64_t LazyPointerSection::getSize() const {
  return in.stubs->getEntries().size() * target->wordSize;
}

bool LazyPointerSection::isNeeded() const {
  return !in.stubs->getEntries().empty();
}

void LazyPointerSection::writeTo(uint8_t *buf) const {
  size_t off = 0;
  for (const Symbol *sym : in.stubs->getEntries()) {
    if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
      if (dysym->hasStubsHelper()) {
        uint64_t stubHelperOffset =
            target->stubHelperHeaderSize +
            dysym->stubsHelperIndex * target->stubHelperEntrySize;
        write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
      }
    } else {
      write64le(buf + off, sym->getVA());
    }
    off += target->wordSize;
  }
}

LazyBindingSection::LazyBindingSection()
    : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}

void LazyBindingSection::finalizeContents() {
  // TODO: Just precompute output size here instead of writing to a temporary
  // buffer
  for (Symbol *sym : entries)
    sym->lazyBindOffset = encode(*sym);
}

void LazyBindingSection::writeTo(uint8_t *buf) const {
  memcpy(buf, contents.data(), contents.size());
}

void LazyBindingSection::addEntry(Symbol *sym) {
  if (entries.insert(sym)) {
    sym->stubsHelperIndex = entries.size() - 1;
    in.rebase->addEntry(in.lazyPointers->isec,
                        sym->stubsIndex * target->wordSize);
  }
}

// Unlike the non-lazy binding section, the bind opcodes in this section aren't
// interpreted all at once. Rather, dyld will start interpreting opcodes at a
// given offset, typically only binding a single symbol before it finds a
// BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
// we cannot encode just the differences between symbols; we have to emit the
// complete bind information for each symbol.
uint32_t LazyBindingSection::encode(const Symbol &sym) {
  uint32_t opstreamOffset = contents.size();
  OutputSegment *dataSeg = in.lazyPointers->parent;
  os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
                             dataSeg->index);
  uint64_t offset =
      in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
  encodeULEB128(offset, os);
  encodeDylibOrdinal(ordinalForSymbol(sym), os);

  uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
  if (sym.isWeakRef())
    flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;

  os << flags << sym.getName() << '\0'
     << static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
     << static_cast<uint8_t>(BIND_OPCODE_DONE);
  return opstreamOffset;
}

ExportSection::ExportSection()
    : LinkEditSection(segment_names::linkEdit, section_names::export_) {}

void ExportSection::finalizeContents() {
  trieBuilder.setImageBase(in.header->addr);
  for (const Symbol *sym : symtab->getSymbols()) {
    if (const auto *defined = dyn_cast<Defined>(sym)) {
      if (defined->privateExtern || !defined->isLive())
        continue;
      trieBuilder.addSymbol(*defined);
      hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
    }
  }
  size = trieBuilder.build();
}

void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }

DataInCodeSection::DataInCodeSection()
    : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}

template <class LP>
static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
  std::vector<MachO::data_in_code_entry> dataInCodeEntries;
  for (const InputFile *inputFile : inputFiles) {
    if (!isa<ObjFile>(inputFile))
      continue;
    const ObjFile *objFile = cast<ObjFile>(inputFile);
    ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
    if (entries.empty())
      continue;

    assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
                                           const data_in_code_entry &rhs) {
      return lhs.offset < rhs.offset;
    }));
    // For each code subsection find 'data in code' entries residing in it.
    // Compute the new offset values as
    // <offset within subsection> + <subsection address> - <__TEXT address>.
    for (const Section *section : objFile->sections) {
      for (const Subsection &subsec : section->subsections) {
        const InputSection *isec = subsec.isec;
        if (!isCodeSection(isec))
          continue;
        if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
          continue;
        const uint64_t beginAddr = section->addr + subsec.offset;
        auto it = llvm::lower_bound(
            entries, beginAddr,
            [](const MachO::data_in_code_entry &entry, uint64_t addr) {
              return entry.offset < addr;
            });
        const uint64_t endAddr = beginAddr + isec->getSize();
        for (const auto end = entries.end();
             it != end && it->offset + it->length <= endAddr; ++it)
          dataInCodeEntries.push_back(
              {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
                                     in.header->addr),
               it->length, it->kind});
      }
    }
  }
  return dataInCodeEntries;
}

void DataInCodeSection::finalizeContents() {
  entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
                                  : collectDataInCodeEntries<ILP32>();
}

void DataInCodeSection::writeTo(uint8_t *buf) const {
  if (!entries.empty())
    memcpy(buf, entries.data(), getRawSize());
}

FunctionStartsSection::FunctionStartsSection()
    : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}

void FunctionStartsSection::finalizeContents() {
  raw_svector_ostream os{contents};
  std::vector<uint64_t> addrs;
  for (const InputFile *file : inputFiles) {
    if (auto *objFile = dyn_cast<ObjFile>(file)) {
      for (const Symbol *sym : objFile->symbols) {
        if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
          if (!defined->isec || !isCodeSection(defined->isec) ||
              !defined->isLive())
            continue;
          // TODO: Add support for thumbs, in that case
          // the lowest bit of nextAddr needs to be set to 1.
          addrs.push_back(defined->getVA());
        }
      }
    }
  }
  llvm::sort(addrs);
  uint64_t addr = in.header->addr;
  for (uint64_t nextAddr : addrs) {
    uint64_t delta = nextAddr - addr;
    if (delta == 0)
      continue;
    encodeULEB128(delta, os);
    addr = nextAddr;
  }
  os << '\0';
}

void FunctionStartsSection::writeTo(uint8_t *buf) const {
  memcpy(buf, contents.data(), contents.size());
}

SymtabSection::SymtabSection(StringTableSection &stringTableSection)
    : LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
      stringTableSection(stringTableSection) {}

void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
  StabsEntry stab(N_SO);
  stab.strx = stringTableSection.addString(saver().save(sourceFile));
  stabs.emplace_back(std::move(stab));
}

void SymtabSection::emitEndSourceStab() {
  StabsEntry stab(N_SO);
  stab.sect = 1;
  stabs.emplace_back(std::move(stab));
}

void SymtabSection::emitObjectFileStab(ObjFile *file) {
  StabsEntry stab(N_OSO);
  stab.sect = target->cpuSubtype;
  SmallString<261> path(!file->archiveName.empty() ? file->archiveName
                                                   : file->getName());
  std::error_code ec = sys::fs::make_absolute(path);
  if (ec)
    fatal("failed to get absolute path for " + path);

  if (!file->archiveName.empty())
    path.append({"(", file->getName(), ")"});

  StringRef adjustedPath = saver().save(path.str());
  adjustedPath.consume_front(config->osoPrefix);

  stab.strx = stringTableSection.addString(adjustedPath);
  stab.desc = 1;
  stab.value = file->modTime;
  stabs.emplace_back(std::move(stab));
}

void SymtabSection::emitEndFunStab(Defined *defined) {
  StabsEntry stab(N_FUN);
  stab.value = defined->size;
  stabs.emplace_back(std::move(stab));
}

void SymtabSection::emitStabs() {
  if (config->omitDebugInfo)
    return;

  for (const std::string &s : config->astPaths) {
    StabsEntry astStab(N_AST);
    astStab.strx = stringTableSection.addString(s);
    stabs.emplace_back(std::move(astStab));
  }

  // Cache the file ID for each symbol in an std::pair for faster sorting.
  using SortingPair = std::pair<Defined *, int>;
  std::vector<SortingPair> symbolsNeedingStabs;
  for (const SymtabEntry &entry :
       concat<SymtabEntry>(localSymbols, externalSymbols)) {
    Symbol *sym = entry.sym;
    assert(sym->isLive() &&
           "dead symbols should not be in localSymbols, externalSymbols");
    if (auto *defined = dyn_cast<Defined>(sym)) {
      // Excluded symbols should have been filtered out in finalizeContents().
      assert(defined->includeInSymtab);

      if (defined->isAbsolute())
        continue;

      // Constant-folded symbols go in the executable's symbol table, but don't
      // get a stabs entry.
      if (defined->wasIdenticalCodeFolded)
        continue;

      InputSection *isec = defined->isec;
      ObjFile *file = dyn_cast_or_null<ObjFile>(isec->getFile());
      if (!file || !file->compileUnit)
        continue;

      symbolsNeedingStabs.emplace_back(defined, defined->isec->getFile()->id);
    }
  }

  llvm::stable_sort(symbolsNeedingStabs,
                    [&](const SortingPair &a, const SortingPair &b) {
                      return a.second < b.second;
                    });

  // Emit STABS symbols so that dsymutil and/or the debugger can map address
  // regions in the final binary to the source and object files from which they
  // originated.
  InputFile *lastFile = nullptr;
  for (SortingPair &pair : symbolsNeedingStabs) {
    Defined *defined = pair.first;
    InputSection *isec = defined->isec;
    ObjFile *file = cast<ObjFile>(isec->getFile());

    if (lastFile == nullptr || lastFile != file) {
      if (lastFile != nullptr)
        emitEndSourceStab();
      lastFile = file;

      emitBeginSourceStab(file->sourceFile());
      emitObjectFileStab(file);
    }

    StabsEntry symStab;
    symStab.sect = defined->isec->parent->index;
    symStab.strx = stringTableSection.addString(defined->getName());
    symStab.value = defined->getVA();

    if (isCodeSection(isec)) {
      symStab.type = N_FUN;
      stabs.emplace_back(std::move(symStab));
      emitEndFunStab(defined);
    } else {
      symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
      stabs.emplace_back(std::move(symStab));
    }
  }

  if (!stabs.empty())
    emitEndSourceStab();
}

void SymtabSection::finalizeContents() {
  auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
    uint32_t strx = stringTableSection.addString(sym->getName());
    symbols.push_back({sym, strx});
  };

  std::function<void(Symbol *)> localSymbolsHandler;
  switch (config->localSymbolsPresence) {
  case SymtabPresence::All:
    localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
    break;
  case SymtabPresence::None:
    localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
    break;
  case SymtabPresence::SelectivelyIncluded:
    localSymbolsHandler = [&](Symbol *sym) {
      if (config->localSymbolPatterns.match(sym->getName()))
        addSymbol(localSymbols, sym);
    };
    break;
  case SymtabPresence::SelectivelyExcluded:
    localSymbolsHandler = [&](Symbol *sym) {
      if (!config->localSymbolPatterns.match(sym->getName()))
        addSymbol(localSymbols, sym);
    };
    break;
  }

  // Local symbols aren't in the SymbolTable, so we walk the list of object
  // files to gather them.
  // But if `-x` is set, then we don't need to. localSymbolsHandler() will do
  // the right thing regardless, but this check is a perf optimization because
  // iterating through all the input files and their symbols is expensive.
  if (config->localSymbolsPresence != SymtabPresence::None) {
    for (const InputFile *file : inputFiles) {
      if (auto *objFile = dyn_cast<ObjFile>(file)) {
        for (Symbol *sym : objFile->symbols) {
          if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
            if (defined->isExternal() || !defined->isLive() ||
                !defined->includeInSymtab)
              continue;
            localSymbolsHandler(sym);
          }
        }
      }
    }
  }

  // __dyld_private is a local symbol too. It's linker-created and doesn't
  // exist in any object file.
  if (Defined *dyldPrivate = in.stubHelper->dyldPrivate)
    localSymbolsHandler(dyldPrivate);

  for (Symbol *sym : symtab->getSymbols()) {
    if (!sym->isLive())
      continue;
    if (auto *defined = dyn_cast<Defined>(sym)) {
      if (!defined->includeInSymtab)
        continue;
      assert(defined->isExternal());
      if (defined->privateExtern)
        localSymbolsHandler(defined);
      else
        addSymbol(externalSymbols, defined);
    } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
      if (dysym->isReferenced())
        addSymbol(undefinedSymbols, sym);
    }
  }

  emitStabs();
  uint32_t symtabIndex = stabs.size();
  for (const SymtabEntry &entry :
       concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
    entry.sym->symtabIndex = symtabIndex++;
  }
}

uint32_t SymtabSection::getNumSymbols() const {
  return stabs.size() + localSymbols.size() + externalSymbols.size() +
         undefinedSymbols.size();
}

// This serves to hide (type-erase) the template parameter from SymtabSection.
template <class LP> class SymtabSectionImpl final : public SymtabSection {
public:
  SymtabSectionImpl(StringTableSection &stringTableSection)
      : SymtabSection(stringTableSection) {}
  uint64_t getRawSize() const override;
  void writeTo(uint8_t *buf) const override;
};

template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
  return getNumSymbols() * sizeof(typename LP::nlist);
}

template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
  auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
  // Emit the stabs entries before the "real" symbols. We cannot emit them
  // after as that would render Symbol::symtabIndex inaccurate.
  for (const StabsEntry &entry : stabs) {
    nList->n_strx = entry.strx;
    nList->n_type = entry.type;
    nList->n_sect = entry.sect;
    nList->n_desc = entry.desc;
    nList->n_value = entry.value;
    ++nList;
  }

  for (const SymtabEntry &entry : concat<const SymtabEntry>(
           localSymbols, externalSymbols, undefinedSymbols)) {
    nList->n_strx = entry.strx;
    // TODO populate n_desc with more flags
    if (auto *defined = dyn_cast<Defined>(entry.sym)) {
      uint8_t scope = 0;
      if (defined->privateExtern) {
        // Private external -- dylib scoped symbol.
        // Promote to non-external at link time.
        scope = N_PEXT;
      } else if (defined->isExternal()) {
        // Normal global symbol.
        scope = N_EXT;
      } else {
        // TU-local symbol from localSymbols.
        scope = 0;
      }

      if (defined->isAbsolute()) {
        nList->n_type = scope | N_ABS;
        nList->n_sect = NO_SECT;
        nList->n_value = defined->value;
      } else {
        nList->n_type = scope | N_SECT;
        nList->n_sect = defined->isec->parent->index;
        // For the N_SECT symbol type, n_value is the address of the symbol
        nList->n_value = defined->getVA();
      }
      nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0;
      nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
      nList->n_desc |=
          defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
    } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
      uint16_t n_desc = nList->n_desc;
      int16_t ordinal = ordinalForDylibSymbol(*dysym);
      if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
        SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
      else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
        SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
      else {
        assert(ordinal > 0);
        SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
      }

      nList->n_type = N_EXT;
      n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
      n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
      nList->n_desc = n_desc;
    }
    ++nList;
  }
}

template <class LP>
SymtabSection *
macho::makeSymtabSection(StringTableSection &stringTableSection) {
  return make<SymtabSectionImpl<LP>>(stringTableSection);
}

IndirectSymtabSection::IndirectSymtabSection()
    : LinkEditSection(segment_names::linkEdit,
                      section_names::indirectSymbolTable) {}

uint32_t IndirectSymtabSection::getNumSymbols() const {
  return in.got->getEntries().size() + in.tlvPointers->getEntries().size() +
         2 * in.stubs->getEntries().size();
}

bool IndirectSymtabSection::isNeeded() const {
  return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
         in.stubs->isNeeded();
}

void IndirectSymtabSection::finalizeContents() {
  uint32_t off = 0;
  in.got->reserved1 = off;
  off += in.got->getEntries().size();
  in.tlvPointers->reserved1 = off;
  off += in.tlvPointers->getEntries().size();
  in.stubs->reserved1 = off;
  off += in.stubs->getEntries().size();
  in.lazyPointers->reserved1 = off;
}

static uint32_t indirectValue(const Symbol *sym) {
  if (sym->symtabIndex == UINT32_MAX)
    return INDIRECT_SYMBOL_LOCAL;
  if (auto *defined = dyn_cast<Defined>(sym))
    if (defined->privateExtern)
      return INDIRECT_SYMBOL_LOCAL;
  return sym->symtabIndex;
}

void IndirectSymtabSection::writeTo(uint8_t *buf) const {
  uint32_t off = 0;
  for (const Symbol *sym : in.got->getEntries()) {
    write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
    ++off;
  }
  for (const Symbol *sym : in.tlvPointers->getEntries()) {
    write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
    ++off;
  }
  for (const Symbol *sym : in.stubs->getEntries()) {
    write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
    ++off;
  }
  // There is a 1:1 correspondence between stubs and LazyPointerSection
  // entries. But giving __stubs and __la_symbol_ptr the same reserved1
  // (the offset into the indirect symbol table) so that they both refer
  // to the same range of offsets confuses `strip`, so write the stubs
  // symbol table offsets a second time.
  for (const Symbol *sym : in.stubs->getEntries()) {
    write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
    ++off;
  }
}

StringTableSection::StringTableSection()
    : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}

uint32_t StringTableSection::addString(StringRef str) {
  uint32_t strx = size;
  strings.push_back(str); // TODO: consider deduplicating strings
  size += str.size() + 1; // account for null terminator
  return strx;
}

void StringTableSection::writeTo(uint8_t *buf) const {
  uint32_t off = 0;
  for (StringRef str : strings) {
    memcpy(buf + off, str.data(), str.size());
    off += str.size() + 1; // account for null terminator
  }
}

static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0, "");
static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0, "");

CodeSignatureSection::CodeSignatureSection()
    : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
  align = 16; // required by libstuff
  // FIXME: Consider using finalOutput instead of outputFile.
  fileName = config->outputFile;
  size_t slashIndex = fileName.rfind("/");
  if (slashIndex != std::string::npos)
    fileName = fileName.drop_front(slashIndex + 1);

  // NOTE: Any changes to these calculations should be repeated
  // in llvm-objcopy's MachOLayoutBuilder::layoutTail.
  allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
  fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
}

uint32_t CodeSignatureSection::getBlockCount() const {
  return (fileOff + blockSize - 1) / blockSize;
}

uint64_t CodeSignatureSection::getRawSize() const {
  return allHeadersSize + getBlockCount() * hashSize;
}

void CodeSignatureSection::writeHashes(uint8_t *buf) const {
  // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
  // MachOWriter::writeSignatureData.
  uint8_t *hashes = buf + fileOff + allHeadersSize;
  parallelFor(0, getBlockCount(), [&](size_t i) {
    sha256(buf + i * blockSize,
           std::min(static_cast<size_t>(fileOff - i * blockSize),
                    static_cast<size_t>(blockSize)),
           hashes + i * hashSize);
  });
#if defined(__APPLE__)
  // This is macOS-specific work-around and makes no sense for any
  // other host OS. See https://openradar.appspot.com/FB8914231
  //
  // The macOS kernel maintains a signature-verification cache to
  // quickly validate applications at time of execve(2).  The trouble
  // is that for the kernel creates the cache entry at the time of the
  // mmap(2) call, before we have a chance to write either the code to
  // sign or the signature header+hashes.  The fix is to invalidate
  // all cached data associated with the output file, thus discarding
  // the bogus prematurely-cached signature.
  msync(buf, fileOff + getSize(), MS_INVALIDATE);
#endif
}

void CodeSignatureSection::writeTo(uint8_t *buf) const {
  // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
  // MachOWriter::writeSignatureData.
  uint32_t signatureSize = static_cast<uint32_t>(getSize());
  auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
  write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
  write32be(&superBlob->length, signatureSize);
  write32be(&superBlob->count, 1);
  auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
  write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
  write32be(&blobIndex->offset, blobHeadersSize);
  auto *codeDirectory =
      reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
  write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
  write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
  write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
  write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
  write32be(&codeDirectory->hashOffset,
            sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
  write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
  codeDirectory->nSpecialSlots = 0;
  write32be(&codeDirectory->nCodeSlots, getBlockCount());
  write32be(&codeDirectory->codeLimit, fileOff);
  codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
  codeDirectory->hashType = kSecCodeSignatureHashSHA256;
  codeDirectory->platform = 0;
  codeDirectory->pageSize = blockSizeShift;
  codeDirectory->spare2 = 0;
  codeDirectory->scatterOffset = 0;
  codeDirectory->teamOffset = 0;
  codeDirectory->spare3 = 0;
  codeDirectory->codeLimit64 = 0;
  OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
  write64be(&codeDirectory->execSegBase, textSeg->fileOff);
  write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
  write64be(&codeDirectory->execSegFlags,
            config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
  auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
  memcpy(id, fileName.begin(), fileName.size());
  memset(id + fileName.size(), 0, fileNamePad);
}

BitcodeBundleSection::BitcodeBundleSection()
    : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {}

class ErrorCodeWrapper {
public:
  explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {}
  explicit ErrorCodeWrapper(int ec) : errorCode(ec) {}
  operator int() const { return errorCode; }

private:
  int errorCode;
};

#define CHECK_EC(exp)                                                          \
  do {                                                                         \
    ErrorCodeWrapper ec(exp);                                                  \
    if (ec)                                                                    \
      fatal(Twine("operation failed with error code ") + Twine(ec) + ": " +    \
            #exp);                                                             \
  } while (0);

void BitcodeBundleSection::finalize() {
#ifdef LLVM_HAVE_LIBXAR
  using namespace llvm::sys::fs;
  CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath));

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
  xar_t xar(xar_open(xarPath.data(), O_RDWR));
#pragma clang diagnostic pop
  if (!xar)
    fatal("failed to open XAR temporary file at " + xarPath);
  CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE));
  // FIXME: add more data to XAR
  CHECK_EC(xar_close(xar));

  file_size(xarPath, xarSize);
#endif // defined(LLVM_HAVE_LIBXAR)
}

void BitcodeBundleSection::writeTo(uint8_t *buf) const {
  using namespace llvm::sys::fs;
  file_t handle =
      CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None),
            "failed to open XAR file");
  std::error_code ec;
  mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly,
                            xarSize, 0, ec);
  if (ec)
    fatal("failed to map XAR file");
  memcpy(buf, xarMap.const_data(), xarSize);

  closeFile(handle);
  remove(xarPath);
}

CStringSection::CStringSection()
    : SyntheticSection(segment_names::text, section_names::cString) {
  flags = S_CSTRING_LITERALS;
}

void CStringSection::addInput(CStringInputSection *isec) {
  isec->parent = this;
  inputs.push_back(isec);
  if (isec->align > align)
    align = isec->align;
}

void CStringSection::writeTo(uint8_t *buf) const {
  for (const CStringInputSection *isec : inputs) {
    for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
      if (!isec->pieces[i].live)
        continue;
      StringRef string = isec->getStringRef(i);
      memcpy(buf + isec->pieces[i].outSecOff, string.data(), string.size());
    }
  }
}

void CStringSection::finalizeContents() {
  uint64_t offset = 0;
  for (CStringInputSection *isec : inputs) {
    for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
      if (!isec->pieces[i].live)
        continue;
      // See comment above DeduplicatedCStringSection for how alignment is
      // handled.
      uint32_t pieceAlign =
          1 << countTrailingZeros(isec->align | isec->pieces[i].inSecOff);
      offset = alignTo(offset, pieceAlign);
      isec->pieces[i].outSecOff = offset;
      isec->isFinal = true;
      StringRef string = isec->getStringRef(i);
      offset += string.size();
    }
  }
  size = offset;
}

// Mergeable cstring literals are found under the __TEXT,__cstring section. In
// contrast to ELF, which puts strings that need different alignments into
// different sections, clang's Mach-O backend puts them all in one section.
// Strings that need to be aligned have the .p2align directive emitted before
// them, which simply translates into zero padding in the object file. In other
// words, we have to infer the desired alignment of these cstrings from their
// addresses.
//
// We differ slightly from ld64 in how we've chosen to align these cstrings.
// Both LLD and ld64 preserve the number of trailing zeros in each cstring's
// address in the input object files. When deduplicating identical cstrings,
// both linkers pick the cstring whose address has more trailing zeros, and
// preserve the alignment of that address in the final binary. However, ld64
// goes a step further and also preserves the offset of the cstring from the
// last section-aligned address.  I.e. if a cstring is at offset 18 in the
// input, with a section alignment of 16, then both LLD and ld64 will ensure the
// final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
// ensure that the final address is of the form 16 * k + 2 for some k.
//
// Note that ld64's heuristic means that a dedup'ed cstring's final address is
// dependent on the order of the input object files. E.g. if in addition to the
// cstring at offset 18 above, we have a duplicate one in another file with a
// `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
// the cstring from the object file earlier on the command line (since both have
// the same number of trailing zeros in their address). So the final cstring may
// either be at some address `16 * k + 2` or at some address `2 * k`.
//
// I've opted not to follow this behavior primarily for implementation
// simplicity, and secondarily to save a few more bytes. It's not clear to me
// that preserving the section alignment + offset is ever necessary, and there
// are many cases that are clearly redundant. In particular, if an x86_64 object
// file contains some strings that are accessed via SIMD instructions, then the
// .cstring section in the object file will be 16-byte-aligned (since SIMD
// requires its operand addresses to be 16-byte aligned). However, there will
// typically also be other cstrings in the same file that aren't used via SIMD
// and don't need this alignment. They will be emitted at some arbitrary address
// `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
// % A`.
void DeduplicatedCStringSection::finalizeContents() {
  // Find the largest alignment required for each string.
  for (const CStringInputSection *isec : inputs) {
    for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
      const StringPiece &piece = isec->pieces[i];
      if (!piece.live)
        continue;
      auto s = isec->getCachedHashStringRef(i);
      assert(isec->align != 0);
      uint8_t trailingZeros = countTrailingZeros(isec->align | piece.inSecOff);
      auto it = stringOffsetMap.insert(
          std::make_pair(s, StringOffset(trailingZeros)));
      if (!it.second && it.first->second.trailingZeros < trailingZeros)
        it.first->second.trailingZeros = trailingZeros;
    }
  }

  // Assign an offset for each string and save it to the corresponding
  // StringPieces for easy access.
  for (CStringInputSection *isec : inputs) {
    for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
      if (!isec->pieces[i].live)
        continue;
      auto s = isec->getCachedHashStringRef(i);
      auto it = stringOffsetMap.find(s);
      assert(it != stringOffsetMap.end());
      StringOffset &offsetInfo = it->second;
      if (offsetInfo.outSecOff == UINT64_MAX) {
        offsetInfo.outSecOff = alignTo(size, 1ULL << offsetInfo.trailingZeros);
        size = offsetInfo.outSecOff + s.size();
      }
      isec->pieces[i].outSecOff = offsetInfo.outSecOff;
    }
    isec->isFinal = true;
  }
}

void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
  for (const auto &p : stringOffsetMap) {
    StringRef data = p.first.val();
    uint64_t off = p.second.outSecOff;
    if (!data.empty())
      memcpy(buf + off, data.data(), data.size());
  }
}

// This section is actually emitted as __TEXT,__const by ld64, but clang may
// emit input sections of that name, and LLD doesn't currently support mixing
// synthetic and concat-type OutputSections. To work around this, I've given
// our merged-literals section a different name.
WordLiteralSection::WordLiteralSection()
    : SyntheticSection(segment_names::text, section_names::literals) {
  align = 16;
}

void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
  isec->parent = this;
  inputs.push_back(isec);
}

void WordLiteralSection::finalizeContents() {
  for (WordLiteralInputSection *isec : inputs) {
    // We do all processing of the InputSection here, so it will be effectively
    // finalized.
    isec->isFinal = true;
    const uint8_t *buf = isec->data.data();
    switch (sectionType(isec->getFlags())) {
    case S_4BYTE_LITERALS: {
      for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
        if (!isec->isLive(off))
          continue;
        uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
        literal4Map.emplace(value, literal4Map.size());
      }
      break;
    }
    case S_8BYTE_LITERALS: {
      for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
        if (!isec->isLive(off))
          continue;
        uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
        literal8Map.emplace(value, literal8Map.size());
      }
      break;
    }
    case S_16BYTE_LITERALS: {
      for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
        if (!isec->isLive(off))
          continue;
        UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
        literal16Map.emplace(value, literal16Map.size());
      }
      break;
    }
    default:
      llvm_unreachable("invalid literal section type");
    }
  }
}

void WordLiteralSection::writeTo(uint8_t *buf) const {
  // Note that we don't attempt to do any endianness conversion in addInput(),
  // so we don't do it here either -- just write out the original value,
  // byte-for-byte.
  for (const auto &p : literal16Map)
    memcpy(buf + p.second * 16, &p.first, 16);
  buf += literal16Map.size() * 16;

  for (const auto &p : literal8Map)
    memcpy(buf + p.second * 8, &p.first, 8);
  buf += literal8Map.size() * 8;

  for (const auto &p : literal4Map)
    memcpy(buf + p.second * 4, &p.first, 4);
}

ObjCImageInfoSection::ObjCImageInfoSection()
    : SyntheticSection(segment_names::data, section_names::objCImageInfo) {}

ObjCImageInfoSection::ImageInfo
ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
  ImageInfo info;
  ArrayRef<uint8_t> data = file->objCImageInfo;
  // The image info struct has the following layout:
  // struct {
  //   uint32_t version;
  //   uint32_t flags;
  // };
  if (data.size() < 8) {
    warn(toString(file) + ": invalid __objc_imageinfo size");
    return info;
  }

  auto *buf = reinterpret_cast<const uint32_t *>(data.data());
  if (read32le(buf) != 0) {
    warn(toString(file) + ": invalid __objc_imageinfo version");
    return info;
  }

  uint32_t flags = read32le(buf + 1);
  info.swiftVersion = (flags >> 8) & 0xff;
  info.hasCategoryClassProperties = flags & 0x40;
  return info;
}

static std::string swiftVersionString(uint8_t version) {
  switch (version) {
    case 1:
      return "1.0";
    case 2:
      return "1.1";
    case 3:
      return "2.0";
    case 4:
      return "3.0";
    case 5:
      return "4.0";
    default:
      return ("0x" + Twine::utohexstr(version)).str();
  }
}

// Validate each object file's __objc_imageinfo and use them to generate the
// image info for the output binary. Only two pieces of info are relevant:
// 1. The Swift version (should be identical across inputs)
// 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
void ObjCImageInfoSection::finalizeContents() {
  assert(files.size() != 0); // should have already been checked via isNeeded()

  info.hasCategoryClassProperties = true;
  const InputFile *firstFile;
  for (auto file : files) {
    ImageInfo inputInfo = parseImageInfo(file);
    info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;

    // swiftVersion 0 means no Swift is present, so no version checking required
    if (inputInfo.swiftVersion == 0)
      continue;

    if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
      error("Swift version mismatch: " + toString(firstFile) + " has version " +
            swiftVersionString(info.swiftVersion) + " but " + toString(file) +
            " has version " + swiftVersionString(inputInfo.swiftVersion));
    } else {
      info.swiftVersion = inputInfo.swiftVersion;
      firstFile = file;
    }
  }
}

void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
  uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
  flags |= info.swiftVersion << 8;
  write32le(buf + 4, flags);
}

void macho::createSyntheticSymbols() {
  auto addHeaderSymbol = [](const char *name) {
    symtab->addSynthetic(name, in.header->isec, /*value=*/0,
                         /*isPrivateExtern=*/true, /*includeInSymtab=*/false,
                         /*referencedDynamically=*/false);
  };

  switch (config->outputType) {
    // FIXME: Assign the right address value for these symbols
    // (rather than 0). But we need to do that after assignAddresses().
  case MH_EXECUTE:
    // If linking PIE, __mh_execute_header is a defined symbol in
    //  __TEXT, __text)
    // Otherwise, it's an absolute symbol.
    if (config->isPic)
      symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
                           /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
                           /*referencedDynamically=*/true);
    else
      symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
                           /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
                           /*referencedDynamically=*/true);
    break;

    // The following symbols are N_SECT symbols, even though the header is not
    // part of any section and that they are private to the bundle/dylib/object
    // they are part of.
  case MH_BUNDLE:
    addHeaderSymbol("__mh_bundle_header");
    break;
  case MH_DYLIB:
    addHeaderSymbol("__mh_dylib_header");
    break;
  case MH_DYLINKER:
    addHeaderSymbol("__mh_dylinker_header");
    break;
  case MH_OBJECT:
    addHeaderSymbol("__mh_object_header");
    break;
  default:
    llvm_unreachable("unexpected outputType");
    break;
  }

  // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
  // which does e.g. cleanup of static global variables. The ABI document
  // says that the pointer can point to any address in one of the dylib's
  // segments, but in practice ld64 seems to set it to point to the header,
  // so that's what's implemented here.
  addHeaderSymbol("___dso_handle");
}

template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);