aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp
blob: b06043fb4c31242298b4671fc915941ced8c5242 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements some simple delegations needed for call lowering.
///
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "call-lowering"

using namespace llvm;

void CallLowering::anchor() {}

/// Helper function which updates \p Flags when \p AttrFn returns true.
static void
addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
                    const std::function<bool(Attribute::AttrKind)> &AttrFn) {
  if (AttrFn(Attribute::SExt))
    Flags.setSExt();
  if (AttrFn(Attribute::ZExt))
    Flags.setZExt();
  if (AttrFn(Attribute::InReg))
    Flags.setInReg();
  if (AttrFn(Attribute::StructRet))
    Flags.setSRet();
  if (AttrFn(Attribute::Nest))
    Flags.setNest();
  if (AttrFn(Attribute::ByVal))
    Flags.setByVal();
  if (AttrFn(Attribute::Preallocated))
    Flags.setPreallocated();
  if (AttrFn(Attribute::InAlloca))
    Flags.setInAlloca();
  if (AttrFn(Attribute::Returned))
    Flags.setReturned();
  if (AttrFn(Attribute::SwiftSelf))
    Flags.setSwiftSelf();
  if (AttrFn(Attribute::SwiftAsync))
    Flags.setSwiftAsync();
  if (AttrFn(Attribute::SwiftError))
    Flags.setSwiftError();
}

ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
                                                     unsigned ArgIdx) const {
  ISD::ArgFlagsTy Flags;
  addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
    return Call.paramHasAttr(ArgIdx, Attr);
  });
  return Flags;
}

void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
                                             const AttributeList &Attrs,
                                             unsigned OpIdx) const {
  addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
    return Attrs.hasAttributeAtIndex(OpIdx, Attr);
  });
}

bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
                             ArrayRef<Register> ResRegs,
                             ArrayRef<ArrayRef<Register>> ArgRegs,
                             Register SwiftErrorVReg,
                             std::function<unsigned()> GetCalleeReg) const {
  CallLoweringInfo Info;
  const DataLayout &DL = MIRBuilder.getDataLayout();
  MachineFunction &MF = MIRBuilder.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  bool CanBeTailCalled = CB.isTailCall() &&
                         isInTailCallPosition(CB, MF.getTarget()) &&
                         (MF.getFunction()
                              .getFnAttribute("disable-tail-calls")
                              .getValueAsString() != "true");

  CallingConv::ID CallConv = CB.getCallingConv();
  Type *RetTy = CB.getType();
  bool IsVarArg = CB.getFunctionType()->isVarArg();

  SmallVector<BaseArgInfo, 4> SplitArgs;
  getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
  Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);

  if (!Info.CanLowerReturn) {
    // Callee requires sret demotion.
    insertSRetOutgoingArgument(MIRBuilder, CB, Info);

    // The sret demotion isn't compatible with tail-calls, since the sret
    // argument points into the caller's stack frame.
    CanBeTailCalled = false;
  }


  // First step is to marshall all the function's parameters into the correct
  // physregs and memory locations. Gather the sequence of argument types that
  // we'll pass to the assigner function.
  unsigned i = 0;
  unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
  for (auto &Arg : CB.args()) {
    ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
                    i < NumFixedArgs};
    setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);

    // If we have an explicit sret argument that is an Instruction, (i.e., it
    // might point to function-local memory), we can't meaningfully tail-call.
    if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
      CanBeTailCalled = false;

    Info.OrigArgs.push_back(OrigArg);
    ++i;
  }

  // Try looking through a bitcast from one function type to another.
  // Commonly happens with calls to objc_msgSend().
  const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
  if (const Function *F = dyn_cast<Function>(CalleeV))
    Info.Callee = MachineOperand::CreateGA(F, 0);
  else
    Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);

  Register ReturnHintAlignReg;
  Align ReturnHintAlign;

  Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};

  if (!Info.OrigRet.Ty->isVoidTy()) {
    setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);

    if (MaybeAlign Alignment = CB.getRetAlign()) {
      if (*Alignment > Align(1)) {
        ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
        Info.OrigRet.Regs[0] = ReturnHintAlignReg;
        ReturnHintAlign = *Alignment;
      }
    }
  }

  Info.CB = &CB;
  Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
  Info.CallConv = CallConv;
  Info.SwiftErrorVReg = SwiftErrorVReg;
  Info.IsMustTailCall = CB.isMustTailCall();
  Info.IsTailCall = CanBeTailCalled;
  Info.IsVarArg = IsVarArg;
  if (!lowerCall(MIRBuilder, Info))
    return false;

  if (ReturnHintAlignReg && !Info.IsTailCall) {
    MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
                                ReturnHintAlign);
  }

  return true;
}

template <typename FuncInfoTy>
void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
                               const DataLayout &DL,
                               const FuncInfoTy &FuncInfo) const {
  auto &Flags = Arg.Flags[0];
  const AttributeList &Attrs = FuncInfo.getAttributes();
  addArgFlagsFromAttributes(Flags, Attrs, OpIdx);

  PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
  if (PtrTy) {
    Flags.setPointer();
    Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
  }

  Align MemAlign = DL.getABITypeAlign(Arg.Ty);
  if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
    assert(OpIdx >= AttributeList::FirstArgIndex);
    unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;

    Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
    if (!ElementTy)
      ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
    if (!ElementTy)
      ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
    assert(ElementTy && "Must have byval, inalloca or preallocated type");
    Flags.setByValSize(DL.getTypeAllocSize(ElementTy));

    // For ByVal, alignment should be passed from FE.  BE will guess if
    // this info is not there but there are cases it cannot get right.
    if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
      MemAlign = *ParamAlign;
    else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
      MemAlign = *ParamAlign;
    else
      MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
  } else if (OpIdx >= AttributeList::FirstArgIndex) {
    if (auto ParamAlign =
            FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
      MemAlign = *ParamAlign;
  }
  Flags.setMemAlign(MemAlign);
  Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));

  // Don't try to use the returned attribute if the argument is marked as
  // swiftself, since it won't be passed in x0.
  if (Flags.isSwiftSelf())
    Flags.setReturned(false);
}

template void
CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
                                    const DataLayout &DL,
                                    const Function &FuncInfo) const;

template void
CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
                                    const DataLayout &DL,
                                    const CallBase &FuncInfo) const;

void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
                                     SmallVectorImpl<ArgInfo> &SplitArgs,
                                     const DataLayout &DL,
                                     CallingConv::ID CallConv,
                                     SmallVectorImpl<uint64_t> *Offsets) const {
  LLVMContext &Ctx = OrigArg.Ty->getContext();

  SmallVector<EVT, 4> SplitVTs;
  ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);

  if (SplitVTs.size() == 0)
    return;

  if (SplitVTs.size() == 1) {
    // No splitting to do, but we want to replace the original type (e.g. [1 x
    // double] -> double).
    SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
                           OrigArg.OrigArgIndex, OrigArg.Flags[0],
                           OrigArg.IsFixed, OrigArg.OrigValue);
    return;
  }

  // Create one ArgInfo for each virtual register in the original ArgInfo.
  assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");

  bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
      OrigArg.Ty, CallConv, false, DL);
  for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
    Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
    SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
                           OrigArg.Flags[0], OrigArg.IsFixed);
    if (NeedsRegBlock)
      SplitArgs.back().Flags[0].setInConsecutiveRegs();
  }

  SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
}

/// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
static MachineInstrBuilder
mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
                            ArrayRef<Register> SrcRegs) {
  MachineRegisterInfo &MRI = *B.getMRI();
  LLT LLTy = MRI.getType(DstRegs[0]);
  LLT PartLLT = MRI.getType(SrcRegs[0]);

  // Deal with v3s16 split into v2s16
  LLT LCMTy = getCoverTy(LLTy, PartLLT);
  if (LCMTy == LLTy) {
    // Common case where no padding is needed.
    assert(DstRegs.size() == 1);
    return B.buildConcatVectors(DstRegs[0], SrcRegs);
  }

  // We need to create an unmerge to the result registers, which may require
  // widening the original value.
  Register UnmergeSrcReg;
  if (LCMTy != PartLLT) {
    assert(DstRegs.size() == 1);
    return B.buildDeleteTrailingVectorElements(DstRegs[0],
                                               B.buildMerge(LCMTy, SrcRegs));
  } else {
    // We don't need to widen anything if we're extracting a scalar which was
    // promoted to a vector e.g. s8 -> v4s8 -> s8
    assert(SrcRegs.size() == 1);
    UnmergeSrcReg = SrcRegs[0];
  }

  int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();

  SmallVector<Register, 8> PadDstRegs(NumDst);
  std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());

  // Create the excess dead defs for the unmerge.
  for (int I = DstRegs.size(); I != NumDst; ++I)
    PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);

  if (PadDstRegs.size() == 1)
    return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
  return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
}

/// Create a sequence of instructions to combine pieces split into register
/// typed values to the original IR value. \p OrigRegs contains the destination
/// value registers of type \p LLTy, and \p Regs contains the legalized pieces
/// with type \p PartLLT. This is used for incoming values (physregs to vregs).
static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
                              ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
                              const ISD::ArgFlagsTy Flags) {
  MachineRegisterInfo &MRI = *B.getMRI();

  if (PartLLT == LLTy) {
    // We should have avoided introducing a new virtual register, and just
    // directly assigned here.
    assert(OrigRegs[0] == Regs[0]);
    return;
  }

  if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
      Regs.size() == 1) {
    B.buildBitcast(OrigRegs[0], Regs[0]);
    return;
  }

  // A vector PartLLT needs extending to LLTy's element size.
  // E.g. <2 x s64> = G_SEXT <2 x s32>.
  if (PartLLT.isVector() == LLTy.isVector() &&
      PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
      (!PartLLT.isVector() ||
       PartLLT.getNumElements() == LLTy.getNumElements()) &&
      OrigRegs.size() == 1 && Regs.size() == 1) {
    Register SrcReg = Regs[0];

    LLT LocTy = MRI.getType(SrcReg);

    if (Flags.isSExt()) {
      SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
                   .getReg(0);
    } else if (Flags.isZExt()) {
      SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
                   .getReg(0);
    }

    // Sometimes pointers are passed zero extended.
    LLT OrigTy = MRI.getType(OrigRegs[0]);
    if (OrigTy.isPointer()) {
      LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
      B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
      return;
    }

    B.buildTrunc(OrigRegs[0], SrcReg);
    return;
  }

  if (!LLTy.isVector() && !PartLLT.isVector()) {
    assert(OrigRegs.size() == 1);
    LLT OrigTy = MRI.getType(OrigRegs[0]);

    unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
    if (SrcSize == OrigTy.getSizeInBits())
      B.buildMerge(OrigRegs[0], Regs);
    else {
      auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
      B.buildTrunc(OrigRegs[0], Widened);
    }

    return;
  }

  if (PartLLT.isVector()) {
    assert(OrigRegs.size() == 1);
    SmallVector<Register> CastRegs(Regs.begin(), Regs.end());

    // If PartLLT is a mismatched vector in both number of elements and element
    // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
    // have the same elt type, i.e. v4s32.
    if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
        PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
        Regs.size() == 1) {
      LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
                      .changeElementCount(PartLLT.getElementCount() * 2);
      CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
      PartLLT = NewTy;
    }

    if (LLTy.getScalarType() == PartLLT.getElementType()) {
      mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
    } else {
      unsigned I = 0;
      LLT GCDTy = getGCDType(LLTy, PartLLT);

      // We are both splitting a vector, and bitcasting its element types. Cast
      // the source pieces into the appropriate number of pieces with the result
      // element type.
      for (Register SrcReg : CastRegs)
        CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
      mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
    }

    return;
  }

  assert(LLTy.isVector() && !PartLLT.isVector());

  LLT DstEltTy = LLTy.getElementType();

  // Pointer information was discarded. We'll need to coerce some register types
  // to avoid violating type constraints.
  LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();

  assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());

  if (DstEltTy == PartLLT) {
    // Vector was trivially scalarized.

    if (RealDstEltTy.isPointer()) {
      for (Register Reg : Regs)
        MRI.setType(Reg, RealDstEltTy);
    }

    B.buildBuildVector(OrigRegs[0], Regs);
  } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
    // Deal with vector with 64-bit elements decomposed to 32-bit
    // registers. Need to create intermediate 64-bit elements.
    SmallVector<Register, 8> EltMerges;
    int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();

    assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);

    for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
      auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
      // Fix the type in case this is really a vector of pointers.
      MRI.setType(Merge.getReg(0), RealDstEltTy);
      EltMerges.push_back(Merge.getReg(0));
      Regs = Regs.drop_front(PartsPerElt);
    }

    B.buildBuildVector(OrigRegs[0], EltMerges);
  } else {
    // Vector was split, and elements promoted to a wider type.
    // FIXME: Should handle floating point promotions.
    LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
    auto BV = B.buildBuildVector(BVType, Regs);
    B.buildTrunc(OrigRegs[0], BV);
  }
}

/// Create a sequence of instructions to expand the value in \p SrcReg (of type
/// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
/// contain the type of scalar value extension if necessary.
///
/// This is used for outgoing values (vregs to physregs)
static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
                            Register SrcReg, LLT SrcTy, LLT PartTy,
                            unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
  // We could just insert a regular copy, but this is unreachable at the moment.
  assert(SrcTy != PartTy && "identical part types shouldn't reach here");

  const unsigned PartSize = PartTy.getSizeInBits();

  if (PartTy.isVector() == SrcTy.isVector() &&
      PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
    assert(DstRegs.size() == 1);
    B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
    return;
  }

  if (SrcTy.isVector() && !PartTy.isVector() &&
      PartSize > SrcTy.getElementType().getSizeInBits()) {
    // Vector was scalarized, and the elements extended.
    auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
    for (int i = 0, e = DstRegs.size(); i != e; ++i)
      B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
    return;
  }

  LLT GCDTy = getGCDType(SrcTy, PartTy);
  if (GCDTy == PartTy) {
    // If this already evenly divisible, we can create a simple unmerge.
    B.buildUnmerge(DstRegs, SrcReg);
    return;
  }

  MachineRegisterInfo &MRI = *B.getMRI();
  LLT DstTy = MRI.getType(DstRegs[0]);
  LLT LCMTy = getCoverTy(SrcTy, PartTy);

  if (PartTy.isVector() && LCMTy == PartTy) {
    assert(DstRegs.size() == 1);
    B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
    return;
  }

  const unsigned DstSize = DstTy.getSizeInBits();
  const unsigned SrcSize = SrcTy.getSizeInBits();
  unsigned CoveringSize = LCMTy.getSizeInBits();

  Register UnmergeSrc = SrcReg;

  if (!LCMTy.isVector() && CoveringSize != SrcSize) {
    // For scalars, it's common to be able to use a simple extension.
    if (SrcTy.isScalar() && DstTy.isScalar()) {
      CoveringSize = alignTo(SrcSize, DstSize);
      LLT CoverTy = LLT::scalar(CoveringSize);
      UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
    } else {
      // Widen to the common type.
      // FIXME: This should respect the extend type
      Register Undef = B.buildUndef(SrcTy).getReg(0);
      SmallVector<Register, 8> MergeParts(1, SrcReg);
      for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
        MergeParts.push_back(Undef);
      UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
    }
  }

  if (LCMTy.isVector() && CoveringSize != SrcSize)
    UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);

  B.buildUnmerge(DstRegs, UnmergeSrc);
}

bool CallLowering::determineAndHandleAssignments(
    ValueHandler &Handler, ValueAssigner &Assigner,
    SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
    CallingConv::ID CallConv, bool IsVarArg,
    ArrayRef<Register> ThisReturnRegs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  SmallVector<CCValAssign, 16> ArgLocs;

  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
  if (!determineAssignments(Assigner, Args, CCInfo))
    return false;

  return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
                           ThisReturnRegs);
}

static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
  if (Flags.isSExt())
    return TargetOpcode::G_SEXT;
  if (Flags.isZExt())
    return TargetOpcode::G_ZEXT;
  return TargetOpcode::G_ANYEXT;
}

bool CallLowering::determineAssignments(ValueAssigner &Assigner,
                                        SmallVectorImpl<ArgInfo> &Args,
                                        CCState &CCInfo) const {
  LLVMContext &Ctx = CCInfo.getContext();
  const CallingConv::ID CallConv = CCInfo.getCallingConv();

  unsigned NumArgs = Args.size();
  for (unsigned i = 0; i != NumArgs; ++i) {
    EVT CurVT = EVT::getEVT(Args[i].Ty);

    MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);

    // If we need to split the type over multiple regs, check it's a scenario
    // we currently support.
    unsigned NumParts =
        TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);

    if (NumParts == 1) {
      // Try to use the register type if we couldn't assign the VT.
      if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
                             Args[i].Flags[0], CCInfo))
        return false;
      continue;
    }

    // For incoming arguments (physregs to vregs), we could have values in
    // physregs (or memlocs) which we want to extract and copy to vregs.
    // During this, we might have to deal with the LLT being split across
    // multiple regs, so we have to record this information for later.
    //
    // If we have outgoing args, then we have the opposite case. We have a
    // vreg with an LLT which we want to assign to a physical location, and
    // we might have to record that the value has to be split later.

    // We're handling an incoming arg which is split over multiple regs.
    // E.g. passing an s128 on AArch64.
    ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
    Args[i].Flags.clear();

    for (unsigned Part = 0; Part < NumParts; ++Part) {
      ISD::ArgFlagsTy Flags = OrigFlags;
      if (Part == 0) {
        Flags.setSplit();
      } else {
        Flags.setOrigAlign(Align(1));
        if (Part == NumParts - 1)
          Flags.setSplitEnd();
      }

      Args[i].Flags.push_back(Flags);
      if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
                             Args[i].Flags[Part], CCInfo)) {
        // Still couldn't assign this smaller part type for some reason.
        return false;
      }
    }
  }

  return true;
}

bool CallLowering::handleAssignments(ValueHandler &Handler,
                                     SmallVectorImpl<ArgInfo> &Args,
                                     CCState &CCInfo,
                                     SmallVectorImpl<CCValAssign> &ArgLocs,
                                     MachineIRBuilder &MIRBuilder,
                                     ArrayRef<Register> ThisReturnRegs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const Function &F = MF.getFunction();
  const DataLayout &DL = F.getParent()->getDataLayout();

  const unsigned NumArgs = Args.size();

  // Stores thunks for outgoing register assignments. This is used so we delay
  // generating register copies until mem loc assignments are done. We do this
  // so that if the target is using the delayed stack protector feature, we can
  // find the split point of the block accurately. E.g. if we have:
  // G_STORE %val, %memloc
  // $x0 = COPY %foo
  // $x1 = COPY %bar
  // CALL func
  // ... then the split point for the block will correctly be at, and including,
  // the copy to $x0. If instead the G_STORE instruction immediately precedes
  // the CALL, then we'd prematurely choose the CALL as the split point, thus
  // generating a split block with a CALL that uses undefined physregs.
  SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;

  for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
    assert(j < ArgLocs.size() && "Skipped too many arg locs");
    CCValAssign &VA = ArgLocs[j];
    assert(VA.getValNo() == i && "Location doesn't correspond to current arg");

    if (VA.needsCustom()) {
      std::function<void()> Thunk;
      unsigned NumArgRegs = Handler.assignCustomValue(
          Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
      if (Thunk)
        DelayedOutgoingRegAssignments.emplace_back(Thunk);
      if (!NumArgRegs)
        return false;
      j += NumArgRegs;
      continue;
    }

    const MVT ValVT = VA.getValVT();
    const MVT LocVT = VA.getLocVT();

    const LLT LocTy(LocVT);
    const LLT ValTy(ValVT);
    const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
    const EVT OrigVT = EVT::getEVT(Args[i].Ty);
    const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);

    // Expected to be multiple regs for a single incoming arg.
    // There should be Regs.size() ArgLocs per argument.
    // This should be the same as getNumRegistersForCallingConv
    const unsigned NumParts = Args[i].Flags.size();

    // Now split the registers into the assigned types.
    Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());

    if (NumParts != 1 || NewLLT != OrigTy) {
      // If we can't directly assign the register, we need one or more
      // intermediate values.
      Args[i].Regs.resize(NumParts);

      // For each split register, create and assign a vreg that will store
      // the incoming component of the larger value. These will later be
      // merged to form the final vreg.
      for (unsigned Part = 0; Part < NumParts; ++Part)
        Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
    }

    assert((j + (NumParts - 1)) < ArgLocs.size() &&
           "Too many regs for number of args");

    // Coerce into outgoing value types before register assignment.
    if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
      assert(Args[i].OrigRegs.size() == 1);
      buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
                      ValTy, extendOpFromFlags(Args[i].Flags[0]));
    }

    bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
    for (unsigned Part = 0; Part < NumParts; ++Part) {
      Register ArgReg = Args[i].Regs[Part];
      // There should be Regs.size() ArgLocs per argument.
      unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
      CCValAssign &VA = ArgLocs[j + Idx];
      const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];

      if (VA.isMemLoc() && !Flags.isByVal()) {
        // Individual pieces may have been spilled to the stack and others
        // passed in registers.

        // TODO: The memory size may be larger than the value we need to
        // store. We may need to adjust the offset for big endian targets.
        LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);

        MachinePointerInfo MPO;
        Register StackAddr = Handler.getStackAddress(
            MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);

        Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
        continue;
      }

      if (VA.isMemLoc() && Flags.isByVal()) {
        assert(Args[i].Regs.size() == 1 &&
               "didn't expect split byval pointer");

        if (Handler.isIncomingArgumentHandler()) {
          // We just need to copy the frame index value to the pointer.
          MachinePointerInfo MPO;
          Register StackAddr = Handler.getStackAddress(
              Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
          MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
        } else {
          // For outgoing byval arguments, insert the implicit copy byval
          // implies, such that writes in the callee do not modify the caller's
          // value.
          uint64_t MemSize = Flags.getByValSize();
          int64_t Offset = VA.getLocMemOffset();

          MachinePointerInfo DstMPO;
          Register StackAddr =
              Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);

          MachinePointerInfo SrcMPO(Args[i].OrigValue);
          if (!Args[i].OrigValue) {
            // We still need to accurately track the stack address space if we
            // don't know the underlying value.
            const LLT PtrTy = MRI.getType(StackAddr);
            SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
          }

          Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
                                    inferAlignFromPtrInfo(MF, DstMPO));

          Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
                                    inferAlignFromPtrInfo(MF, SrcMPO));

          Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
                                     DstMPO, DstAlign, SrcMPO, SrcAlign,
                                     MemSize, VA);
        }
        continue;
      }

      assert(!VA.needsCustom() && "custom loc should have been handled already");

      if (i == 0 && !ThisReturnRegs.empty() &&
          Handler.isIncomingArgumentHandler() &&
          isTypeIsValidForThisReturn(ValVT)) {
        Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
        continue;
      }

      if (Handler.isIncomingArgumentHandler())
        Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
      else {
        DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
          Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
        });
      }
    }

    // Now that all pieces have been assigned, re-pack the register typed values
    // into the original value typed registers.
    if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
      // Merge the split registers into the expected larger result vregs of
      // the original call.
      buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
                        LocTy, Args[i].Flags[0]);
    }

    j += NumParts - 1;
  }
  for (auto &Fn : DelayedOutgoingRegAssignments)
    Fn();

  return true;
}

void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
                                   ArrayRef<Register> VRegs, Register DemoteReg,
                                   int FI) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const DataLayout &DL = MF.getDataLayout();

  SmallVector<EVT, 4> SplitVTs;
  SmallVector<uint64_t, 4> Offsets;
  ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);

  assert(VRegs.size() == SplitVTs.size());

  unsigned NumValues = SplitVTs.size();
  Align BaseAlign = DL.getPrefTypeAlign(RetTy);
  Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
  LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);

  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);

  for (unsigned I = 0; I < NumValues; ++I) {
    Register Addr;
    MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
    auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
                                        MRI.getType(VRegs[I]),
                                        commonAlignment(BaseAlign, Offsets[I]));
    MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
  }
}

void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
                                    ArrayRef<Register> VRegs,
                                    Register DemoteReg) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const DataLayout &DL = MF.getDataLayout();

  SmallVector<EVT, 4> SplitVTs;
  SmallVector<uint64_t, 4> Offsets;
  ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);

  assert(VRegs.size() == SplitVTs.size());

  unsigned NumValues = SplitVTs.size();
  Align BaseAlign = DL.getPrefTypeAlign(RetTy);
  unsigned AS = DL.getAllocaAddrSpace();
  LLT OffsetLLTy =
      getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);

  MachinePointerInfo PtrInfo(AS);

  for (unsigned I = 0; I < NumValues; ++I) {
    Register Addr;
    MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
    auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
                                        MRI.getType(VRegs[I]),
                                        commonAlignment(BaseAlign, Offsets[I]));
    MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
  }
}

void CallLowering::insertSRetIncomingArgument(
    const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
    MachineRegisterInfo &MRI, const DataLayout &DL) const {
  unsigned AS = DL.getAllocaAddrSpace();
  DemoteReg = MRI.createGenericVirtualRegister(
      LLT::pointer(AS, DL.getPointerSizeInBits(AS)));

  Type *PtrTy = PointerType::get(F.getReturnType(), AS);

  SmallVector<EVT, 1> ValueVTs;
  ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);

  // NOTE: Assume that a pointer won't get split into more than one VT.
  assert(ValueVTs.size() == 1);

  ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
                    ArgInfo::NoArgIndex);
  setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
  DemoteArg.Flags[0].setSRet();
  SplitArgs.insert(SplitArgs.begin(), DemoteArg);
}

void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
                                              const CallBase &CB,
                                              CallLoweringInfo &Info) const {
  const DataLayout &DL = MIRBuilder.getDataLayout();
  Type *RetTy = CB.getType();
  unsigned AS = DL.getAllocaAddrSpace();
  LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));

  int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
      DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);

  Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
  ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
                    ArgInfo::NoArgIndex);
  setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
  DemoteArg.Flags[0].setSRet();

  Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
  Info.DemoteStackIndex = FI;
  Info.DemoteRegister = DemoteReg;
}

bool CallLowering::checkReturn(CCState &CCInfo,
                               SmallVectorImpl<BaseArgInfo> &Outs,
                               CCAssignFn *Fn) const {
  for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
    MVT VT = MVT::getVT(Outs[I].Ty);
    if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
      return false;
  }
  return true;
}

void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
                                 AttributeList Attrs,
                                 SmallVectorImpl<BaseArgInfo> &Outs,
                                 const DataLayout &DL) const {
  LLVMContext &Context = RetTy->getContext();
  ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();

  SmallVector<EVT, 4> SplitVTs;
  ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
  addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);

  for (EVT VT : SplitVTs) {
    unsigned NumParts =
        TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
    MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
    Type *PartTy = EVT(RegVT).getTypeForEVT(Context);

    for (unsigned I = 0; I < NumParts; ++I) {
      Outs.emplace_back(PartTy, Flags);
    }
  }
}

bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
  const auto &F = MF.getFunction();
  Type *ReturnType = F.getReturnType();
  CallingConv::ID CallConv = F.getCallingConv();

  SmallVector<BaseArgInfo, 4> SplitArgs;
  getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
                MF.getDataLayout());
  return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
}

bool CallLowering::parametersInCSRMatch(
    const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
    const SmallVectorImpl<CCValAssign> &OutLocs,
    const SmallVectorImpl<ArgInfo> &OutArgs) const {
  for (unsigned i = 0; i < OutLocs.size(); ++i) {
    auto &ArgLoc = OutLocs[i];
    // If it's not a register, it's fine.
    if (!ArgLoc.isRegLoc())
      continue;

    MCRegister PhysReg = ArgLoc.getLocReg();

    // Only look at callee-saved registers.
    if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
      continue;

    LLVM_DEBUG(
        dbgs()
        << "... Call has an argument passed in a callee-saved register.\n");

    // Check if it was copied from.
    const ArgInfo &OutInfo = OutArgs[i];

    if (OutInfo.Regs.size() > 1) {
      LLVM_DEBUG(
          dbgs() << "... Cannot handle arguments in multiple registers.\n");
      return false;
    }

    // Check if we copy the register, walking through copies from virtual
    // registers. Note that getDefIgnoringCopies does not ignore copies from
    // physical registers.
    MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
    if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
      LLVM_DEBUG(
          dbgs()
          << "... Parameter was not copied into a VReg, cannot tail call.\n");
      return false;
    }

    // Got a copy. Verify that it's the same as the register we want.
    Register CopyRHS = RegDef->getOperand(1).getReg();
    if (CopyRHS != PhysReg) {
      LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
                           "VReg, cannot tail call.\n");
      return false;
    }
  }

  return true;
}

bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
                                     MachineFunction &MF,
                                     SmallVectorImpl<ArgInfo> &InArgs,
                                     ValueAssigner &CalleeAssigner,
                                     ValueAssigner &CallerAssigner) const {
  const Function &F = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = F.getCallingConv();

  if (CallerCC == CalleeCC)
    return true;

  SmallVector<CCValAssign, 16> ArgLocs1;
  CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
  if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
    return false;

  SmallVector<CCValAssign, 16> ArgLocs2;
  CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
  if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
    return false;

  // We need the argument locations to match up exactly. If there's more in
  // one than the other, then we are done.
  if (ArgLocs1.size() != ArgLocs2.size())
    return false;

  // Make sure that each location is passed in exactly the same way.
  for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
    const CCValAssign &Loc1 = ArgLocs1[i];
    const CCValAssign &Loc2 = ArgLocs2[i];

    // We need both of them to be the same. So if one is a register and one
    // isn't, we're done.
    if (Loc1.isRegLoc() != Loc2.isRegLoc())
      return false;

    if (Loc1.isRegLoc()) {
      // If they don't have the same register location, we're done.
      if (Loc1.getLocReg() != Loc2.getLocReg())
        return false;

      // They matched, so we can move to the next ArgLoc.
      continue;
    }

    // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
    if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
      return false;
  }

  return true;
}

LLT CallLowering::ValueHandler::getStackValueStoreType(
    const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
  const MVT ValVT = VA.getValVT();
  if (ValVT != MVT::iPTR) {
    LLT ValTy(ValVT);

    // We lost the pointeriness going through CCValAssign, so try to restore it
    // based on the flags.
    if (Flags.isPointer()) {
      LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
                               ValTy.getScalarSizeInBits());
      if (ValVT.isVector())
        return LLT::vector(ValTy.getElementCount(), PtrTy);
      return PtrTy;
    }

    return ValTy;
  }

  unsigned AddrSpace = Flags.getPointerAddrSpace();
  return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
}

void CallLowering::ValueHandler::copyArgumentMemory(
    const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
    const MachinePointerInfo &DstPtrInfo, Align DstAlign,
    const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
    CCValAssign &VA) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
      SrcPtrInfo,
      MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
      SrcAlign);

  MachineMemOperand *DstMMO = MF.getMachineMemOperand(
      DstPtrInfo,
      MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
      MemSize, DstAlign);

  const LLT PtrTy = MRI.getType(DstPtr);
  const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());

  auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
  MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
}

Register CallLowering::ValueHandler::extendRegister(Register ValReg,
                                                    CCValAssign &VA,
                                                    unsigned MaxSizeBits) {
  LLT LocTy{VA.getLocVT()};
  LLT ValTy{VA.getValVT()};

  if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
    return ValReg;

  if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
    if (MaxSizeBits <= ValTy.getSizeInBits())
      return ValReg;
    LocTy = LLT::scalar(MaxSizeBits);
  }

  const LLT ValRegTy = MRI.getType(ValReg);
  if (ValRegTy.isPointer()) {
    // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
    // we have to cast to do the extension.
    LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
    ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
  }

  switch (VA.getLocInfo()) {
  default: break;
  case CCValAssign::Full:
  case CCValAssign::BCvt:
    // FIXME: bitconverting between vector types may or may not be a
    // nop in big-endian situations.
    return ValReg;
  case CCValAssign::AExt: {
    auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
    return MIB.getReg(0);
  }
  case CCValAssign::SExt: {
    Register NewReg = MRI.createGenericVirtualRegister(LocTy);
    MIRBuilder.buildSExt(NewReg, ValReg);
    return NewReg;
  }
  case CCValAssign::ZExt: {
    Register NewReg = MRI.createGenericVirtualRegister(LocTy);
    MIRBuilder.buildZExt(NewReg, ValReg);
    return NewReg;
  }
  }
  llvm_unreachable("unable to extend register");
}

void CallLowering::ValueAssigner::anchor() {}

Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
                                                                Register SrcReg,
                                                                LLT NarrowTy) {
  switch (VA.getLocInfo()) {
  case CCValAssign::LocInfo::ZExt: {
    return MIRBuilder
        .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
                         NarrowTy.getScalarSizeInBits())
        .getReg(0);
  }
  case CCValAssign::LocInfo::SExt: {
    return MIRBuilder
        .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
                         NarrowTy.getScalarSizeInBits())
        .getReg(0);
    break;
  }
  default:
    return SrcReg;
  }
}

/// Check if we can use a basic COPY instruction between the two types.
///
/// We're currently building on top of the infrastructure using MVT, which loses
/// pointer information in the CCValAssign. We accept copies from physical
/// registers that have been reported as integers if it's to an equivalent sized
/// pointer LLT.
static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
  if (SrcTy == DstTy)
    return true;

  if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
    return false;

  SrcTy = SrcTy.getScalarType();
  DstTy = DstTy.getScalarType();

  return (SrcTy.isPointer() && DstTy.isScalar()) ||
         (DstTy.isScalar() && SrcTy.isPointer());
}

void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
                                                          Register PhysReg,
                                                          CCValAssign VA) {
  const MVT LocVT = VA.getLocVT();
  const LLT LocTy(LocVT);
  const LLT RegTy = MRI.getType(ValVReg);

  if (isCopyCompatibleType(RegTy, LocTy)) {
    MIRBuilder.buildCopy(ValVReg, PhysReg);
    return;
  }

  auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
  auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
  MIRBuilder.buildTrunc(ValVReg, Hint);
}