aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/include/llvm/ADT/STLExtras.h
blob: a136eeb0ff1bd7cd70c2a0563355e339178b68fa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains some templates that are useful if you are working with
/// the STL at all.
///
/// No library is required when using these functions.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H

#include "llvm/ADT/ADL.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/STLForwardCompat.h"
#include "llvm/ADT/STLFunctionalExtras.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Config/abi-breaking.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <optional>
#include <tuple>
#include <type_traits>
#include <utility>

#ifdef EXPENSIVE_CHECKS
#include <random> // for std::mt19937
#endif

namespace llvm {

//===----------------------------------------------------------------------===//
//     Extra additions to <type_traits>
//===----------------------------------------------------------------------===//

template <typename T> struct make_const_ptr {
  using type = std::add_pointer_t<std::add_const_t<T>>;
};

template <typename T> struct make_const_ref {
  using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
};

namespace detail {
template <class, template <class...> class Op, class... Args> struct detector {
  using value_t = std::false_type;
};
template <template <class...> class Op, class... Args>
struct detector<std::void_t<Op<Args...>>, Op, Args...> {
  using value_t = std::true_type;
};
} // end namespace detail

/// Detects if a given trait holds for some set of arguments 'Args'.
/// For example, the given trait could be used to detect if a given type
/// has a copy assignment operator:
///   template<class T>
///   using has_copy_assign_t = decltype(std::declval<T&>()
///                                                 = std::declval<const T&>());
///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
template <template <class...> class Op, class... Args>
using is_detected = typename detail::detector<void, Op, Args...>::value_t;

/// This class provides various trait information about a callable object.
///   * To access the number of arguments: Traits::num_args
///   * To access the type of an argument: Traits::arg_t<Index>
///   * To access the type of the result:  Traits::result_t
template <typename T, bool isClass = std::is_class<T>::value>
struct function_traits : public function_traits<decltype(&T::operator())> {};

/// Overload for class function types.
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
  /// The number of arguments to this function.
  enum { num_args = sizeof...(Args) };

  /// The result type of this function.
  using result_t = ReturnType;

  /// The type of an argument to this function.
  template <size_t Index>
  using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
};
/// Overload for class function types.
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType (ClassType::*)(Args...), false>
    : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
/// Overload for non-class function types.
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType (*)(Args...), false> {
  /// The number of arguments to this function.
  enum { num_args = sizeof...(Args) };

  /// The result type of this function.
  using result_t = ReturnType;

  /// The type of an argument to this function.
  template <size_t i>
  using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
};
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType (*const)(Args...), false>
    : public function_traits<ReturnType (*)(Args...)> {};
/// Overload for non-class function type references.
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType (&)(Args...), false>
    : public function_traits<ReturnType (*)(Args...)> {};

/// traits class for checking whether type T is one of any of the given
/// types in the variadic list.
template <typename T, typename... Ts>
using is_one_of = std::disjunction<std::is_same<T, Ts>...>;

/// traits class for checking whether type T is a base class for all
///  the given types in the variadic list.
template <typename T, typename... Ts>
using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;

namespace detail {
template <typename T, typename... Us> struct TypesAreDistinct;
template <typename T, typename... Us>
struct TypesAreDistinct
    : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
                                       TypesAreDistinct<Us...>::value> {};
template <typename T> struct TypesAreDistinct<T> : std::true_type {};
} // namespace detail

/// Determine if all types in Ts are distinct.
///
/// Useful to statically assert when Ts is intended to describe a non-multi set
/// of types.
///
/// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
/// asserted once per instantiation of a type which requires it.
template <typename... Ts> struct TypesAreDistinct;
template <> struct TypesAreDistinct<> : std::true_type {};
template <typename... Ts>
struct TypesAreDistinct
    : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};

/// Find the first index where a type appears in a list of types.
///
/// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
///
/// Typically only meaningful when it is otherwise statically known that the
/// type pack has no duplicate types. This should be guaranteed explicitly with
/// static_assert(TypesAreDistinct<Us...>::value).
///
/// It is a compile-time error to instantiate when T is not present in Us, i.e.
/// if is_one_of<T, Us...>::value is false.
template <typename T, typename... Us> struct FirstIndexOfType;
template <typename T, typename U, typename... Us>
struct FirstIndexOfType<T, U, Us...>
    : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
template <typename T, typename... Us>
struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};

/// Find the type at a given index in a list of types.
///
/// TypeAtIndex<I, Ts...> is the type at index I in Ts.
template <size_t I, typename... Ts>
using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;

/// Helper which adds two underlying types of enumeration type.
/// Implicit conversion to a common type is accepted.
template <typename EnumTy1, typename EnumTy2,
          typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
                                          std::underlying_type_t<EnumTy1>>,
          typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
                                          std::underlying_type_t<EnumTy2>>>
constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
  return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
}

//===----------------------------------------------------------------------===//
//     Extra additions to <iterator>
//===----------------------------------------------------------------------===//

namespace callable_detail {

/// Templated storage wrapper for a callable.
///
/// This class is consistently default constructible, copy / move
/// constructible / assignable.
///
/// Supported callable types:
///  - Function pointer
///  - Function reference
///  - Lambda
///  - Function object
template <typename T,
          bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
class Callable {
  using value_type = std::remove_reference_t<T>;
  using reference = value_type &;
  using const_reference = value_type const &;

  std::optional<value_type> Obj;

  static_assert(!std::is_pointer_v<value_type>,
                "Pointers to non-functions are not callable.");

public:
  Callable() = default;
  Callable(T const &O) : Obj(std::in_place, O) {}

  Callable(Callable const &Other) = default;
  Callable(Callable &&Other) = default;

  Callable &operator=(Callable const &Other) {
    Obj = std::nullopt;
    if (Other.Obj)
      Obj.emplace(*Other.Obj);
    return *this;
  }

  Callable &operator=(Callable &&Other) {
    Obj = std::nullopt;
    if (Other.Obj)
      Obj.emplace(std::move(*Other.Obj));
    return *this;
  }

  template <typename... Pn,
            std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
  decltype(auto) operator()(Pn &&...Params) {
    return (*Obj)(std::forward<Pn>(Params)...);
  }

  template <typename... Pn,
            std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
  decltype(auto) operator()(Pn &&...Params) const {
    return (*Obj)(std::forward<Pn>(Params)...);
  }

  bool valid() const { return Obj != std::nullopt; }
  bool reset() { return Obj = std::nullopt; }

  operator reference() { return *Obj; }
  operator const_reference() const { return *Obj; }
};

// Function specialization.  No need to waste extra space wrapping with a
// std::optional.
template <typename T> class Callable<T, true> {
  static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;

  using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
  using CastT = std::conditional_t<IsPtr, T, T &>;

private:
  StorageT Func = nullptr;

private:
  template <typename In> static constexpr auto convertIn(In &&I) {
    if constexpr (IsPtr) {
      // Pointer... just echo it back.
      return I;
    } else {
      // Must be a function reference.  Return its address.
      return &I;
    }
  }

public:
  Callable() = default;

  // Construct from a function pointer or reference.
  //
  // Disable this constructor for references to 'Callable' so we don't violate
  // the rule of 0.
  template < // clang-format off
    typename FnPtrOrRef,
    std::enable_if_t<
      !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
    > = 0
  > // clang-format on
  Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}

  template <typename... Pn,
            std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
  decltype(auto) operator()(Pn &&...Params) const {
    return Func(std::forward<Pn>(Params)...);
  }

  bool valid() const { return Func != nullptr; }
  void reset() { Func = nullptr; }

  operator T const &() const {
    if constexpr (IsPtr) {
      // T is a pointer... just echo it back.
      return Func;
    } else {
      static_assert(std::is_reference_v<T>,
                    "Expected a reference to a function.");
      // T is a function reference... dereference the stored pointer.
      return *Func;
    }
  }
};

} // namespace callable_detail

/// Returns true if the given container only contains a single element.
template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
  auto B = std::begin(C), E = std::end(C);
  return B != E && std::next(B) == E;
}

/// Return a range covering \p RangeOrContainer with the first N elements
/// excluded.
template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
  return make_range(std::next(adl_begin(RangeOrContainer), N),
                    adl_end(RangeOrContainer));
}

/// Return a range covering \p RangeOrContainer with the last N elements
/// excluded.
template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
  return make_range(adl_begin(RangeOrContainer),
                    std::prev(adl_end(RangeOrContainer), N));
}

// mapped_iterator - This is a simple iterator adapter that causes a function to
// be applied whenever operator* is invoked on the iterator.

template <typename ItTy, typename FuncTy,
          typename ReferenceTy =
              decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
class mapped_iterator
    : public iterator_adaptor_base<
          mapped_iterator<ItTy, FuncTy>, ItTy,
          typename std::iterator_traits<ItTy>::iterator_category,
          std::remove_reference_t<ReferenceTy>,
          typename std::iterator_traits<ItTy>::difference_type,
          std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
public:
  mapped_iterator() = default;
  mapped_iterator(ItTy U, FuncTy F)
    : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}

  ItTy getCurrent() { return this->I; }

  const FuncTy &getFunction() const { return F; }

  ReferenceTy operator*() const { return F(*this->I); }

private:
  callable_detail::Callable<FuncTy> F{};
};

// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
  return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
}

template <class ContainerTy, class FuncTy>
auto map_range(ContainerTy &&C, FuncTy F) {
  return make_range(map_iterator(std::begin(C), F),
                    map_iterator(std::end(C), F));
}

/// A base type of mapped iterator, that is useful for building derived
/// iterators that do not need/want to store the map function (as in
/// mapped_iterator). These iterators must simply provide a `mapElement` method
/// that defines how to map a value of the iterator to the provided reference
/// type.
template <typename DerivedT, typename ItTy, typename ReferenceTy>
class mapped_iterator_base
    : public iterator_adaptor_base<
          DerivedT, ItTy,
          typename std::iterator_traits<ItTy>::iterator_category,
          std::remove_reference_t<ReferenceTy>,
          typename std::iterator_traits<ItTy>::difference_type,
          std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
public:
  using BaseT = mapped_iterator_base;

  mapped_iterator_base(ItTy U)
      : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}

  ItTy getCurrent() { return this->I; }

  ReferenceTy operator*() const {
    return static_cast<const DerivedT &>(*this).mapElement(*this->I);
  }
};

/// Helper to determine if type T has a member called rbegin().
template <typename Ty> class has_rbegin_impl {
  using yes = char[1];
  using no = char[2];

  template <typename Inner>
  static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);

  template <typename>
  static no& test(...);

public:
  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
};

/// Metafunction to determine if T& or T has a member called rbegin().
template <typename Ty>
struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {};

// Returns an iterator_range over the given container which iterates in reverse.
template <typename ContainerTy> auto reverse(ContainerTy &&C) {
  if constexpr (has_rbegin<ContainerTy>::value)
    return make_range(C.rbegin(), C.rend());
  else
    return make_range(std::make_reverse_iterator(std::end(C)),
                      std::make_reverse_iterator(std::begin(C)));
}

/// An iterator adaptor that filters the elements of given inner iterators.
///
/// The predicate parameter should be a callable object that accepts the wrapped
/// iterator's reference type and returns a bool. When incrementing or
/// decrementing the iterator, it will call the predicate on each element and
/// skip any where it returns false.
///
/// \code
///   int A[] = { 1, 2, 3, 4 };
///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
///   // R contains { 1, 3 }.
/// \endcode
///
/// Note: filter_iterator_base implements support for forward iteration.
/// filter_iterator_impl exists to provide support for bidirectional iteration,
/// conditional on whether the wrapped iterator supports it.
template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
class filter_iterator_base
    : public iterator_adaptor_base<
          filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
          WrappedIteratorT,
          std::common_type_t<IterTag,
                             typename std::iterator_traits<
                                 WrappedIteratorT>::iterator_category>> {
  using BaseT = typename filter_iterator_base::iterator_adaptor_base;

protected:
  WrappedIteratorT End;
  PredicateT Pred;

  void findNextValid() {
    while (this->I != End && !Pred(*this->I))
      BaseT::operator++();
  }

  filter_iterator_base() = default;

  // Construct the iterator. The begin iterator needs to know where the end
  // is, so that it can properly stop when it gets there. The end iterator only
  // needs the predicate to support bidirectional iteration.
  filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
                       PredicateT Pred)
      : BaseT(Begin), End(End), Pred(Pred) {
    findNextValid();
  }

public:
  using BaseT::operator++;

  filter_iterator_base &operator++() {
    BaseT::operator++();
    findNextValid();
    return *this;
  }

  decltype(auto) operator*() const {
    assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
    return BaseT::operator*();
  }

  decltype(auto) operator->() const {
    assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
    return BaseT::operator->();
  }
};

/// Specialization of filter_iterator_base for forward iteration only.
template <typename WrappedIteratorT, typename PredicateT,
          typename IterTag = std::forward_iterator_tag>
class filter_iterator_impl
    : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
public:
  filter_iterator_impl() = default;

  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
                       PredicateT Pred)
      : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
};

/// Specialization of filter_iterator_base for bidirectional iteration.
template <typename WrappedIteratorT, typename PredicateT>
class filter_iterator_impl<WrappedIteratorT, PredicateT,
                           std::bidirectional_iterator_tag>
    : public filter_iterator_base<WrappedIteratorT, PredicateT,
                                  std::bidirectional_iterator_tag> {
  using BaseT = typename filter_iterator_impl::filter_iterator_base;

  void findPrevValid() {
    while (!this->Pred(*this->I))
      BaseT::operator--();
  }

public:
  using BaseT::operator--;

  filter_iterator_impl() = default;

  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
                       PredicateT Pred)
      : BaseT(Begin, End, Pred) {}

  filter_iterator_impl &operator--() {
    BaseT::operator--();
    findPrevValid();
    return *this;
  }
};

namespace detail {

template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
  using type = std::forward_iterator_tag;
};

template <> struct fwd_or_bidi_tag_impl<true> {
  using type = std::bidirectional_iterator_tag;
};

/// Helper which sets its type member to forward_iterator_tag if the category
/// of \p IterT does not derive from bidirectional_iterator_tag, and to
/// bidirectional_iterator_tag otherwise.
template <typename IterT> struct fwd_or_bidi_tag {
  using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
      std::bidirectional_iterator_tag,
      typename std::iterator_traits<IterT>::iterator_category>::value>::type;
};

} // namespace detail

/// Defines filter_iterator to a suitable specialization of
/// filter_iterator_impl, based on the underlying iterator's category.
template <typename WrappedIteratorT, typename PredicateT>
using filter_iterator = filter_iterator_impl<
    WrappedIteratorT, PredicateT,
    typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;

/// Convenience function that takes a range of elements and a predicate,
/// and return a new filter_iterator range.
///
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
/// lifetime of that temporary is not kept by the returned range object, and the
/// temporary is going to be dropped on the floor after the make_iterator_range
/// full expression that contains this function call.
template <typename RangeT, typename PredicateT>
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
make_filter_range(RangeT &&Range, PredicateT Pred) {
  using FilterIteratorT =
      filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
  return make_range(
      FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
                      std::end(std::forward<RangeT>(Range)), Pred),
      FilterIteratorT(std::end(std::forward<RangeT>(Range)),
                      std::end(std::forward<RangeT>(Range)), Pred));
}

/// A pseudo-iterator adaptor that is designed to implement "early increment"
/// style loops.
///
/// This is *not a normal iterator* and should almost never be used directly. It
/// is intended primarily to be used with range based for loops and some range
/// algorithms.
///
/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
/// somewhere between them. The constraints of these iterators are:
///
/// - On construction or after being incremented, it is comparable and
///   dereferencable. It is *not* incrementable.
/// - After being dereferenced, it is neither comparable nor dereferencable, it
///   is only incrementable.
///
/// This means you can only dereference the iterator once, and you can only
/// increment it once between dereferences.
template <typename WrappedIteratorT>
class early_inc_iterator_impl
    : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
                                   WrappedIteratorT, std::input_iterator_tag> {
  using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;

  using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;

protected:
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
  bool IsEarlyIncremented = false;
#endif

public:
  early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}

  using BaseT::operator*;
  decltype(*std::declval<WrappedIteratorT>()) operator*() {
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
    assert(!IsEarlyIncremented && "Cannot dereference twice!");
    IsEarlyIncremented = true;
#endif
    return *(this->I)++;
  }

  using BaseT::operator++;
  early_inc_iterator_impl &operator++() {
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
    assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
    IsEarlyIncremented = false;
#endif
    return *this;
  }

  friend bool operator==(const early_inc_iterator_impl &LHS,
                         const early_inc_iterator_impl &RHS) {
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
    assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
#endif
    return (const BaseT &)LHS == (const BaseT &)RHS;
  }
};

/// Make a range that does early increment to allow mutation of the underlying
/// range without disrupting iteration.
///
/// The underlying iterator will be incremented immediately after it is
/// dereferenced, allowing deletion of the current node or insertion of nodes to
/// not disrupt iteration provided they do not invalidate the *next* iterator --
/// the current iterator can be invalidated.
///
/// This requires a very exact pattern of use that is only really suitable to
/// range based for loops and other range algorithms that explicitly guarantee
/// to dereference exactly once each element, and to increment exactly once each
/// element.
template <typename RangeT>
iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
make_early_inc_range(RangeT &&Range) {
  using EarlyIncIteratorT =
      early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
  return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
                    EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
}

// Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
template <typename R, typename UnaryPredicate>
bool all_of(R &&range, UnaryPredicate P);

template <typename R, typename UnaryPredicate>
bool any_of(R &&range, UnaryPredicate P);

template <typename T> bool all_equal(std::initializer_list<T> Values);

template <typename R> constexpr size_t range_size(R &&Range);

namespace detail {

using std::declval;

// We have to alias this since inlining the actual type at the usage site
// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
template<typename... Iters> struct ZipTupleType {
  using type = std::tuple<decltype(*declval<Iters>())...>;
};

template <typename ZipType, typename ReferenceTupleType, typename... Iters>
using zip_traits = iterator_facade_base<
    ZipType,
    std::common_type_t<
        std::bidirectional_iterator_tag,
        typename std::iterator_traits<Iters>::iterator_category...>,
    // ^ TODO: Implement random access methods.
    ReferenceTupleType,
    typename std::iterator_traits<
        std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
    // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
    // inner iterators have the same difference_type. It would fail if, for
    // instance, the second field's difference_type were non-numeric while the
    // first is.
    ReferenceTupleType *, ReferenceTupleType>;

template <typename ZipType, typename ReferenceTupleType, typename... Iters>
struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> {
  using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>;
  using IndexSequence = std::index_sequence_for<Iters...>;
  using value_type = typename Base::value_type;

  std::tuple<Iters...> iterators;

protected:
  template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
    return value_type(*std::get<Ns>(iterators)...);
  }

  template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) {
    (++std::get<Ns>(iterators), ...);
  }

  template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) {
    (--std::get<Ns>(iterators), ...);
  }

  template <size_t... Ns>
  bool test_all_equals(const zip_common &other,
                       std::index_sequence<Ns...>) const {
    return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
            ...);
  }

public:
  zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}

  value_type operator*() const { return deref(IndexSequence{}); }

  ZipType &operator++() {
    tup_inc(IndexSequence{});
    return static_cast<ZipType &>(*this);
  }

  ZipType &operator--() {
    static_assert(Base::IsBidirectional,
                  "All inner iterators must be at least bidirectional.");
    tup_dec(IndexSequence{});
    return static_cast<ZipType &>(*this);
  }

  /// Return true if all the iterator are matching `other`'s iterators.
  bool all_equals(zip_common &other) {
    return test_all_equals(other, IndexSequence{});
  }
};

template <typename... Iters>
struct zip_first : zip_common<zip_first<Iters...>,
                              typename ZipTupleType<Iters...>::type, Iters...> {
  using zip_common<zip_first, typename ZipTupleType<Iters...>::type,
                   Iters...>::zip_common;

  bool operator==(const zip_first &other) const {
    return std::get<0>(this->iterators) == std::get<0>(other.iterators);
  }
};

template <typename... Iters>
struct zip_shortest
    : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type,
                 Iters...> {
  using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type,
                   Iters...>::zip_common;

  bool operator==(const zip_shortest &other) const {
    return any_iterator_equals(other, std::index_sequence_for<Iters...>{});
  }

private:
  template <size_t... Ns>
  bool any_iterator_equals(const zip_shortest &other,
                           std::index_sequence<Ns...>) const {
    return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) ||
            ...);
  }
};

/// Helper to obtain the iterator types for the tuple storage within `zippy`.
template <template <typename...> class ItType, typename TupleStorageType,
          typename IndexSequence>
struct ZippyIteratorTuple;

/// Partial specialization for non-const tuple storage.
template <template <typename...> class ItType, typename... Args,
          std::size_t... Ns>
struct ZippyIteratorTuple<ItType, std::tuple<Args...>,
                          std::index_sequence<Ns...>> {
  using type = ItType<decltype(adl_begin(
      std::get<Ns>(declval<std::tuple<Args...> &>())))...>;
};

/// Partial specialization for const tuple storage.
template <template <typename...> class ItType, typename... Args,
          std::size_t... Ns>
struct ZippyIteratorTuple<ItType, const std::tuple<Args...>,
                          std::index_sequence<Ns...>> {
  using type = ItType<decltype(adl_begin(
      std::get<Ns>(declval<const std::tuple<Args...> &>())))...>;
};

template <template <typename...> class ItType, typename... Args> class zippy {
private:
  std::tuple<Args...> storage;
  using IndexSequence = std::index_sequence_for<Args...>;

public:
  using iterator = typename ZippyIteratorTuple<ItType, decltype(storage),
                                               IndexSequence>::type;
  using const_iterator =
      typename ZippyIteratorTuple<ItType, const decltype(storage),
                                  IndexSequence>::type;
  using iterator_category = typename iterator::iterator_category;
  using value_type = typename iterator::value_type;
  using difference_type = typename iterator::difference_type;
  using pointer = typename iterator::pointer;
  using reference = typename iterator::reference;
  using const_reference = typename const_iterator::reference;

  zippy(Args &&...args) : storage(std::forward<Args>(args)...) {}

  const_iterator begin() const { return begin_impl(IndexSequence{}); }
  iterator begin() { return begin_impl(IndexSequence{}); }
  const_iterator end() const { return end_impl(IndexSequence{}); }
  iterator end() { return end_impl(IndexSequence{}); }

private:
  template <size_t... Ns>
  const_iterator begin_impl(std::index_sequence<Ns...>) const {
    return const_iterator(adl_begin(std::get<Ns>(storage))...);
  }
  template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
    return iterator(adl_begin(std::get<Ns>(storage))...);
  }

  template <size_t... Ns>
  const_iterator end_impl(std::index_sequence<Ns...>) const {
    return const_iterator(adl_end(std::get<Ns>(storage))...);
  }
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
    return iterator(adl_end(std::get<Ns>(storage))...);
  }
};

} // end namespace detail

/// zip iterator for two or more iteratable types. Iteration continues until the
/// end of the *shortest* iteratee is reached.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
                                                       Args &&...args) {
  return detail::zippy<detail::zip_shortest, T, U, Args...>(
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}

/// zip iterator that assumes that all iteratees have the same length.
/// In builds with assertions on, this assumption is checked before the
/// iteration starts.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
                                                          Args &&...args) {
  assert(all_equal({range_size(t), range_size(u), range_size(args)...}) &&
         "Iteratees do not have equal length");
  return detail::zippy<detail::zip_first, T, U, Args...>(
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}

/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
/// be the shortest. Iteration continues until the end of the first iteratee is
/// reached. In builds with assertions on, we check that the assumption about
/// the first iteratee being the shortest holds.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
                                                          Args &&...args) {
  assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) &&
         "First iteratee is not the shortest");

  return detail::zippy<detail::zip_first, T, U, Args...>(
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}

namespace detail {
template <typename Iter>
Iter next_or_end(const Iter &I, const Iter &End) {
  if (I == End)
    return End;
  return std::next(I);
}

template <typename Iter>
auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
    std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
  if (I == End)
    return std::nullopt;
  return *I;
}

template <typename Iter> struct ZipLongestItemType {
  using type = std::optional<std::remove_const_t<
      std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
};

template <typename... Iters> struct ZipLongestTupleType {
  using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
};

template <typename... Iters>
class zip_longest_iterator
    : public iterator_facade_base<
          zip_longest_iterator<Iters...>,
          std::common_type_t<
              std::forward_iterator_tag,
              typename std::iterator_traits<Iters>::iterator_category...>,
          typename ZipLongestTupleType<Iters...>::type,
          typename std::iterator_traits<
              std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
          typename ZipLongestTupleType<Iters...>::type *,
          typename ZipLongestTupleType<Iters...>::type> {
public:
  using value_type = typename ZipLongestTupleType<Iters...>::type;

private:
  std::tuple<Iters...> iterators;
  std::tuple<Iters...> end_iterators;

  template <size_t... Ns>
  bool test(const zip_longest_iterator<Iters...> &other,
            std::index_sequence<Ns...>) const {
    return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
            ...);
  }

  template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
    return value_type(
        deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
  }

  template <size_t... Ns>
  decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
    return std::tuple<Iters...>(
        next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
  }

public:
  zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
      : iterators(std::forward<Iters>(ts.first)...),
        end_iterators(std::forward<Iters>(ts.second)...) {}

  value_type operator*() const {
    return deref(std::index_sequence_for<Iters...>{});
  }

  zip_longest_iterator<Iters...> &operator++() {
    iterators = tup_inc(std::index_sequence_for<Iters...>{});
    return *this;
  }

  bool operator==(const zip_longest_iterator<Iters...> &other) const {
    return !test(other, std::index_sequence_for<Iters...>{});
  }
};

template <typename... Args> class zip_longest_range {
public:
  using iterator =
      zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
  using iterator_category = typename iterator::iterator_category;
  using value_type = typename iterator::value_type;
  using difference_type = typename iterator::difference_type;
  using pointer = typename iterator::pointer;
  using reference = typename iterator::reference;

private:
  std::tuple<Args...> ts;

  template <size_t... Ns>
  iterator begin_impl(std::index_sequence<Ns...>) const {
    return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
                                   adl_end(std::get<Ns>(ts)))...);
  }

  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
    return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
                                   adl_end(std::get<Ns>(ts)))...);
  }

public:
  zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}

  iterator begin() const {
    return begin_impl(std::index_sequence_for<Args...>{});
  }
  iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
};
} // namespace detail

/// Iterate over two or more iterators at the same time. Iteration continues
/// until all iterators reach the end. The std::optional only contains a value
/// if the iterator has not reached the end.
template <typename T, typename U, typename... Args>
detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
                                                     Args &&... args) {
  return detail::zip_longest_range<T, U, Args...>(
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}

/// Iterator wrapper that concatenates sequences together.
///
/// This can concatenate different iterators, even with different types, into
/// a single iterator provided the value types of all the concatenated
/// iterators expose `reference` and `pointer` types that can be converted to
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
/// interesting/customized pointer or reference types.
///
/// Currently this only supports forward or higher iterator categories as
/// inputs and always exposes a forward iterator interface.
template <typename ValueT, typename... IterTs>
class concat_iterator
    : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
                                  std::forward_iterator_tag, ValueT> {
  using BaseT = typename concat_iterator::iterator_facade_base;

  /// We store both the current and end iterators for each concatenated
  /// sequence in a tuple of pairs.
  ///
  /// Note that something like iterator_range seems nice at first here, but the
  /// range properties are of little benefit and end up getting in the way
  /// because we need to do mutation on the current iterators.
  std::tuple<IterTs...> Begins;
  std::tuple<IterTs...> Ends;

  /// Attempts to increment a specific iterator.
  ///
  /// Returns true if it was able to increment the iterator. Returns false if
  /// the iterator is already at the end iterator.
  template <size_t Index> bool incrementHelper() {
    auto &Begin = std::get<Index>(Begins);
    auto &End = std::get<Index>(Ends);
    if (Begin == End)
      return false;

    ++Begin;
    return true;
  }

  /// Increments the first non-end iterator.
  ///
  /// It is an error to call this with all iterators at the end.
  template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
    // Build a sequence of functions to increment each iterator if possible.
    bool (concat_iterator::*IncrementHelperFns[])() = {
        &concat_iterator::incrementHelper<Ns>...};

    // Loop over them, and stop as soon as we succeed at incrementing one.
    for (auto &IncrementHelperFn : IncrementHelperFns)
      if ((this->*IncrementHelperFn)())
        return;

    llvm_unreachable("Attempted to increment an end concat iterator!");
  }

  /// Returns null if the specified iterator is at the end. Otherwise,
  /// dereferences the iterator and returns the address of the resulting
  /// reference.
  template <size_t Index> ValueT *getHelper() const {
    auto &Begin = std::get<Index>(Begins);
    auto &End = std::get<Index>(Ends);
    if (Begin == End)
      return nullptr;

    return &*Begin;
  }

  /// Finds the first non-end iterator, dereferences, and returns the resulting
  /// reference.
  ///
  /// It is an error to call this with all iterators at the end.
  template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
    // Build a sequence of functions to get from iterator if possible.
    ValueT *(concat_iterator::*GetHelperFns[])() const = {
        &concat_iterator::getHelper<Ns>...};

    // Loop over them, and return the first result we find.
    for (auto &GetHelperFn : GetHelperFns)
      if (ValueT *P = (this->*GetHelperFn)())
        return *P;

    llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
  }

public:
  /// Constructs an iterator from a sequence of ranges.
  ///
  /// We need the full range to know how to switch between each of the
  /// iterators.
  template <typename... RangeTs>
  explicit concat_iterator(RangeTs &&... Ranges)
      : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}

  using BaseT::operator++;

  concat_iterator &operator++() {
    increment(std::index_sequence_for<IterTs...>());
    return *this;
  }

  ValueT &operator*() const {
    return get(std::index_sequence_for<IterTs...>());
  }

  bool operator==(const concat_iterator &RHS) const {
    return Begins == RHS.Begins && Ends == RHS.Ends;
  }
};

namespace detail {

/// Helper to store a sequence of ranges being concatenated and access them.
///
/// This is designed to facilitate providing actual storage when temporaries
/// are passed into the constructor such that we can use it as part of range
/// based for loops.
template <typename ValueT, typename... RangeTs> class concat_range {
public:
  using iterator =
      concat_iterator<ValueT,
                      decltype(std::begin(std::declval<RangeTs &>()))...>;

private:
  std::tuple<RangeTs...> Ranges;

  template <size_t... Ns>
  iterator begin_impl(std::index_sequence<Ns...>) {
    return iterator(std::get<Ns>(Ranges)...);
  }
  template <size_t... Ns>
  iterator begin_impl(std::index_sequence<Ns...>) const {
    return iterator(std::get<Ns>(Ranges)...);
  }
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
                               std::end(std::get<Ns>(Ranges)))...);
  }
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
                               std::end(std::get<Ns>(Ranges)))...);
  }

public:
  concat_range(RangeTs &&... Ranges)
      : Ranges(std::forward<RangeTs>(Ranges)...) {}

  iterator begin() {
    return begin_impl(std::index_sequence_for<RangeTs...>{});
  }
  iterator begin() const {
    return begin_impl(std::index_sequence_for<RangeTs...>{});
  }
  iterator end() {
    return end_impl(std::index_sequence_for<RangeTs...>{});
  }
  iterator end() const {
    return end_impl(std::index_sequence_for<RangeTs...>{});
  }
};

} // end namespace detail

/// Concatenated range across two or more ranges.
///
/// The desired value type must be explicitly specified.
template <typename ValueT, typename... RangeTs>
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
  static_assert(sizeof...(RangeTs) > 1,
                "Need more than one range to concatenate!");
  return detail::concat_range<ValueT, RangeTs...>(
      std::forward<RangeTs>(Ranges)...);
}

/// A utility class used to implement an iterator that contains some base object
/// and an index. The iterator moves the index but keeps the base constant.
template <typename DerivedT, typename BaseT, typename T,
          typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_iterator
    : public llvm::iterator_facade_base<DerivedT,
                                        std::random_access_iterator_tag, T,
                                        std::ptrdiff_t, PointerT, ReferenceT> {
public:
  ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
    assert(base == rhs.base && "incompatible iterators");
    return index - rhs.index;
  }
  bool operator==(const indexed_accessor_iterator &rhs) const {
    return base == rhs.base && index == rhs.index;
  }
  bool operator<(const indexed_accessor_iterator &rhs) const {
    assert(base == rhs.base && "incompatible iterators");
    return index < rhs.index;
  }

  DerivedT &operator+=(ptrdiff_t offset) {
    this->index += offset;
    return static_cast<DerivedT &>(*this);
  }
  DerivedT &operator-=(ptrdiff_t offset) {
    this->index -= offset;
    return static_cast<DerivedT &>(*this);
  }

  /// Returns the current index of the iterator.
  ptrdiff_t getIndex() const { return index; }

  /// Returns the current base of the iterator.
  const BaseT &getBase() const { return base; }

protected:
  indexed_accessor_iterator(BaseT base, ptrdiff_t index)
      : base(base), index(index) {}
  BaseT base;
  ptrdiff_t index;
};

namespace detail {
/// The class represents the base of a range of indexed_accessor_iterators. It
/// provides support for many different range functionalities, e.g.
/// drop_front/slice/etc.. Derived range classes must implement the following
/// static methods:
///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
///     - Dereference an iterator pointing to the base object at the given
///       index.
///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
///     - Return a new base that is offset from the provide base by 'index'
///       elements.
template <typename DerivedT, typename BaseT, typename T,
          typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_range_base {
public:
  using RangeBaseT = indexed_accessor_range_base;

  /// An iterator element of this range.
  class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
                                                    PointerT, ReferenceT> {
  public:
    // Index into this iterator, invoking a static method on the derived type.
    ReferenceT operator*() const {
      return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
    }

  private:
    iterator(BaseT owner, ptrdiff_t curIndex)
        : iterator::indexed_accessor_iterator(owner, curIndex) {}

    /// Allow access to the constructor.
    friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
                                       ReferenceT>;
  };

  indexed_accessor_range_base(iterator begin, iterator end)
      : base(offset_base(begin.getBase(), begin.getIndex())),
        count(end.getIndex() - begin.getIndex()) {}
  indexed_accessor_range_base(const iterator_range<iterator> &range)
      : indexed_accessor_range_base(range.begin(), range.end()) {}
  indexed_accessor_range_base(BaseT base, ptrdiff_t count)
      : base(base), count(count) {}

  iterator begin() const { return iterator(base, 0); }
  iterator end() const { return iterator(base, count); }
  ReferenceT operator[](size_t Index) const {
    assert(Index < size() && "invalid index for value range");
    return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
  }
  ReferenceT front() const {
    assert(!empty() && "expected non-empty range");
    return (*this)[0];
  }
  ReferenceT back() const {
    assert(!empty() && "expected non-empty range");
    return (*this)[size() - 1];
  }

  /// Return the size of this range.
  size_t size() const { return count; }

  /// Return if the range is empty.
  bool empty() const { return size() == 0; }

  /// Drop the first N elements, and keep M elements.
  DerivedT slice(size_t n, size_t m) const {
    assert(n + m <= size() && "invalid size specifiers");
    return DerivedT(offset_base(base, n), m);
  }

  /// Drop the first n elements.
  DerivedT drop_front(size_t n = 1) const {
    assert(size() >= n && "Dropping more elements than exist");
    return slice(n, size() - n);
  }
  /// Drop the last n elements.
  DerivedT drop_back(size_t n = 1) const {
    assert(size() >= n && "Dropping more elements than exist");
    return DerivedT(base, size() - n);
  }

  /// Take the first n elements.
  DerivedT take_front(size_t n = 1) const {
    return n < size() ? drop_back(size() - n)
                      : static_cast<const DerivedT &>(*this);
  }

  /// Take the last n elements.
  DerivedT take_back(size_t n = 1) const {
    return n < size() ? drop_front(size() - n)
                      : static_cast<const DerivedT &>(*this);
  }

  /// Allow conversion to any type accepting an iterator_range.
  template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
                                 RangeT, iterator_range<iterator>>::value>>
  operator RangeT() const {
    return RangeT(iterator_range<iterator>(*this));
  }

  /// Returns the base of this range.
  const BaseT &getBase() const { return base; }

private:
  /// Offset the given base by the given amount.
  static BaseT offset_base(const BaseT &base, size_t n) {
    return n == 0 ? base : DerivedT::offset_base(base, n);
  }

protected:
  indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
  indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
  indexed_accessor_range_base &
  operator=(const indexed_accessor_range_base &) = default;

  /// The base that owns the provided range of values.
  BaseT base;
  /// The size from the owning range.
  ptrdiff_t count;
};
/// Compare this range with another.
/// FIXME: Make me a member function instead of friend when it works in C++20.
template <typename OtherT, typename DerivedT, typename BaseT, typename T,
          typename PointerT, typename ReferenceT>
bool operator==(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
                                                  ReferenceT> &lhs,
                const OtherT &rhs) {
  return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
}

template <typename OtherT, typename DerivedT, typename BaseT, typename T,
          typename PointerT, typename ReferenceT>
bool operator!=(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
                                                  ReferenceT> &lhs,
                const OtherT &rhs) {
  return !(lhs == rhs);
}
} // end namespace detail

/// This class provides an implementation of a range of
/// indexed_accessor_iterators where the base is not indexable. Ranges with
/// bases that are offsetable should derive from indexed_accessor_range_base
/// instead. Derived range classes are expected to implement the following
/// static method:
///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
///     - Dereference an iterator pointing to a parent base at the given index.
template <typename DerivedT, typename BaseT, typename T,
          typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_range
    : public detail::indexed_accessor_range_base<
          DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
public:
  indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
      : detail::indexed_accessor_range_base<
            DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
            std::make_pair(base, startIndex), count) {}
  using detail::indexed_accessor_range_base<
      DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
      ReferenceT>::indexed_accessor_range_base;

  /// Returns the current base of the range.
  const BaseT &getBase() const { return this->base.first; }

  /// Returns the current start index of the range.
  ptrdiff_t getStartIndex() const { return this->base.second; }

  /// See `detail::indexed_accessor_range_base` for details.
  static std::pair<BaseT, ptrdiff_t>
  offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
    // We encode the internal base as a pair of the derived base and a start
    // index into the derived base.
    return std::make_pair(base.first, base.second + index);
  }
  /// See `detail::indexed_accessor_range_base` for details.
  static ReferenceT
  dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
                       ptrdiff_t index) {
    return DerivedT::dereference(base.first, base.second + index);
  }
};

namespace detail {
/// Return a reference to the first or second member of a reference. Otherwise,
/// return a copy of the member of a temporary.
///
/// When passing a range whose iterators return values instead of references,
/// the reference must be dropped from `decltype((elt.first))`, which will
/// always be a reference, to avoid returning a reference to a temporary.
template <typename EltTy, typename FirstTy> class first_or_second_type {
public:
  using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
                                  std::remove_reference_t<FirstTy>>;
};
} // end namespace detail

/// Given a container of pairs, return a range over the first elements.
template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
  using EltTy = decltype((*std::begin(c)));
  return llvm::map_range(std::forward<ContainerTy>(c),
                         [](EltTy elt) -> typename detail::first_or_second_type<
                                           EltTy, decltype((elt.first))>::type {
                           return elt.first;
                         });
}

/// Given a container of pairs, return a range over the second elements.
template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
  using EltTy = decltype((*std::begin(c)));
  return llvm::map_range(
      std::forward<ContainerTy>(c),
      [](EltTy elt) ->
      typename detail::first_or_second_type<EltTy,
                                            decltype((elt.second))>::type {
        return elt.second;
      });
}

//===----------------------------------------------------------------------===//
//     Extra additions to <utility>
//===----------------------------------------------------------------------===//

/// Function object to check whether the first component of a container
/// supported by std::get (like std::pair and std::tuple) compares less than the
/// first component of another container.
struct less_first {
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    return std::less<>()(std::get<0>(lhs), std::get<0>(rhs));
  }
};

/// Function object to check whether the second component of a container
/// supported by std::get (like std::pair and std::tuple) compares less than the
/// second component of another container.
struct less_second {
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    return std::less<>()(std::get<1>(lhs), std::get<1>(rhs));
  }
};

/// \brief Function object to apply a binary function to the first component of
/// a std::pair.
template<typename FuncTy>
struct on_first {
  FuncTy func;

  template <typename T>
  decltype(auto) operator()(const T &lhs, const T &rhs) const {
    return func(lhs.first, rhs.first);
  }
};

/// Utility type to build an inheritance chain that makes it easy to rank
/// overload candidates.
template <int N> struct rank : rank<N - 1> {};
template <> struct rank<0> {};

namespace detail {
template <typename... Ts> struct Visitor;

template <typename HeadT, typename... TailTs>
struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
  explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
      : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
        Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
  using remove_cvref_t<HeadT>::operator();
  using Visitor<TailTs...>::operator();
};

template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
  explicit constexpr Visitor(HeadT &&Head)
      : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
  using remove_cvref_t<HeadT>::operator();
};
} // namespace detail

/// Returns an opaquely-typed Callable object whose operator() overload set is
/// the sum of the operator() overload sets of each CallableT in CallableTs.
///
/// The type of the returned object derives from each CallableT in CallableTs.
/// The returned object is constructed by invoking the appropriate copy or move
/// constructor of each CallableT, as selected by overload resolution on the
/// corresponding argument to makeVisitor.
///
/// Example:
///
/// \code
/// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
///                            [](int i) { return "int"; },
///                            [](std::string s) { return "str"; });
/// auto a = visitor(42);    // `a` is now "int".
/// auto b = visitor("foo"); // `b` is now "str".
/// auto c = visitor(3.14f); // `c` is now "unhandled type".
/// \endcode
///
/// Example of making a visitor with a lambda which captures a move-only type:
///
/// \code
/// std::unique_ptr<FooHandler> FH = /* ... */;
/// auto visitor = makeVisitor(
///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
///     [](int i) { return i; },
///     [](std::string s) { return atoi(s); });
/// \endcode
template <typename... CallableTs>
constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
  return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
}

//===----------------------------------------------------------------------===//
//     Extra additions to <algorithm>
//===----------------------------------------------------------------------===//

// We have a copy here so that LLVM behaves the same when using different
// standard libraries.
template <class Iterator, class RNG>
void shuffle(Iterator first, Iterator last, RNG &&g) {
  // It would be better to use a std::uniform_int_distribution,
  // but that would be stdlib dependent.
  typedef
      typename std::iterator_traits<Iterator>::difference_type difference_type;
  for (auto size = last - first; size > 1; ++first, (void)--size) {
    difference_type offset = g() % size;
    // Avoid self-assignment due to incorrect assertions in libstdc++
    // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
    if (offset != difference_type(0))
      std::iter_swap(first, first + offset);
  }
}

/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
  if (std::less<T>()(*reinterpret_cast<const T*>(P1),
                     *reinterpret_cast<const T*>(P2)))
    return -1;
  if (std::less<T>()(*reinterpret_cast<const T*>(P2),
                     *reinterpret_cast<const T*>(P1)))
    return 1;
  return 0;
}

/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
             (const void*, const void*) {
  return array_pod_sort_comparator<T>;
}

#ifdef EXPENSIVE_CHECKS
namespace detail {

inline unsigned presortShuffleEntropy() {
  static unsigned Result(std::random_device{}());
  return Result;
}

template <class IteratorTy>
inline void presortShuffle(IteratorTy Start, IteratorTy End) {
  std::mt19937 Generator(presortShuffleEntropy());
  llvm::shuffle(Start, End, Generator);
}

} // end namespace detail
#endif

/// array_pod_sort - This sorts an array with the specified start and end
/// extent.  This is just like std::sort, except that it calls qsort instead of
/// using an inlined template.  qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat.  This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy.  If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
  // Don't inefficiently call qsort with one element or trigger undefined
  // behavior with an empty sequence.
  auto NElts = End - Start;
  if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
  detail::presortShuffle<IteratorTy>(Start, End);
#endif
  qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
}

template <class IteratorTy>
inline void array_pod_sort(
    IteratorTy Start, IteratorTy End,
    int (*Compare)(
        const typename std::iterator_traits<IteratorTy>::value_type *,
        const typename std::iterator_traits<IteratorTy>::value_type *)) {
  // Don't inefficiently call qsort with one element or trigger undefined
  // behavior with an empty sequence.
  auto NElts = End - Start;
  if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
  detail::presortShuffle<IteratorTy>(Start, End);
#endif
  qsort(&*Start, NElts, sizeof(*Start),
        reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}

namespace detail {
template <typename T>
// We can use qsort if the iterator type is a pointer and the underlying value
// is trivially copyable.
using sort_trivially_copyable = std::conjunction<
    std::is_pointer<T>,
    std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
} // namespace detail

// Provide wrappers to std::sort which shuffle the elements before sorting
// to help uncover non-deterministic behavior (PR35135).
template <typename IteratorTy>
inline void sort(IteratorTy Start, IteratorTy End) {
  if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
    // Forward trivially copyable types to array_pod_sort. This avoids a large
    // amount of code bloat for a minor performance hit.
    array_pod_sort(Start, End);
  } else {
#ifdef EXPENSIVE_CHECKS
    detail::presortShuffle<IteratorTy>(Start, End);
#endif
    std::sort(Start, End);
  }
}

template <typename Container> inline void sort(Container &&C) {
  llvm::sort(adl_begin(C), adl_end(C));
}

template <typename IteratorTy, typename Compare>
inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
#ifdef EXPENSIVE_CHECKS
  detail::presortShuffle<IteratorTy>(Start, End);
#endif
  std::sort(Start, End, Comp);
}

template <typename Container, typename Compare>
inline void sort(Container &&C, Compare Comp) {
  llvm::sort(adl_begin(C), adl_end(C), Comp);
}

/// Get the size of a range. This is a wrapper function around std::distance
/// which is only enabled when the operation is O(1).
template <typename R>
auto size(R &&Range,
          std::enable_if_t<
              std::is_base_of<std::random_access_iterator_tag,
                              typename std::iterator_traits<decltype(
                                  Range.begin())>::iterator_category>::value,
              void> * = nullptr) {
  return std::distance(Range.begin(), Range.end());
}

namespace detail {
template <typename Range>
using check_has_free_function_size =
    decltype(adl_size(std::declval<Range &>()));

template <typename Range>
static constexpr bool HasFreeFunctionSize =
    is_detected<check_has_free_function_size, Range>::value;
} // namespace detail

/// Returns the size of the \p Range, i.e., the number of elements. This
/// implementation takes inspiration from `std::ranges::size` from C++20 and
/// delegates the size check to `adl_size` or `std::distance`, in this order of
/// preference. Unlike `llvm::size`, this function does *not* guarantee O(1)
/// running time, and is intended to be used in generic code that does not know
/// the exact range type.
template <typename R> constexpr size_t range_size(R &&Range) {
  if constexpr (detail::HasFreeFunctionSize<R>)
    return adl_size(Range);
  else
    return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range)));
}

/// Provide wrappers to std::for_each which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryFunction>
UnaryFunction for_each(R &&Range, UnaryFunction F) {
  return std::for_each(adl_begin(Range), adl_end(Range), F);
}

/// Provide wrappers to std::all_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool all_of(R &&Range, UnaryPredicate P) {
  return std::all_of(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::any_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool any_of(R &&Range, UnaryPredicate P) {
  return std::any_of(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::none_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool none_of(R &&Range, UnaryPredicate P) {
  return std::none_of(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::find which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename T> auto find(R &&Range, const T &Val) {
  return std::find(adl_begin(Range), adl_end(Range), Val);
}

/// Provide wrappers to std::find_if which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto find_if(R &&Range, UnaryPredicate P) {
  return std::find_if(adl_begin(Range), adl_end(Range), P);
}

template <typename R, typename UnaryPredicate>
auto find_if_not(R &&Range, UnaryPredicate P) {
  return std::find_if_not(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::remove_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto remove_if(R &&Range, UnaryPredicate P) {
  return std::remove_if(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::copy_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt, typename UnaryPredicate>
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
  return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
}

/// Return the single value in \p Range that satisfies
/// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
/// when no values or multiple values were found.
/// When \p AllowRepeats is true, multiple values that compare equal
/// are allowed.
template <typename T, typename R, typename Predicate>
T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
  T *RC = nullptr;
  for (auto &&A : Range) {
    if (T *PRC = P(A, AllowRepeats)) {
      if (RC) {
        if (!AllowRepeats || PRC != RC)
          return nullptr;
      } else
        RC = PRC;
    }
  }
  return RC;
}

/// Return a pair consisting of the single value in \p Range that satisfies
/// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
/// nullptr when no values or multiple values were found, and a bool indicating
/// whether multiple values were found to cause the nullptr.
/// When \p AllowRepeats is true, multiple values that compare equal are
/// allowed.  The predicate \p P returns a pair<T *, bool> where T is the
/// singleton while the bool indicates whether multiples have already been
/// found.  It is expected that first will be nullptr when second is true.
/// This allows using find_singleton_nested within the predicate \P.
template <typename T, typename R, typename Predicate>
std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
                                           bool AllowRepeats = false) {
  T *RC = nullptr;
  for (auto *A : Range) {
    std::pair<T *, bool> PRC = P(A, AllowRepeats);
    if (PRC.second) {
      assert(PRC.first == nullptr &&
             "Inconsistent return values in find_singleton_nested.");
      return PRC;
    }
    if (PRC.first) {
      if (RC) {
        if (!AllowRepeats || PRC.first != RC)
          return {nullptr, true};
      } else
        RC = PRC.first;
    }
  }
  return {RC, false};
}

template <typename R, typename OutputIt>
OutputIt copy(R &&Range, OutputIt Out) {
  return std::copy(adl_begin(Range), adl_end(Range), Out);
}

/// Provide wrappers to std::replace_copy_if which take ranges instead of having
/// to pass begin/end explicitly.
template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
                         const T &NewValue) {
  return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
                              NewValue);
}

/// Provide wrappers to std::replace_copy which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt, typename T>
OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
                      const T &NewValue) {
  return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
                           NewValue);
}

/// Provide wrappers to std::move which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt>
OutputIt move(R &&Range, OutputIt Out) {
  return std::move(adl_begin(Range), adl_end(Range), Out);
}

namespace detail {
template <typename Range, typename Element>
using check_has_member_contains_t =
    decltype(std::declval<Range &>().contains(std::declval<const Element &>()));

template <typename Range, typename Element>
static constexpr bool HasMemberContains =
    is_detected<check_has_member_contains_t, Range, Element>::value;

template <typename Range, typename Element>
using check_has_member_find_t =
    decltype(std::declval<Range &>().find(std::declval<const Element &>()) !=
             std::declval<Range &>().end());

template <typename Range, typename Element>
static constexpr bool HasMemberFind =
    is_detected<check_has_member_find_t, Range, Element>::value;

} // namespace detail

/// Returns true if \p Element is found in \p Range. Delegates the check to
/// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this
/// order of preference. This is intended as the canonical way to check if an
/// element exists in a range in generic code or range type that does not
/// expose a `.contains(Element)` member.
template <typename R, typename E>
bool is_contained(R &&Range, const E &Element) {
  if constexpr (detail::HasMemberContains<R, E>)
    return Range.contains(Element);
  else if constexpr (detail::HasMemberFind<R, E>)
    return Range.find(Element) != Range.end();
  else
    return std::find(adl_begin(Range), adl_end(Range), Element) !=
           adl_end(Range);
}

/// Returns true iff \p Element exists in \p Set. This overload takes \p Set as
/// an initializer list and is `constexpr`-friendly.
template <typename T, typename E>
constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) {
  // TODO: Use std::find when we switch to C++20.
  for (const T &V : Set)
    if (V == Element)
      return true;
  return false;
}

/// Wrapper function around std::is_sorted to check if elements in a range \p R
/// are sorted with respect to a comparator \p C.
template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
  return std::is_sorted(adl_begin(Range), adl_end(Range), C);
}

/// Wrapper function around std::is_sorted to check if elements in a range \p R
/// are sorted in non-descending order.
template <typename R> bool is_sorted(R &&Range) {
  return std::is_sorted(adl_begin(Range), adl_end(Range));
}

/// Wrapper function around std::count to count the number of times an element
/// \p Element occurs in the given range \p Range.
template <typename R, typename E> auto count(R &&Range, const E &Element) {
  return std::count(adl_begin(Range), adl_end(Range), Element);
}

/// Wrapper function around std::count_if to count the number of times an
/// element satisfying a given predicate occurs in a range.
template <typename R, typename UnaryPredicate>
auto count_if(R &&Range, UnaryPredicate P) {
  return std::count_if(adl_begin(Range), adl_end(Range), P);
}

/// Wrapper function around std::transform to apply a function to a range and
/// store the result elsewhere.
template <typename R, typename OutputIt, typename UnaryFunction>
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
  return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
}

/// Provide wrappers to std::partition which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto partition(R &&Range, UnaryPredicate P) {
  return std::partition(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::lower_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
  return std::lower_bound(adl_begin(Range), adl_end(Range),
                          std::forward<T>(Value));
}

template <typename R, typename T, typename Compare>
auto lower_bound(R &&Range, T &&Value, Compare C) {
  return std::lower_bound(adl_begin(Range), adl_end(Range),
                          std::forward<T>(Value), C);
}

/// Provide wrappers to std::upper_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
  return std::upper_bound(adl_begin(Range), adl_end(Range),
                          std::forward<T>(Value));
}

template <typename R, typename T, typename Compare>
auto upper_bound(R &&Range, T &&Value, Compare C) {
  return std::upper_bound(adl_begin(Range), adl_end(Range),
                          std::forward<T>(Value), C);
}

template <typename R>
void stable_sort(R &&Range) {
  std::stable_sort(adl_begin(Range), adl_end(Range));
}

template <typename R, typename Compare>
void stable_sort(R &&Range, Compare C) {
  std::stable_sort(adl_begin(Range), adl_end(Range), C);
}

/// Binary search for the first iterator in a range where a predicate is false.
/// Requires that C is always true below some limit, and always false above it.
template <typename R, typename Predicate,
          typename Val = decltype(*adl_begin(std::declval<R>()))>
auto partition_point(R &&Range, Predicate P) {
  return std::partition_point(adl_begin(Range), adl_end(Range), P);
}

template<typename Range, typename Predicate>
auto unique(Range &&R, Predicate P) {
  return std::unique(adl_begin(R), adl_end(R), P);
}

/// Wrapper function around std::equal to detect if pair-wise elements between
/// two ranges are the same.
template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
  return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
                    adl_end(RRange));
}

/// Returns true if all elements in Range are equal or when the Range is empty.
template <typename R> bool all_equal(R &&Range) {
  auto Begin = adl_begin(Range);
  auto End = adl_end(Range);
  return Begin == End || std::equal(Begin + 1, End, Begin);
}

/// Returns true if all Values in the initializer lists are equal or the list
// is empty.
template <typename T> bool all_equal(std::initializer_list<T> Values) {
  return all_equal<std::initializer_list<T>>(std::move(Values));
}

/// Provide a container algorithm similar to C++ Library Fundamentals v2's
/// `erase_if` which is equivalent to:
///
///   C.erase(remove_if(C, pred), C.end());
///
/// This version works for any container with an erase method call accepting
/// two iterators.
template <typename Container, typename UnaryPredicate>
void erase_if(Container &C, UnaryPredicate P) {
  C.erase(remove_if(C, P), C.end());
}

/// Wrapper function to remove a value from a container:
///
/// C.erase(remove(C.begin(), C.end(), V), C.end());
template <typename Container, typename ValueType>
void erase(Container &C, ValueType V) {
  C.erase(std::remove(C.begin(), C.end(), V), C.end());
}

template <typename Container, typename ValueType>
LLVM_DEPRECATED("Use erase instead", "erase")
void erase_value(Container &C, ValueType V) {
  erase(C, V);
}

/// Wrapper function to append range `R` to container `C`.
///
/// C.insert(C.end(), R.begin(), R.end());
template <typename Container, typename Range>
void append_range(Container &C, Range &&R) {
  C.insert(C.end(), adl_begin(R), adl_end(R));
}

/// Appends all `Values` to container `C`.
template <typename Container, typename... Args>
void append_values(Container &C, Args &&...Values) {
  C.reserve(range_size(C) + sizeof...(Args));
  // Append all values one by one.
  ((void)C.insert(C.end(), std::forward<Args>(Values)), ...);
}

/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
/// the range [ValIt, ValEnd) (which is not from the same container).
template<typename Container, typename RandomAccessIterator>
void replace(Container &Cont, typename Container::iterator ContIt,
             typename Container::iterator ContEnd, RandomAccessIterator ValIt,
             RandomAccessIterator ValEnd) {
  while (true) {
    if (ValIt == ValEnd) {
      Cont.erase(ContIt, ContEnd);
      return;
    } else if (ContIt == ContEnd) {
      Cont.insert(ContIt, ValIt, ValEnd);
      return;
    }
    *ContIt++ = *ValIt++;
  }
}

/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
/// the range R.
template<typename Container, typename Range = std::initializer_list<
                                 typename Container::value_type>>
void replace(Container &Cont, typename Container::iterator ContIt,
             typename Container::iterator ContEnd, Range R) {
  replace(Cont, ContIt, ContEnd, R.begin(), R.end());
}

/// An STL-style algorithm similar to std::for_each that applies a second
/// functor between every pair of elements.
///
/// This provides the control flow logic to, for example, print a
/// comma-separated list:
/// \code
///   interleave(names.begin(), names.end(),
///              [&](StringRef name) { os << name; },
///              [&] { os << ", "; });
/// \endcode
template <typename ForwardIterator, typename UnaryFunctor,
          typename NullaryFunctor,
          typename = std::enable_if_t<
              !std::is_constructible<StringRef, UnaryFunctor>::value &&
              !std::is_constructible<StringRef, NullaryFunctor>::value>>
inline void interleave(ForwardIterator begin, ForwardIterator end,
                       UnaryFunctor each_fn, NullaryFunctor between_fn) {
  if (begin == end)
    return;
  each_fn(*begin);
  ++begin;
  for (; begin != end; ++begin) {
    between_fn();
    each_fn(*begin);
  }
}

template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
          typename = std::enable_if_t<
              !std::is_constructible<StringRef, UnaryFunctor>::value &&
              !std::is_constructible<StringRef, NullaryFunctor>::value>>
inline void interleave(const Container &c, UnaryFunctor each_fn,
                       NullaryFunctor between_fn) {
  interleave(c.begin(), c.end(), each_fn, between_fn);
}

/// Overload of interleave for the common case of string separator.
template <typename Container, typename UnaryFunctor, typename StreamT,
          typename T = detail::ValueOfRange<Container>>
inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
                       const StringRef &separator) {
  interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
}
template <typename Container, typename StreamT,
          typename T = detail::ValueOfRange<Container>>
inline void interleave(const Container &c, StreamT &os,
                       const StringRef &separator) {
  interleave(
      c, os, [&](const T &a) { os << a; }, separator);
}

template <typename Container, typename UnaryFunctor, typename StreamT,
          typename T = detail::ValueOfRange<Container>>
inline void interleaveComma(const Container &c, StreamT &os,
                            UnaryFunctor each_fn) {
  interleave(c, os, each_fn, ", ");
}
template <typename Container, typename StreamT,
          typename T = detail::ValueOfRange<Container>>
inline void interleaveComma(const Container &c, StreamT &os) {
  interleaveComma(c, os, [&](const T &a) { os << a; });
}

//===----------------------------------------------------------------------===//
//     Extra additions to <memory>
//===----------------------------------------------------------------------===//

struct FreeDeleter {
  void operator()(void* v) {
    ::free(v);
  }
};

template<typename First, typename Second>
struct pair_hash {
  size_t operator()(const std::pair<First, Second> &P) const {
    return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
  }
};

/// Binary functor that adapts to any other binary functor after dereferencing
/// operands.
template <typename T> struct deref {
  T func;

  // Could be further improved to cope with non-derivable functors and
  // non-binary functors (should be a variadic template member function
  // operator()).
  template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
    assert(lhs);
    assert(rhs);
    return func(*lhs, *rhs);
  }
};

namespace detail {

/// Tuple-like type for `zip_enumerator` dereference.
template <typename... Refs> struct enumerator_result;

template <typename... Iters>
using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>;

/// Zippy iterator that uses the second iterator for comparisons. For the
/// increment to be safe, the second range has to be the shortest.
/// Returns `enumerator_result` on dereference to provide `.index()` and
/// `.value()` member functions.
/// Note: Because the dereference operator returns `enumerator_result` as a
/// value instead of a reference and does not strictly conform to the C++17's
/// definition of forward iterator. However, it satisfies all the
/// forward_iterator requirements that the `zip_common` and `zippy` depend on
/// and fully conforms to the C++20 definition of forward iterator.
/// This is similar to `std::vector<bool>::iterator` that returns bit reference
/// wrappers on dereference.
template <typename... Iters>
struct zip_enumerator : zip_common<zip_enumerator<Iters...>,
                                   EnumeratorTupleType<Iters...>, Iters...> {
  static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees");
  using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>,
                   Iters...>::zip_common;

  bool operator==(const zip_enumerator &Other) const {
    return std::get<1>(this->iterators) == std::get<1>(Other.iterators);
  }
};

template <typename... Refs> struct enumerator_result<std::size_t, Refs...> {
  static constexpr std::size_t NumRefs = sizeof...(Refs);
  static_assert(NumRefs != 0);
  // `NumValues` includes the index.
  static constexpr std::size_t NumValues = NumRefs + 1;

  // Tuple type whose element types are references for each `Ref`.
  using range_reference_tuple = std::tuple<Refs...>;
  // Tuple type who elements are references to all values, including both
  // the index and `Refs` reference types.
  using value_reference_tuple = std::tuple<std::size_t, Refs...>;

  enumerator_result(std::size_t Index, Refs &&...Rs)
      : Idx(Index), Storage(std::forward<Refs>(Rs)...) {}

  /// Returns the 0-based index of the current position within the original
  /// input range(s).
  std::size_t index() const { return Idx; }

  /// Returns the value(s) for the current iterator. This does not include the
  /// index.
  decltype(auto) value() const {
    if constexpr (NumRefs == 1)
      return std::get<0>(Storage);
    else
      return Storage;
  }

  /// Returns the value at index `I`. This case covers the index.
  template <std::size_t I, typename = std::enable_if_t<I == 0>>
  friend std::size_t get(const enumerator_result &Result) {
    return Result.Idx;
  }

  /// Returns the value at index `I`. This case covers references to the
  /// iteratees.
  template <std::size_t I, typename = std::enable_if_t<I != 0>>
  friend decltype(auto) get(const enumerator_result &Result) {
    // Note: This is a separate function from the other `get`, instead of an
    // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler
    // (Visual Studio 2022 17.1) return type deduction bug.
    return std::get<I - 1>(Result.Storage);
  }

  template <typename... Ts>
  friend bool operator==(const enumerator_result &Result,
                         const std::tuple<std::size_t, Ts...> &Other) {
    static_assert(NumRefs == sizeof...(Ts), "Size mismatch");
    if (Result.Idx != std::get<0>(Other))
      return false;
    return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{});
  }

private:
  template <typename Tuple, std::size_t... Idx>
  bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const {
    return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...);
  }

  std::size_t Idx;
  // Make this tuple mutable to avoid casts that obfuscate const-correctness
  // issues. Const-correctness of references is taken care of by `zippy` that
  // defines const-non and const iterator types that will propagate down to
  // `enumerator_result`'s `Refs`.
  //  Note that unlike the results of `zip*` functions, `enumerate`'s result are
  //  supposed to be modifiable even when defined as
  // `const`.
  mutable range_reference_tuple Storage;
};

struct index_iterator
    : llvm::iterator_facade_base<index_iterator,
                                 std::random_access_iterator_tag, std::size_t> {
  index_iterator(std::size_t Index) : Index(Index) {}

  index_iterator &operator+=(std::ptrdiff_t N) {
    Index += N;
    return *this;
  }

  index_iterator &operator-=(std::ptrdiff_t N) {
    Index -= N;
    return *this;
  }

  std::ptrdiff_t operator-(const index_iterator &R) const {
    return Index - R.Index;
  }

  // Note: This dereference operator returns a value instead of a reference
  // and does not strictly conform to the C++17's definition of forward
  // iterator. However, it satisfies all the forward_iterator requirements
  // that the `zip_common` depends on and fully conforms to the C++20
  // definition of forward iterator.
  std::size_t operator*() const { return Index; }

  friend bool operator==(const index_iterator &Lhs, const index_iterator &Rhs) {
    return Lhs.Index == Rhs.Index;
  }

  friend bool operator<(const index_iterator &Lhs, const index_iterator &Rhs) {
    return Lhs.Index < Rhs.Index;
  }

private:
  std::size_t Index;
};

/// Infinite stream of increasing 0-based `size_t` indices.
struct index_stream {
  index_iterator begin() const { return {0}; }
  index_iterator end() const {
    // We approximate 'infinity' with the max size_t value, which should be good
    // enough to index over any container.
    return index_iterator{std::numeric_limits<std::size_t>::max()};
  }
};

} // end namespace detail

/// Increasing range of `size_t` indices.
class index_range {
  std::size_t Begin;
  std::size_t End;

public:
  index_range(std::size_t Begin, std::size_t End) : Begin(Begin), End(End) {}
  detail::index_iterator begin() const { return {Begin}; }
  detail::index_iterator end() const { return {End}; }
};

/// Given two or more input ranges, returns a new range whose values are are
/// tuples (A, B, C, ...), such that A is the 0-based index of the item in the
/// sequence, and B, C, ..., are the values from the original input ranges. All
/// input ranges are required to have equal lengths. Note that the returned
/// iterator allows for the values (B, C, ...) to be modified.  Example:
///
/// ```c++
/// std::vector<char> Letters = {'A', 'B', 'C', 'D'};
/// std::vector<int> Vals = {10, 11, 12, 13};
///
/// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) {
///   printf("Item %zu - %c: %d\n", Index, Letter, Value);
///   Value -= 10;
/// }
/// ```
///
/// Output:
///   Item 0 - A: 10
///   Item 1 - B: 11
///   Item 2 - C: 12
///   Item 3 - D: 13
///
/// or using an iterator:
/// ```c++
/// for (auto it : enumerate(Vals)) {
///   it.value() += 10;
///   printf("Item %zu: %d\n", it.index(), it.value());
/// }
/// ```
///
/// Output:
///   Item 0: 20
///   Item 1: 21
///   Item 2: 22
///   Item 3: 23
///
template <typename FirstRange, typename... RestRanges>
auto enumerate(FirstRange &&First, RestRanges &&...Rest) {
  if constexpr (sizeof...(Rest) != 0) {
#ifndef NDEBUG
    // Note: Create an array instead of an initializer list to work around an
    // Apple clang 14 compiler bug.
    size_t sizes[] = {range_size(First), range_size(Rest)...};
    assert(all_equal(sizes) && "Ranges have different length");
#endif
  }
  using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream,
                                   FirstRange, RestRanges...>;
  return enumerator(detail::index_stream{}, std::forward<FirstRange>(First),
                    std::forward<RestRanges>(Rest)...);
}

namespace detail {

template <typename Predicate, typename... Args>
bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
  auto z = zip(args...);
  auto it = z.begin();
  auto end = z.end();
  while (it != end) {
    if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
      return false;
    ++it;
  }
  return it.all_equals(end);
}

// Just an adaptor to switch the order of argument and have the predicate before
// the zipped inputs.
template <typename... ArgsThenPredicate, size_t... InputIndexes>
bool all_of_zip_predicate_last(
    std::tuple<ArgsThenPredicate...> argsThenPredicate,
    std::index_sequence<InputIndexes...>) {
  auto constexpr OutputIndex =
      std::tuple_size<decltype(argsThenPredicate)>::value - 1;
  return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
                             std::get<InputIndexes>(argsThenPredicate)...);
}

} // end namespace detail

/// Compare two zipped ranges using the provided predicate (as last argument).
/// Return true if all elements satisfy the predicate and false otherwise.
//  Return false if the zipped iterator aren't all at end (size mismatch).
template <typename... ArgsAndPredicate>
bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
  return detail::all_of_zip_predicate_last(
      std::forward_as_tuple(argsAndPredicate...),
      std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
}

/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
/// Can optionally take a predicate to filter lazily some items.
template <typename IterTy,
          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItems(
    IterTy &&Begin, IterTy &&End, unsigned N,
    Pred &&ShouldBeCounted =
        [](const decltype(*std::declval<IterTy>()) &) { return true; },
    std::enable_if_t<
        !std::is_base_of<std::random_access_iterator_tag,
                         typename std::iterator_traits<std::remove_reference_t<
                             decltype(Begin)>>::iterator_category>::value,
        void> * = nullptr) {
  for (; N; ++Begin) {
    if (Begin == End)
      return false; // Too few.
    N -= ShouldBeCounted(*Begin);
  }
  for (; Begin != End; ++Begin)
    if (ShouldBeCounted(*Begin))
      return false; // Too many.
  return true;
}

/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
/// Can optionally take a predicate to lazily filter some items.
template <typename IterTy,
          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItemsOrMore(
    IterTy &&Begin, IterTy &&End, unsigned N,
    Pred &&ShouldBeCounted =
        [](const decltype(*std::declval<IterTy>()) &) { return true; },
    std::enable_if_t<
        !std::is_base_of<std::random_access_iterator_tag,
                         typename std::iterator_traits<std::remove_reference_t<
                             decltype(Begin)>>::iterator_category>::value,
        void> * = nullptr) {
  for (; N; ++Begin) {
    if (Begin == End)
      return false; // Too few.
    N -= ShouldBeCounted(*Begin);
  }
  return true;
}

/// Returns true if the sequence [Begin, End) has N or less items. Can
/// optionally take a predicate to lazily filter some items.
template <typename IterTy,
          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItemsOrLess(
    IterTy &&Begin, IterTy &&End, unsigned N,
    Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
      return true;
    }) {
  assert(N != std::numeric_limits<unsigned>::max());
  return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
}

/// Returns true if the given container has exactly N items
template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
  return hasNItems(std::begin(C), std::end(C), N);
}

/// Returns true if the given container has N or more items
template <typename ContainerTy>
bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
  return hasNItemsOrMore(std::begin(C), std::end(C), N);
}

/// Returns true if the given container has N or less items
template <typename ContainerTy>
bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
  return hasNItemsOrLess(std::begin(C), std::end(C), N);
}

/// Returns a raw pointer that represents the same address as the argument.
///
/// This implementation can be removed once we move to C++20 where it's defined
/// as std::to_address().
///
/// The std::pointer_traits<>::to_address(p) variations of these overloads has
/// not been implemented.
template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
template <class T> constexpr T *to_address(T *P) { return P; }

// Detect incomplete types, relying on the fact that their size is unknown.
namespace detail {
template <typename T> using has_sizeof = decltype(sizeof(T));
} // namespace detail

/// Detects when type `T` is incomplete. This is true for forward declarations
/// and false for types with a full definition.
template <typename T>
constexpr bool is_incomplete_v = !is_detected<detail::has_sizeof, T>::value;

} // end namespace llvm

namespace std {
template <typename... Refs>
struct tuple_size<llvm::detail::enumerator_result<Refs...>>
    : std::integral_constant<std::size_t, sizeof...(Refs)> {};

template <std::size_t I, typename... Refs>
struct tuple_element<I, llvm::detail::enumerator_result<Refs...>>
    : std::tuple_element<I, std::tuple<Refs...>> {};

template <std::size_t I, typename... Refs>
struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>>
    : std::tuple_element<I, std::tuple<Refs...>> {};

} // namespace std

#endif // LLVM_ADT_STLEXTRAS_H