aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/include/llvm/ADT/SmallVector.h
blob: 53a107b1574c6a35c66c7fe3c61deb2ffc84b991 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the SmallVector class.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_SMALLVECTOR_H
#define LLVM_ADT_SMALLVECTOR_H

#include "llvm/Support/Compiler.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>

namespace llvm {

template <typename T> class ArrayRef;

template <typename IteratorT> class iterator_range;

template <class Iterator>
using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible<
    typename std::iterator_traits<Iterator>::iterator_category,
    std::input_iterator_tag>::value>;

/// This is all the stuff common to all SmallVectors.
///
/// The template parameter specifies the type which should be used to hold the
/// Size and Capacity of the SmallVector, so it can be adjusted.
/// Using 32 bit size is desirable to shrink the size of the SmallVector.
/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
/// buffering bitcode output - which can exceed 4GB.
template <class Size_T> class SmallVectorBase {
protected:
  void *BeginX;
  Size_T Size = 0, Capacity;

  /// The maximum value of the Size_T used.
  static constexpr size_t SizeTypeMax() {
    return std::numeric_limits<Size_T>::max();
  }

  SmallVectorBase() = delete;
  SmallVectorBase(void *FirstEl, size_t TotalCapacity)
      : BeginX(FirstEl), Capacity(TotalCapacity) {}

  /// This is a helper for \a grow() that's out of line to reduce code
  /// duplication.  This function will report a fatal error if it can't grow at
  /// least to \p MinSize.
  void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize,
                      size_t &NewCapacity);

  /// This is an implementation of the grow() method which only works
  /// on POD-like data types and is out of line to reduce code duplication.
  /// This function will report a fatal error if it cannot increase capacity.
  void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);

  /// If vector was first created with capacity 0, getFirstEl() points to the
  /// memory right after, an area unallocated. If a subsequent allocation,
  /// that grows the vector, happens to return the same pointer as getFirstEl(),
  /// get a new allocation, otherwise isSmall() will falsely return that no
  /// allocation was done (true) and the memory will not be freed in the
  /// destructor. If a VSize is given (vector size), also copy that many
  /// elements to the new allocation - used if realloca fails to increase
  /// space, and happens to allocate precisely at BeginX.
  /// This is unlikely to be called often, but resolves a memory leak when the
  /// situation does occur.
  void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity,
                          size_t VSize = 0);

public:
  size_t size() const { return Size; }
  size_t capacity() const { return Capacity; }

  [[nodiscard]] bool empty() const { return !Size; }

protected:
  /// Set the array size to \p N, which the current array must have enough
  /// capacity for.
  ///
  /// This does not construct or destroy any elements in the vector.
  void set_size(size_t N) {
    assert(N <= capacity());
    Size = N;
  }
};

template <class T>
using SmallVectorSizeType =
    std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
                       uint32_t>;

/// Figure out the offset of the first element.
template <class T, typename = void> struct SmallVectorAlignmentAndSize {
  alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
      SmallVectorBase<SmallVectorSizeType<T>>)];
  alignas(T) char FirstEl[sizeof(T)];
};

/// This is the part of SmallVectorTemplateBase which does not depend on whether
/// the type T is a POD. The extra dummy template argument is used by ArrayRef
/// to avoid unnecessarily requiring T to be complete.
template <typename T, typename = void>
class SmallVectorTemplateCommon
    : public SmallVectorBase<SmallVectorSizeType<T>> {
  using Base = SmallVectorBase<SmallVectorSizeType<T>>;

protected:
  /// Find the address of the first element.  For this pointer math to be valid
  /// with small-size of 0 for T with lots of alignment, it's important that
  /// SmallVectorStorage is properly-aligned even for small-size of 0.
  void *getFirstEl() const {
    return const_cast<void *>(reinterpret_cast<const void *>(
        reinterpret_cast<const char *>(this) +
        offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
  }
  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.

  SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}

  void grow_pod(size_t MinSize, size_t TSize) {
    Base::grow_pod(getFirstEl(), MinSize, TSize);
  }

  /// Return true if this is a smallvector which has not had dynamic
  /// memory allocated for it.
  bool isSmall() const { return this->BeginX == getFirstEl(); }

  /// Put this vector in a state of being small.
  void resetToSmall() {
    this->BeginX = getFirstEl();
    this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
  }

  /// Return true if V is an internal reference to the given range.
  bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
    // Use std::less to avoid UB.
    std::less<> LessThan;
    return !LessThan(V, First) && LessThan(V, Last);
  }

  /// Return true if V is an internal reference to this vector.
  bool isReferenceToStorage(const void *V) const {
    return isReferenceToRange(V, this->begin(), this->end());
  }

  /// Return true if First and Last form a valid (possibly empty) range in this
  /// vector's storage.
  bool isRangeInStorage(const void *First, const void *Last) const {
    // Use std::less to avoid UB.
    std::less<> LessThan;
    return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
           !LessThan(this->end(), Last);
  }

  /// Return true unless Elt will be invalidated by resizing the vector to
  /// NewSize.
  bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
    // Past the end.
    if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
      return true;

    // Return false if Elt will be destroyed by shrinking.
    if (NewSize <= this->size())
      return Elt < this->begin() + NewSize;

    // Return false if we need to grow.
    return NewSize <= this->capacity();
  }

  /// Check whether Elt will be invalidated by resizing the vector to NewSize.
  void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
    assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
           "Attempting to reference an element of the vector in an operation "
           "that invalidates it");
  }

  /// Check whether Elt will be invalidated by increasing the size of the
  /// vector by N.
  void assertSafeToAdd(const void *Elt, size_t N = 1) {
    this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
  }

  /// Check whether any part of the range will be invalidated by clearing.
  void assertSafeToReferenceAfterClear(const T *From, const T *To) {
    if (From == To)
      return;
    this->assertSafeToReferenceAfterResize(From, 0);
    this->assertSafeToReferenceAfterResize(To - 1, 0);
  }
  template <
      class ItTy,
      std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
                       bool> = false>
  void assertSafeToReferenceAfterClear(ItTy, ItTy) {}

  /// Check whether any part of the range will be invalidated by growing.
  void assertSafeToAddRange(const T *From, const T *To) {
    if (From == To)
      return;
    this->assertSafeToAdd(From, To - From);
    this->assertSafeToAdd(To - 1, To - From);
  }
  template <
      class ItTy,
      std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
                       bool> = false>
  void assertSafeToAddRange(ItTy, ItTy) {}

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  template <class U>
  static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
                                                   size_t N) {
    size_t NewSize = This->size() + N;
    if (LLVM_LIKELY(NewSize <= This->capacity()))
      return &Elt;

    bool ReferencesStorage = false;
    int64_t Index = -1;
    if (!U::TakesParamByValue) {
      if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
        ReferencesStorage = true;
        Index = &Elt - This->begin();
      }
    }
    This->grow(NewSize);
    return ReferencesStorage ? This->begin() + Index : &Elt;
  }

public:
  using size_type = size_t;
  using difference_type = ptrdiff_t;
  using value_type = T;
  using iterator = T *;
  using const_iterator = const T *;

  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
  using reverse_iterator = std::reverse_iterator<iterator>;

  using reference = T &;
  using const_reference = const T &;
  using pointer = T *;
  using const_pointer = const T *;

  using Base::capacity;
  using Base::empty;
  using Base::size;

  // forward iterator creation methods.
  iterator begin() { return (iterator)this->BeginX; }
  const_iterator begin() const { return (const_iterator)this->BeginX; }
  iterator end() { return begin() + size(); }
  const_iterator end() const { return begin() + size(); }

  // reverse iterator creation methods.
  reverse_iterator rbegin()            { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
  reverse_iterator rend()              { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}

  size_type size_in_bytes() const { return size() * sizeof(T); }
  size_type max_size() const {
    return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
  }

  size_t capacity_in_bytes() const { return capacity() * sizeof(T); }

  /// Return a pointer to the vector's buffer, even if empty().
  pointer data() { return pointer(begin()); }
  /// Return a pointer to the vector's buffer, even if empty().
  const_pointer data() const { return const_pointer(begin()); }

  reference operator[](size_type idx) {
    assert(idx < size());
    return begin()[idx];
  }
  const_reference operator[](size_type idx) const {
    assert(idx < size());
    return begin()[idx];
  }

  reference front() {
    assert(!empty());
    return begin()[0];
  }
  const_reference front() const {
    assert(!empty());
    return begin()[0];
  }

  reference back() {
    assert(!empty());
    return end()[-1];
  }
  const_reference back() const {
    assert(!empty());
    return end()[-1];
  }
};

/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
/// method implementations that are designed to work with non-trivial T's.
///
/// We approximate is_trivially_copyable with trivial move/copy construction and
/// trivial destruction. While the standard doesn't specify that you're allowed
/// copy these types with memcpy, there is no way for the type to observe this.
/// This catches the important case of std::pair<POD, POD>, which is not
/// trivially assignable.
template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) &&
                             (std::is_trivially_move_constructible<T>::value) &&
                             std::is_trivially_destructible<T>::value>
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
  friend class SmallVectorTemplateCommon<T>;

protected:
  static constexpr bool TakesParamByValue = false;
  using ValueParamT = const T &;

  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}

  static void destroy_range(T *S, T *E) {
    while (S != E) {
      --E;
      E->~T();
    }
  }

  /// Move the range [I, E) into the uninitialized memory starting with "Dest",
  /// constructing elements as needed.
  template<typename It1, typename It2>
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    std::uninitialized_move(I, E, Dest);
  }

  /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
  /// constructing elements as needed.
  template<typename It1, typename It2>
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    std::uninitialized_copy(I, E, Dest);
  }

  /// Grow the allocated memory (without initializing new elements), doubling
  /// the size of the allocated memory. Guarantees space for at least one more
  /// element, or MinSize more elements if specified.
  void grow(size_t MinSize = 0);

  /// Create a new allocation big enough for \p MinSize and pass back its size
  /// in \p NewCapacity. This is the first section of \a grow().
  T *mallocForGrow(size_t MinSize, size_t &NewCapacity);

  /// Move existing elements over to the new allocation \p NewElts, the middle
  /// section of \a grow().
  void moveElementsForGrow(T *NewElts);

  /// Transfer ownership of the allocation, finishing up \a grow().
  void takeAllocationForGrow(T *NewElts, size_t NewCapacity);

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
    return this->reserveForParamAndGetAddressImpl(this, Elt, N);
  }

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
    return const_cast<T *>(
        this->reserveForParamAndGetAddressImpl(this, Elt, N));
  }

  static T &&forward_value_param(T &&V) { return std::move(V); }
  static const T &forward_value_param(const T &V) { return V; }

  void growAndAssign(size_t NumElts, const T &Elt) {
    // Grow manually in case Elt is an internal reference.
    size_t NewCapacity;
    T *NewElts = mallocForGrow(NumElts, NewCapacity);
    std::uninitialized_fill_n(NewElts, NumElts, Elt);
    this->destroy_range(this->begin(), this->end());
    takeAllocationForGrow(NewElts, NewCapacity);
    this->set_size(NumElts);
  }

  template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
    // Grow manually in case one of Args is an internal reference.
    size_t NewCapacity;
    T *NewElts = mallocForGrow(0, NewCapacity);
    ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
    moveElementsForGrow(NewElts);
    takeAllocationForGrow(NewElts, NewCapacity);
    this->set_size(this->size() + 1);
    return this->back();
  }

public:
  void push_back(const T &Elt) {
    const T *EltPtr = reserveForParamAndGetAddress(Elt);
    ::new ((void *)this->end()) T(*EltPtr);
    this->set_size(this->size() + 1);
  }

  void push_back(T &&Elt) {
    T *EltPtr = reserveForParamAndGetAddress(Elt);
    ::new ((void *)this->end()) T(::std::move(*EltPtr));
    this->set_size(this->size() + 1);
  }

  void pop_back() {
    this->set_size(this->size() - 1);
    this->end()->~T();
  }
};

// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T, bool TriviallyCopyable>
void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
  size_t NewCapacity;
  T *NewElts = mallocForGrow(MinSize, NewCapacity);
  moveElementsForGrow(NewElts);
  takeAllocationForGrow(NewElts, NewCapacity);
}

template <typename T, bool TriviallyCopyable>
T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow(
    size_t MinSize, size_t &NewCapacity) {
  return static_cast<T *>(
      SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
          this->getFirstEl(), MinSize, sizeof(T), NewCapacity));
}

// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T, bool TriviallyCopyable>
void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
    T *NewElts) {
  // Move the elements over.
  this->uninitialized_move(this->begin(), this->end(), NewElts);

  // Destroy the original elements.
  destroy_range(this->begin(), this->end());
}

// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T, bool TriviallyCopyable>
void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
    T *NewElts, size_t NewCapacity) {
  // If this wasn't grown from the inline copy, deallocate the old space.
  if (!this->isSmall())
    free(this->begin());

  this->BeginX = NewElts;
  this->Capacity = NewCapacity;
}

/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
/// method implementations that are designed to work with trivially copyable
/// T's. This allows using memcpy in place of copy/move construction and
/// skipping destruction.
template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
  friend class SmallVectorTemplateCommon<T>;

protected:
  /// True if it's cheap enough to take parameters by value. Doing so avoids
  /// overhead related to mitigations for reference invalidation.
  static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);

  /// Either const T& or T, depending on whether it's cheap enough to take
  /// parameters by value.
  using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>;

  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}

  // No need to do a destroy loop for POD's.
  static void destroy_range(T *, T *) {}

  /// Move the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template<typename It1, typename It2>
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    // Just do a copy.
    uninitialized_copy(I, E, Dest);
  }

  /// Copy the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template<typename It1, typename It2>
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    // Arbitrary iterator types; just use the basic implementation.
    std::uninitialized_copy(I, E, Dest);
  }

  /// Copy the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template <typename T1, typename T2>
  static void uninitialized_copy(
      T1 *I, T1 *E, T2 *Dest,
      std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * =
          nullptr) {
    // Use memcpy for PODs iterated by pointers (which includes SmallVector
    // iterators): std::uninitialized_copy optimizes to memmove, but we can
    // use memcpy here. Note that I and E are iterators and thus might be
    // invalid for memcpy if they are equal.
    if (I != E)
      memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
  }

  /// Double the size of the allocated memory, guaranteeing space for at
  /// least one more element or MinSize if specified.
  void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
    return this->reserveForParamAndGetAddressImpl(this, Elt, N);
  }

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
    return const_cast<T *>(
        this->reserveForParamAndGetAddressImpl(this, Elt, N));
  }

  /// Copy \p V or return a reference, depending on \a ValueParamT.
  static ValueParamT forward_value_param(ValueParamT V) { return V; }

  void growAndAssign(size_t NumElts, T Elt) {
    // Elt has been copied in case it's an internal reference, side-stepping
    // reference invalidation problems without losing the realloc optimization.
    this->set_size(0);
    this->grow(NumElts);
    std::uninitialized_fill_n(this->begin(), NumElts, Elt);
    this->set_size(NumElts);
  }

  template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
    // Use push_back with a copy in case Args has an internal reference,
    // side-stepping reference invalidation problems without losing the realloc
    // optimization.
    push_back(T(std::forward<ArgTypes>(Args)...));
    return this->back();
  }

public:
  void push_back(ValueParamT Elt) {
    const T *EltPtr = reserveForParamAndGetAddress(Elt);
    memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
    this->set_size(this->size() + 1);
  }

  void pop_back() { this->set_size(this->size() - 1); }
};

/// This class consists of common code factored out of the SmallVector class to
/// reduce code duplication based on the SmallVector 'N' template parameter.
template <typename T>
class SmallVectorImpl : public SmallVectorTemplateBase<T> {
  using SuperClass = SmallVectorTemplateBase<T>;

public:
  using iterator = typename SuperClass::iterator;
  using const_iterator = typename SuperClass::const_iterator;
  using reference = typename SuperClass::reference;
  using size_type = typename SuperClass::size_type;

protected:
  using SmallVectorTemplateBase<T>::TakesParamByValue;
  using ValueParamT = typename SuperClass::ValueParamT;

  // Default ctor - Initialize to empty.
  explicit SmallVectorImpl(unsigned N)
      : SmallVectorTemplateBase<T>(N) {}

  void assignRemote(SmallVectorImpl &&RHS) {
    this->destroy_range(this->begin(), this->end());
    if (!this->isSmall())
      free(this->begin());
    this->BeginX = RHS.BeginX;
    this->Size = RHS.Size;
    this->Capacity = RHS.Capacity;
    RHS.resetToSmall();
  }

public:
  SmallVectorImpl(const SmallVectorImpl &) = delete;

  ~SmallVectorImpl() {
    // Subclass has already destructed this vector's elements.
    // If this wasn't grown from the inline copy, deallocate the old space.
    if (!this->isSmall())
      free(this->begin());
  }

  void clear() {
    this->destroy_range(this->begin(), this->end());
    this->Size = 0;
  }

private:
  // Make set_size() private to avoid misuse in subclasses.
  using SuperClass::set_size;

  template <bool ForOverwrite> void resizeImpl(size_type N) {
    if (N == this->size())
      return;

    if (N < this->size()) {
      this->truncate(N);
      return;
    }

    this->reserve(N);
    for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
      if (ForOverwrite)
        new (&*I) T;
      else
        new (&*I) T();
    this->set_size(N);
  }

public:
  void resize(size_type N) { resizeImpl<false>(N); }

  /// Like resize, but \ref T is POD, the new values won't be initialized.
  void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }

  /// Like resize, but requires that \p N is less than \a size().
  void truncate(size_type N) {
    assert(this->size() >= N && "Cannot increase size with truncate");
    this->destroy_range(this->begin() + N, this->end());
    this->set_size(N);
  }

  void resize(size_type N, ValueParamT NV) {
    if (N == this->size())
      return;

    if (N < this->size()) {
      this->truncate(N);
      return;
    }

    // N > this->size(). Defer to append.
    this->append(N - this->size(), NV);
  }

  void reserve(size_type N) {
    if (this->capacity() < N)
      this->grow(N);
  }

  void pop_back_n(size_type NumItems) {
    assert(this->size() >= NumItems);
    truncate(this->size() - NumItems);
  }

  [[nodiscard]] T pop_back_val() {
    T Result = ::std::move(this->back());
    this->pop_back();
    return Result;
  }

  void swap(SmallVectorImpl &RHS);

  /// Add the specified range to the end of the SmallVector.
  template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
  void append(ItTy in_start, ItTy in_end) {
    this->assertSafeToAddRange(in_start, in_end);
    size_type NumInputs = std::distance(in_start, in_end);
    this->reserve(this->size() + NumInputs);
    this->uninitialized_copy(in_start, in_end, this->end());
    this->set_size(this->size() + NumInputs);
  }

  /// Append \p NumInputs copies of \p Elt to the end.
  void append(size_type NumInputs, ValueParamT Elt) {
    const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
    std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
    this->set_size(this->size() + NumInputs);
  }

  void append(std::initializer_list<T> IL) {
    append(IL.begin(), IL.end());
  }

  void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }

  void assign(size_type NumElts, ValueParamT Elt) {
    // Note that Elt could be an internal reference.
    if (NumElts > this->capacity()) {
      this->growAndAssign(NumElts, Elt);
      return;
    }

    // Assign over existing elements.
    std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
    if (NumElts > this->size())
      std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
    else if (NumElts < this->size())
      this->destroy_range(this->begin() + NumElts, this->end());
    this->set_size(NumElts);
  }

  // FIXME: Consider assigning over existing elements, rather than clearing &
  // re-initializing them - for all assign(...) variants.

  template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
  void assign(ItTy in_start, ItTy in_end) {
    this->assertSafeToReferenceAfterClear(in_start, in_end);
    clear();
    append(in_start, in_end);
  }

  void assign(std::initializer_list<T> IL) {
    clear();
    append(IL);
  }

  void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }

  iterator erase(const_iterator CI) {
    // Just cast away constness because this is a non-const member function.
    iterator I = const_cast<iterator>(CI);

    assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");

    iterator N = I;
    // Shift all elts down one.
    std::move(I+1, this->end(), I);
    // Drop the last elt.
    this->pop_back();
    return(N);
  }

  iterator erase(const_iterator CS, const_iterator CE) {
    // Just cast away constness because this is a non-const member function.
    iterator S = const_cast<iterator>(CS);
    iterator E = const_cast<iterator>(CE);

    assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");

    iterator N = S;
    // Shift all elts down.
    iterator I = std::move(E, this->end(), S);
    // Drop the last elts.
    this->destroy_range(I, this->end());
    this->set_size(I - this->begin());
    return(N);
  }

private:
  template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
    // Callers ensure that ArgType is derived from T.
    static_assert(
        std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
                     T>::value,
        "ArgType must be derived from T!");

    if (I == this->end()) {  // Important special case for empty vector.
      this->push_back(::std::forward<ArgType>(Elt));
      return this->end()-1;
    }

    assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");

    // Grow if necessary.
    size_t Index = I - this->begin();
    std::remove_reference_t<ArgType> *EltPtr =
        this->reserveForParamAndGetAddress(Elt);
    I = this->begin() + Index;

    ::new ((void*) this->end()) T(::std::move(this->back()));
    // Push everything else over.
    std::move_backward(I, this->end()-1, this->end());
    this->set_size(this->size() + 1);

    // If we just moved the element we're inserting, be sure to update
    // the reference (never happens if TakesParamByValue).
    static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
                  "ArgType must be 'T' when taking by value!");
    if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
      ++EltPtr;

    *I = ::std::forward<ArgType>(*EltPtr);
    return I;
  }

public:
  iterator insert(iterator I, T &&Elt) {
    return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
  }

  iterator insert(iterator I, const T &Elt) {
    return insert_one_impl(I, this->forward_value_param(Elt));
  }

  iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    size_t InsertElt = I - this->begin();

    if (I == this->end()) {  // Important special case for empty vector.
      append(NumToInsert, Elt);
      return this->begin()+InsertElt;
    }

    assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");

    // Ensure there is enough space, and get the (maybe updated) address of
    // Elt.
    const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);

    // Uninvalidate the iterator.
    I = this->begin()+InsertElt;

    // If there are more elements between the insertion point and the end of the
    // range than there are being inserted, we can use a simple approach to
    // insertion.  Since we already reserved space, we know that this won't
    // reallocate the vector.
    if (size_t(this->end()-I) >= NumToInsert) {
      T *OldEnd = this->end();
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
             std::move_iterator<iterator>(this->end()));

      // Copy the existing elements that get replaced.
      std::move_backward(I, OldEnd-NumToInsert, OldEnd);

      // If we just moved the element we're inserting, be sure to update
      // the reference (never happens if TakesParamByValue).
      if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
        EltPtr += NumToInsert;

      std::fill_n(I, NumToInsert, *EltPtr);
      return I;
    }

    // Otherwise, we're inserting more elements than exist already, and we're
    // not inserting at the end.

    // Move over the elements that we're about to overwrite.
    T *OldEnd = this->end();
    this->set_size(this->size() + NumToInsert);
    size_t NumOverwritten = OldEnd-I;
    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);

    // If we just moved the element we're inserting, be sure to update
    // the reference (never happens if TakesParamByValue).
    if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
      EltPtr += NumToInsert;

    // Replace the overwritten part.
    std::fill_n(I, NumOverwritten, *EltPtr);

    // Insert the non-overwritten middle part.
    std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
    return I;
  }

  template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
  iterator insert(iterator I, ItTy From, ItTy To) {
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    size_t InsertElt = I - this->begin();

    if (I == this->end()) {  // Important special case for empty vector.
      append(From, To);
      return this->begin()+InsertElt;
    }

    assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");

    // Check that the reserve that follows doesn't invalidate the iterators.
    this->assertSafeToAddRange(From, To);

    size_t NumToInsert = std::distance(From, To);

    // Ensure there is enough space.
    reserve(this->size() + NumToInsert);

    // Uninvalidate the iterator.
    I = this->begin()+InsertElt;

    // If there are more elements between the insertion point and the end of the
    // range than there are being inserted, we can use a simple approach to
    // insertion.  Since we already reserved space, we know that this won't
    // reallocate the vector.
    if (size_t(this->end()-I) >= NumToInsert) {
      T *OldEnd = this->end();
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
             std::move_iterator<iterator>(this->end()));

      // Copy the existing elements that get replaced.
      std::move_backward(I, OldEnd-NumToInsert, OldEnd);

      std::copy(From, To, I);
      return I;
    }

    // Otherwise, we're inserting more elements than exist already, and we're
    // not inserting at the end.

    // Move over the elements that we're about to overwrite.
    T *OldEnd = this->end();
    this->set_size(this->size() + NumToInsert);
    size_t NumOverwritten = OldEnd-I;
    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);

    // Replace the overwritten part.
    for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
      *J = *From;
      ++J; ++From;
    }

    // Insert the non-overwritten middle part.
    this->uninitialized_copy(From, To, OldEnd);
    return I;
  }

  void insert(iterator I, std::initializer_list<T> IL) {
    insert(I, IL.begin(), IL.end());
  }

  template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
      return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);

    ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
    this->set_size(this->size() + 1);
    return this->back();
  }

  SmallVectorImpl &operator=(const SmallVectorImpl &RHS);

  SmallVectorImpl &operator=(SmallVectorImpl &&RHS);

  bool operator==(const SmallVectorImpl &RHS) const {
    if (this->size() != RHS.size()) return false;
    return std::equal(this->begin(), this->end(), RHS.begin());
  }
  bool operator!=(const SmallVectorImpl &RHS) const {
    return !(*this == RHS);
  }

  bool operator<(const SmallVectorImpl &RHS) const {
    return std::lexicographical_compare(this->begin(), this->end(),
                                        RHS.begin(), RHS.end());
  }
  bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; }
  bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); }
  bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); }
};

template <typename T>
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
  if (this == &RHS) return;

  // We can only avoid copying elements if neither vector is small.
  if (!this->isSmall() && !RHS.isSmall()) {
    std::swap(this->BeginX, RHS.BeginX);
    std::swap(this->Size, RHS.Size);
    std::swap(this->Capacity, RHS.Capacity);
    return;
  }
  this->reserve(RHS.size());
  RHS.reserve(this->size());

  // Swap the shared elements.
  size_t NumShared = this->size();
  if (NumShared > RHS.size()) NumShared = RHS.size();
  for (size_type i = 0; i != NumShared; ++i)
    std::swap((*this)[i], RHS[i]);

  // Copy over the extra elts.
  if (this->size() > RHS.size()) {
    size_t EltDiff = this->size() - RHS.size();
    this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
    RHS.set_size(RHS.size() + EltDiff);
    this->destroy_range(this->begin()+NumShared, this->end());
    this->set_size(NumShared);
  } else if (RHS.size() > this->size()) {
    size_t EltDiff = RHS.size() - this->size();
    this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
    this->set_size(this->size() + EltDiff);
    this->destroy_range(RHS.begin()+NumShared, RHS.end());
    RHS.set_size(NumShared);
  }
}

template <typename T>
SmallVectorImpl<T> &SmallVectorImpl<T>::
  operator=(const SmallVectorImpl<T> &RHS) {
  // Avoid self-assignment.
  if (this == &RHS) return *this;

  // If we already have sufficient space, assign the common elements, then
  // destroy any excess.
  size_t RHSSize = RHS.size();
  size_t CurSize = this->size();
  if (CurSize >= RHSSize) {
    // Assign common elements.
    iterator NewEnd;
    if (RHSSize)
      NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
    else
      NewEnd = this->begin();

    // Destroy excess elements.
    this->destroy_range(NewEnd, this->end());

    // Trim.
    this->set_size(RHSSize);
    return *this;
  }

  // If we have to grow to have enough elements, destroy the current elements.
  // This allows us to avoid copying them during the grow.
  // FIXME: don't do this if they're efficiently moveable.
  if (this->capacity() < RHSSize) {
    // Destroy current elements.
    this->clear();
    CurSize = 0;
    this->grow(RHSSize);
  } else if (CurSize) {
    // Otherwise, use assignment for the already-constructed elements.
    std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
  }

  // Copy construct the new elements in place.
  this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
                           this->begin()+CurSize);

  // Set end.
  this->set_size(RHSSize);
  return *this;
}

template <typename T>
SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
  // Avoid self-assignment.
  if (this == &RHS) return *this;

  // If the RHS isn't small, clear this vector and then steal its buffer.
  if (!RHS.isSmall()) {
    this->assignRemote(std::move(RHS));
    return *this;
  }

  // If we already have sufficient space, assign the common elements, then
  // destroy any excess.
  size_t RHSSize = RHS.size();
  size_t CurSize = this->size();
  if (CurSize >= RHSSize) {
    // Assign common elements.
    iterator NewEnd = this->begin();
    if (RHSSize)
      NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);

    // Destroy excess elements and trim the bounds.
    this->destroy_range(NewEnd, this->end());
    this->set_size(RHSSize);

    // Clear the RHS.
    RHS.clear();

    return *this;
  }

  // If we have to grow to have enough elements, destroy the current elements.
  // This allows us to avoid copying them during the grow.
  // FIXME: this may not actually make any sense if we can efficiently move
  // elements.
  if (this->capacity() < RHSSize) {
    // Destroy current elements.
    this->clear();
    CurSize = 0;
    this->grow(RHSSize);
  } else if (CurSize) {
    // Otherwise, use assignment for the already-constructed elements.
    std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
  }

  // Move-construct the new elements in place.
  this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
                           this->begin()+CurSize);

  // Set end.
  this->set_size(RHSSize);

  RHS.clear();
  return *this;
}

/// Storage for the SmallVector elements.  This is specialized for the N=0 case
/// to avoid allocating unnecessary storage.
template <typename T, unsigned N>
struct SmallVectorStorage {
  alignas(T) char InlineElts[N * sizeof(T)];
};

/// We need the storage to be properly aligned even for small-size of 0 so that
/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
/// well-defined.
template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};

/// Forward declaration of SmallVector so that
/// calculateSmallVectorDefaultInlinedElements can reference
/// `sizeof(SmallVector<T, 0>)`.
template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector;

/// Helper class for calculating the default number of inline elements for
/// `SmallVector<T>`.
///
/// This should be migrated to a constexpr function when our minimum
/// compiler support is enough for multi-statement constexpr functions.
template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
  // Parameter controlling the default number of inlined elements
  // for `SmallVector<T>`.
  //
  // The default number of inlined elements ensures that
  // 1. There is at least one inlined element.
  // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
  // it contradicts 1.
  static constexpr size_t kPreferredSmallVectorSizeof = 64;

  // static_assert that sizeof(T) is not "too big".
  //
  // Because our policy guarantees at least one inlined element, it is possible
  // for an arbitrarily large inlined element to allocate an arbitrarily large
  // amount of inline storage. We generally consider it an antipattern for a
  // SmallVector to allocate an excessive amount of inline storage, so we want
  // to call attention to these cases and make sure that users are making an
  // intentional decision if they request a lot of inline storage.
  //
  // We want this assertion to trigger in pathological cases, but otherwise
  // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
  // larger than kPreferredSmallVectorSizeof (otherwise,
  // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
  // pattern seems useful in practice).
  //
  // One wrinkle is that this assertion is in theory non-portable, since
  // sizeof(T) is in general platform-dependent. However, we don't expect this
  // to be much of an issue, because most LLVM development happens on 64-bit
  // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
  // 32-bit hosts, dodging the issue. The reverse situation, where development
  // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
  // 64-bit host, is expected to be very rare.
  static_assert(
      sizeof(T) <= 256,
      "You are trying to use a default number of inlined elements for "
      "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
      "explicit number of inlined elements with `SmallVector<T, N>` to make "
      "sure you really want that much inline storage.");

  // Discount the size of the header itself when calculating the maximum inline
  // bytes.
  static constexpr size_t PreferredInlineBytes =
      kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
  static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
  static constexpr size_t value =
      NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
};

/// This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small.  It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of
/// elements is below that threshold.  This allows normal "small" cases to be
/// fast without losing generality for large inputs.
///
/// \note
/// In the absence of a well-motivated choice for the number of inlined
/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
/// omitting the \p N). This will choose a default number of inlined elements
/// reasonable for allocation on the stack (for example, trying to keep \c
/// sizeof(SmallVector<T>) around 64 bytes).
///
/// \warning This does not attempt to be exception safe.
///
/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
template <typename T,
          unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>,
                                   SmallVectorStorage<T, N> {
public:
  SmallVector() : SmallVectorImpl<T>(N) {}

  ~SmallVector() {
    // Destroy the constructed elements in the vector.
    this->destroy_range(this->begin(), this->end());
  }

  explicit SmallVector(size_t Size)
    : SmallVectorImpl<T>(N) {
    this->resize(Size);
  }

  SmallVector(size_t Size, const T &Value)
    : SmallVectorImpl<T>(N) {
    this->assign(Size, Value);
  }

  template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
    this->append(S, E);
  }

  template <typename RangeTy>
  explicit SmallVector(const iterator_range<RangeTy> &R)
      : SmallVectorImpl<T>(N) {
    this->append(R.begin(), R.end());
  }

  SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
    this->append(IL);
  }

  template <typename U,
            typename = std::enable_if_t<std::is_convertible<U, T>::value>>
  explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) {
    this->append(A.begin(), A.end());
  }

  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
    if (!RHS.empty())
      SmallVectorImpl<T>::operator=(RHS);
  }

  SmallVector &operator=(const SmallVector &RHS) {
    SmallVectorImpl<T>::operator=(RHS);
    return *this;
  }

  SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
    if (!RHS.empty())
      SmallVectorImpl<T>::operator=(::std::move(RHS));
  }

  SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
    if (!RHS.empty())
      SmallVectorImpl<T>::operator=(::std::move(RHS));
  }

  SmallVector &operator=(SmallVector &&RHS) {
    if (N) {
      SmallVectorImpl<T>::operator=(::std::move(RHS));
      return *this;
    }
    // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the
    // case.
    if (this == &RHS)
      return *this;
    if (RHS.empty()) {
      this->destroy_range(this->begin(), this->end());
      this->Size = 0;
    } else {
      this->assignRemote(std::move(RHS));
    }
    return *this;
  }

  SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
    SmallVectorImpl<T>::operator=(::std::move(RHS));
    return *this;
  }

  SmallVector &operator=(std::initializer_list<T> IL) {
    this->assign(IL);
    return *this;
  }
};

template <typename T, unsigned N>
inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
  return X.capacity_in_bytes();
}

template <typename RangeType>
using ValueTypeFromRangeType =
    std::remove_const_t<std::remove_reference_t<decltype(*std::begin(
        std::declval<RangeType &>()))>>;

/// Given a range of type R, iterate the entire range and return a
/// SmallVector with elements of the vector.  This is useful, for example,
/// when you want to iterate a range and then sort the results.
template <unsigned Size, typename R>
SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) {
  return {std::begin(Range), std::end(Range)};
}
template <typename R>
SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) {
  return {std::begin(Range), std::end(Range)};
}

template <typename Out, unsigned Size, typename R>
SmallVector<Out, Size> to_vector_of(R &&Range) {
  return {std::begin(Range), std::end(Range)};
}

template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) {
  return {std::begin(Range), std::end(Range)};
}

// Explicit instantiations
extern template class llvm::SmallVectorBase<uint32_t>;
#if SIZE_MAX > UINT32_MAX
extern template class llvm::SmallVectorBase<uint64_t>;
#endif

} // end namespace llvm

namespace std {

  /// Implement std::swap in terms of SmallVector swap.
  template<typename T>
  inline void
  swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
    LHS.swap(RHS);
  }

  /// Implement std::swap in terms of SmallVector swap.
  template<typename T, unsigned N>
  inline void
  swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
    LHS.swap(RHS);
  }

} // end namespace std

#endif // LLVM_ADT_SMALLVECTOR_H