aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/CFG.cpp
blob: e5dd45842d6a11df3480b54f74f5eee6ecb9c8fd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions performs analyses on basic blocks, and instructions
// contained within basic blocks.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/Support/CommandLine.h"

using namespace llvm;

// The max number of basic blocks explored during reachability analysis between
// two basic blocks. This is kept reasonably small to limit compile time when
// repeatedly used by clients of this analysis (such as captureTracking).
static cl::opt<unsigned> DefaultMaxBBsToExplore(
    "dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
    cl::desc("Max number of BBs to explore for reachability analysis"),
    cl::init(32));

/// FindFunctionBackedges - Analyze the specified function to find all of the
/// loop backedges in the function and return them.  This is a relatively cheap
/// (compared to computing dominators and loop info) analysis.
///
/// The output is added to Result, as pairs of <from,to> edge info.
void llvm::FindFunctionBackedges(const Function &F,
     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
  const BasicBlock *BB = &F.getEntryBlock();
  if (succ_empty(BB))
    return;

  SmallPtrSet<const BasicBlock*, 8> Visited;
  SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
  SmallPtrSet<const BasicBlock*, 8> InStack;

  Visited.insert(BB);
  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
  InStack.insert(BB);
  do {
    std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
    const BasicBlock *ParentBB = Top.first;
    const_succ_iterator &I = Top.second;

    bool FoundNew = false;
    while (I != succ_end(ParentBB)) {
      BB = *I++;
      if (Visited.insert(BB).second) {
        FoundNew = true;
        break;
      }
      // Successor is in VisitStack, it's a back edge.
      if (InStack.count(BB))
        Result.push_back(std::make_pair(ParentBB, BB));
    }

    if (FoundNew) {
      // Go down one level if there is a unvisited successor.
      InStack.insert(BB);
      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
    } else {
      // Go up one level.
      InStack.erase(VisitStack.pop_back_val().first);
    }
  } while (!VisitStack.empty());
}

/// GetSuccessorNumber - Search for the specified successor of basic block BB
/// and return its position in the terminator instruction's list of
/// successors.  It is an error to call this with a block that is not a
/// successor.
unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
    const BasicBlock *Succ) {
  const Instruction *Term = BB->getTerminator();
#ifndef NDEBUG
  unsigned e = Term->getNumSuccessors();
#endif
  for (unsigned i = 0; ; ++i) {
    assert(i != e && "Didn't find edge?");
    if (Term->getSuccessor(i) == Succ)
      return i;
  }
}

/// isCriticalEdge - Return true if the specified edge is a critical edge.
/// Critical edges are edges from a block with multiple successors to a block
/// with multiple predecessors.
bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
                          bool AllowIdenticalEdges) {
  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
  return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
}

bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
                          bool AllowIdenticalEdges) {
  assert(TI->isTerminator() && "Must be a terminator to have successors!");
  if (TI->getNumSuccessors() == 1) return false;

  assert(is_contained(predecessors(Dest), TI->getParent()) &&
         "No edge between TI's block and Dest.");

  const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);

  // If there is more than one predecessor, this is a critical edge...
  assert(I != E && "No preds, but we have an edge to the block?");
  const BasicBlock *FirstPred = *I;
  ++I;        // Skip one edge due to the incoming arc from TI.
  if (!AllowIdenticalEdges)
    return I != E;

  // If AllowIdenticalEdges is true, then we allow this edge to be considered
  // non-critical iff all preds come from TI's block.
  for (; I != E; ++I)
    if (*I != FirstPred)
      return true;
  return false;
}

// LoopInfo contains a mapping from basic block to the innermost loop. Find
// the outermost loop in the loop nest that contains BB.
static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
  const Loop *L = LI->getLoopFor(BB);
  return L ? L->getOutermostLoop() : nullptr;
}

bool llvm::isPotentiallyReachableFromMany(
    SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
    const LoopInfo *LI) {
  // When the stop block is unreachable, it's dominated from everywhere,
  // regardless of whether there's a path between the two blocks.
  if (DT && !DT->isReachableFromEntry(StopBB))
    DT = nullptr;

  // We can't skip directly from a block that dominates the stop block if the
  // exclusion block is potentially in between.
  if (ExclusionSet && !ExclusionSet->empty())
    DT = nullptr;

  // Normally any block in a loop is reachable from any other block in a loop,
  // however excluded blocks might partition the body of a loop to make that
  // untrue.
  SmallPtrSet<const Loop *, 8> LoopsWithHoles;
  if (LI && ExclusionSet) {
    for (auto *BB : *ExclusionSet) {
      if (const Loop *L = getOutermostLoop(LI, BB))
        LoopsWithHoles.insert(L);
    }
  }

  const Loop *StopLoop = LI ? getOutermostLoop(LI, StopBB) : nullptr;

  unsigned Limit = DefaultMaxBBsToExplore;
  SmallPtrSet<const BasicBlock*, 32> Visited;
  do {
    BasicBlock *BB = Worklist.pop_back_val();
    if (!Visited.insert(BB).second)
      continue;
    if (BB == StopBB)
      return true;
    if (ExclusionSet && ExclusionSet->count(BB))
      continue;
    if (DT && DT->dominates(BB, StopBB))
      return true;

    const Loop *Outer = nullptr;
    if (LI) {
      Outer = getOutermostLoop(LI, BB);
      // If we're in a loop with a hole, not all blocks in the loop are
      // reachable from all other blocks. That implies we can't simply jump to
      // the loop's exit blocks, as that exit might need to pass through an
      // excluded block. Clear Outer so we process BB's successors.
      if (LoopsWithHoles.count(Outer))
        Outer = nullptr;
      if (StopLoop && Outer == StopLoop)
        return true;
    }

    if (!--Limit) {
      // We haven't been able to prove it one way or the other. Conservatively
      // answer true -- that there is potentially a path.
      return true;
    }

    if (Outer) {
      // All blocks in a single loop are reachable from all other blocks. From
      // any of these blocks, we can skip directly to the exits of the loop,
      // ignoring any other blocks inside the loop body.
      Outer->getExitBlocks(Worklist);
    } else {
      Worklist.append(succ_begin(BB), succ_end(BB));
    }
  } while (!Worklist.empty());

  // We have exhausted all possible paths and are certain that 'To' can not be
  // reached from 'From'.
  return false;
}

bool llvm::isPotentiallyReachable(
    const BasicBlock *A, const BasicBlock *B,
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
    const LoopInfo *LI) {
  assert(A->getParent() == B->getParent() &&
         "This analysis is function-local!");

  if (DT) {
    if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B))
      return false;
    if (!ExclusionSet || ExclusionSet->empty()) {
      if (A->isEntryBlock() && DT->isReachableFromEntry(B))
        return true;
      if (B->isEntryBlock() && DT->isReachableFromEntry(A))
        return false;
    }
  }

  SmallVector<BasicBlock*, 32> Worklist;
  Worklist.push_back(const_cast<BasicBlock*>(A));

  return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B),
                                        ExclusionSet, DT, LI);
}

bool llvm::isPotentiallyReachable(
    const Instruction *A, const Instruction *B,
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
    const LoopInfo *LI) {
  assert(A->getParent()->getParent() == B->getParent()->getParent() &&
         "This analysis is function-local!");

  if (A->getParent() == B->getParent()) {
    // The same block case is special because it's the only time we're looking
    // within a single block to see which instruction comes first. Once we
    // start looking at multiple blocks, the first instruction of the block is
    // reachable, so we only need to determine reachability between whole
    // blocks.
    BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());

    // If the block is in a loop then we can reach any instruction in the block
    // from any other instruction in the block by going around a backedge.
    if (LI && LI->getLoopFor(BB) != nullptr)
      return true;

    // If A comes before B, then B is definitively reachable from A.
    if (A == B || A->comesBefore(B))
      return true;

    // Can't be in a loop if it's the entry block -- the entry block may not
    // have predecessors.
    if (BB->isEntryBlock())
      return false;

    // Otherwise, continue doing the normal per-BB CFG walk.
    SmallVector<BasicBlock*, 32> Worklist;
    Worklist.append(succ_begin(BB), succ_end(BB));
    if (Worklist.empty()) {
      // We've proven that there's no path!
      return false;
    }

    return isPotentiallyReachableFromMany(
        Worklist, const_cast<BasicBlock *>(B->getParent()), ExclusionSet,
        DT, LI);
  }

  return isPotentiallyReachable(
      A->getParent(), B->getParent(), ExclusionSet, DT, LI);
}